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The Role of Non-CO2 Greenhouse Gases in Climate Policy:
Analysis Using the MIT IGSM

John Reilly∗, Marcus Sarofim, Sergey Paltsev and Ronald G. Prinn

Abstract

First steps toward a broad climate agreement, such as the Kyoto Protocol, have focused attention on
agreement with less than global geographic coverage. We consider instead a policy that is less
comprehensive in term of greenhouse gases (GHGs), including only the non-CO2 GHGs, but is
geographically comprehensive. Abating non-CO2 GHGs may be seen as less of a threat to economic
development and therefore it may be possible to involve developing countries in such a policy who have thus
far resisted limits on CO2 emissions. The policy we consider involves a GHG price of about $15 per ton
carbon-equivalent (tce) levied only on the non-CO2 GHGs and held at that level through the century. We
estimate that such a policy would reduce the global mean surface temperature in 2100 by about 0.57 oC;
application of this policy to methane alone would achieve a reduction of 0.3 to 0.4 oC. We estimate the Kyoto
Protocol in its current form would achieve a 0.30 oC reduction in 2100 if all Annex B Parties except the US
maintained it as is through the century. Furthermore, we estimate the costs of the non-CO2 policies to be a
small fraction of the Kyoto restriction. Whether as a next step to expand the Kyoto Protocol, or as a separate
initiative running parallel to it, the world could make substantial progress on limiting climate change by
pursuing an agreement to abate the non-CO2 GHGs. The results suggest that it would be useful to proceed on
global abatement of non-CO2 GHGs so that lack of progress on negotiations to limit CO2 does not allow
these abatement opportunities to slip away.
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1. INTRODUCTION

It seems unlikely that the world will soon negotiate a comprehensive global agreement to

abate all greenhouse gases (GHGs). First steps toward a broader agreement, such as the Kyoto

Protocol, have focused on less than global geographic coverage. A notable exception was a

proposal by Hansen et al. (2000) that focused on scenarios of global abatement of methane and

black carbon emissions but included no formal economic analysis. In this paper we examine

less-than-comprehensive coverage of the significant GHGs, leaving CO2 out of a global cap, but

consider that it may be possible to achieve global geographic coverage. We suppose a modest

policy with a GHG price of about $15 per ton carbon-equivalent (tce) throughout the century,

and we look at the resulting emissions reductions and their implications for climate change and

economic welfare. We compare that result to the effect of a comprehensive cap including CO2 at
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that same price, and to the climate benefits of the Kyoto Protocol in its current form, assuming

its current participants would hold to the first commitment period caps through 2100. The

simulation experiments are not meant to suggest that the non-CO2 gas strategy is all that should

be done to reduce emissions over the next century, or that CO2 from fossil energy should be

ignored. Our intent is to show what can be achieved in terms of climate change mitigation

benefit if it is possible to attain nearly global coverage of the non-CO2 gases. Broader

negotiations on climate change currently appear stalemated and in the meantime it may be

worthwhile to at least pursue an agreement to limit the non-CO2 GHGs. We use the MIT

Integrated Global System Model (IGSM) for this analysis.

The next section provides a brief discussion of the past and future contribution of the non-CO2

GHGs. In Section 3 we discuss briefly the case for a non-comprehensive GHG cap, and why

there may be more room for global agreement on non-CO2 GHGs than on CO2. Section 4

describes the MIT IGSM that we use to simulate these scenarios, focusing our attention on the

Emissions Prediction and Policy Analysis (EPPA) model component as it is key to the economic

policy results we present. Section 5 describes the specific scenarios and results, and Section 6

offers our overall conclusions.

2. PAST AND FUTURE CONTRIBUTIONS OF NON-CO2 GREENHOUSE GASES

After CO2, methane (CH4) is the most important direct anthropogenic source of increased

radiative forcing. The Intergovernmental Panel on Climate Change (IPCC) estimated its

contribution to increased radiative forcing between 1750 and 2000 to be 0.48 watts per square

meter (Wm–2), nearly one third the contribution from CO2 (Ramaswamy et al., 2001). These

calculations do not include the full contribution of CH4. One product of CH4 oxidation in the

atmosphere is CO2, and so part of the CO2 increase, albeit a small part, is the result of oxidation

of methane. CH4 is also a contributor to tropospheric ozone (O3) formation, which also is a

warming gas. The IPCC estimated that increases in tropospheric O3 between 1750 and 2000

contributed 0.35 ± 0.15 Wm–2. CH4 is likely not the most important contributor to past increases

in O3 because emissions of other precursors have increased substantially over that time. Clearly

identifying the CH4 contribution to the increase is difficult because the chemistry of O3 formation

in the troposphere is complex and non-linear in its precursor emissions.
Existing projections suggest that the relative contribution of CH4 to radiative forcing may

decrease in the future. Webster et al. (2003) estimated that CH4 might contribute another 0.6
(–0.17 to 1.71) Wm–2 of radiative forcing by 2100 (95% error bars in parentheses), compared to
an additional forcing from CO2 of 4.2 (2.1 to 7.5) Wm–2. At the median values the additional CH4

contribution drops to about 15% of CO2, from the historical share of one third. CO2 and CH4 are
produced, in part, by the related processes (fossil fuel production) and in part by separate
processes (e.g., agriculture, biomass burning, land fills and other waste disposal) and CH4

emissions from both fossil and non-fossil sources are subject to uncertainties independent from
those affecting CO2 emissions (Webster et al., 2002). Thus, low and high levels of the two gases
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are correlated to some degree but it is possible to have relatively high levels of CH4 and low
levels of CO2. Based on the Webster et al. (2002) study it is thus not possible to rule out cases
where the CH4 contribution remains high or even increases relative to CO2.

The historical contribution of nitrous oxide (N2O), hydrofluorocarbons (HFCs), sulfur

hexafluoride (SF6), and perfluorocarbons (PFCs) together are on the order of CH4 (Ramaswamy

et al., 2001). Much of the historical forcing is due to the chlorofluorocarbons (CFCs), whose

emissions have largely been phased out because of their ozone depleting effects. HFCs have been

rapidly replacing them. PFC use was growing rapidly because of its use in computer chip

manufacture, but more recently has slowed. The mix of these substances, and their sources, have

changed dramatically in the past decade or so, and could change further still in the future (Reilly

et al., 1999; US EPA 1999, 2001a,b,c; Reilly et al., 2000; Mayer et al., 2001; Reilly et al., 2002;

Reilly et al., 2003). Forecasts are highly uncertain (Harnisch et al., 2000; Mayer et al., 2001), in

part because these new chemicals may find new uses. As the automobile fleet continues to grow,

particularly in developing countries, HFC use in mobile air conditioning could grow dramatically.

As the climate effects of these substances have become more widely known, some firms are

already taking actions to prevent their release, to recycle them, or to switch to others with less

powerful effects on climate. In some cases, the potential development of new products and new

uses for them is being shelved, recognizing that the investment in development may not be

justified if a climate agreement might require early phase out. All of this adds to uncertainty.

A true “no-policy” case, ignoring actions that already appear to be built into decisions because of

the expectation of climate policy, can lead to very large projections of industrial GHG emissions

(US EPA, 2001b). These considerations add further to uncertainty and make it difficult to

establish a true no-policy reference. Webster et al. (2003) estimated the additional contribution

from N2O by 2100 to be 0.50 (0.16 to 1.0) Wm–2 and the combined additional forcing from

PFCs, SF6, and HFC to be 0.34 (0.27 to 0.54) Wm–2. Even though emissions are more uncertain

for these substances than for methane, there is somewhat less uncertainty in the resulting

atmospheric concentrations because of their very long lifetimes.

3. POLICY CONSIDERATIONS

Global climate policy is currently at a stalemate. The Kyoto Protocol may or may not enter
into force, and in any case the US, the world’s largest emitter of GHGs, is not part of it, nor do
developing countries such as India and China have commitments under the Protocol. If it enters
into force, greatly expanded geographic coverage in a second commitment period currently
appears to face many obstacles. The Protocol has many features that in principle make it
desirable from a cost-effectiveness standpoint. It starts with more or less comprehensive
inclusion of GHGs1 and it allows emissions trading (UNFCC, 1997), which under some

                                                  
1 It does not include tropospheric ozone or aerosols that also have important effects on the radiative balance of the

atmosphere, and it also limits the contribution from sinks. Including these specifically within the GWP weighted
caps presents difficult problems, see Reilly et al. (2003).
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conditions can lead to efficient reductions among different substances and different regions.2

But the fact that it does not include all regions means that, at best, emissions trading could

equalize marginal cost among the participating countries but not between developed and

developing countries, unless the Clean Development Mechanism (CDM) worked very effectively.

Experience has shown that the inclusion of crediting features within cap and trade systems, of

which CDM is an example, are usually not very effective at getting reductions. These credit

systems get bogged down in the bureaucracy of defining the baseline against which a credit is

allowed, and many of the abatement actions that would be encouraged under a cap are not easily

brought under a project-based credit system. Problems of leakage can also be more severe with

project-based credit systems.

So while there was much effort at including flexibility mechanisms in the Protocol with the

aim of reducing the cost of achieving its targets, the problem it could not overcome was limited

regional coverage. The agreement started with relatively deep cuts in developed countries and no

cuts in developing countries, and so the potential for cost-effectiveness was compromised by the

lack of geographical comprehensiveness. Now that the US has withdrawn from Kyoto, the cap is

far less restrictive if all of the flexibility mechanisms are used. Indeed, the cuts look not deep at

all, and if achieved cost effectively most of the reductions in the first commitment period would

likely come from reductions of non-CO2 GHGs (Babiker et al., 2002). The Protocol was intended

to be only a start toward a comprehensive policy, and any inefficiency of narrow regional

coverage would of course decrease if more regions gradually joined as planned.

If the Kyoto Protocol does not enter into force, or it proves difficult to expand geographical

coverage in succeeding commitment periods, is there another way to further climate policy rather

than gradual regional expansion? Cost effectiveness would go for the least costly reductions first,

and only tackle the more costly reductions as needed. One of the most important results of

analyses of the non-CO2 GHGs abatement possibilities is that considerable reductions can be

achieved at a quite low cost per ton of carbon equivalent. Figure 1 illustrates the broad picture

for these gases by showing, in percentage terms, the reductions that can be achieved for a given

cost/tce (using 100-year Global Warming Potential indices to convert to carbon equivalent).

Figure 1 shows abatement curves for the US, but the picture is not vastly different for other

countries. The implication of this basic picture is that in the first-step of comprehensive and cap

and trade scenarios, a disproportionate amount of the reductions come from the non-CO2 GHGs.

For example, Hyman et al., 2003 show that with a cap of 10% below a 2010 reference for all

GHGs including CO2, the non-CO2 GHGs make up 30 to 70 percent across countries of the cost

effective reduction in 2010 which is far above their share of emissions.
Of course it would be desirable to have a comprehensive cap on all substances set at just the

right level, but that has proved politically infeasible. The above reasoning suggests, however,
                                                  
2 Babiker et al. (2004) and Paltsev et al. (2004) show that given existing tax distortions in energy markets, emissions

trading can easily increase the economic cost of a policy compared to the case without emissions trading.
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Figure 1. Marginal Abatement Curves (MACs) for the high-GWP industrial gases (hydrofluorocarbons,
perfluorocarbons, sulfur hexafluoride), methane (CH4), nitrous oxide (N2O), and carbon dioxide.
Sources: Figure adapted from Reilly et al. (2003). Original data: Methane: U.S. EPA, 1999;
High-GWP Industrial gases: U.S. EPA, 2001b; nitrous oxide: Jochen Harnisch, 2001, personal
communication; CO2 calculations based on EPPA model simulations.

that if we could get agreement on the non-CO2 gases we would get the majority of the most cost

effective reductions that a modest comprehensive cap would get. As a next step it may be

reasonable to consider policies to control non-CO2 GHGs with broader regional coverage while

the difficult negotiations on CO2 limits continue. Why might it be possible to get global

agreement on the non-CO2 GHGs when it has been impossible to get such agreement on CO2?

The simple answer is that there are a lot of abatement opportunities that are not very expensive.

Given that CO2 emissions are closely linked to energy, which is quite fundamental to the

economy, and given the existing price of fuels, people have already exhausted many of the easy

ways to reduce fuel use. A small additional carbon charge that would produce a small increase in

the price of fuels would only yield marginal reductions in fuel use and carbon emissions. In

contrast, venting of the non-CO2 GHGs as a means of disposing of them is unpriced and little

attention has been paid to preventing this release. To be sure, many venting disposals have some

price: CH4 is an energy source and venting it means the opportunity value of the energy is lost;

the produced chemicals (SF6, HFCs) have a production cost, and the cost of venting them is the

cost of purchasing replacements. But, because of the high GWPs of these gases, the opportunity

costs of venting are on the order of pennies per carbon-equivalent ton when using 100-year GWP

or any other reasonable index of their climate effects. Looked at another way, a $15 per ton

carbon-equivalent incentive would be several multiples of the opportunity cost of not venting

these substances (e.g., Reilly et al., 2003).

Detailed studies suggest that preventing release of these substances may even be economic in

some cases, given the opportunity cost of purchasing the replacements (US EPA, 2002). Such no



6

regrets options have been likened to finding $50 bills on the sidewalk, and if they existed many

argue that most would have been spotted and picked up already. But abatement opportunities for

the non-CO2 GHGs, if they are no regrets, are comparatively nickels, dimes, and quarters on the

sidewalk. Yet, if we recognize that in climate terms they are worth several dollars that may make it

worthwhile to stoop, pocket the change, and make substantial progress in slowing climate change.

Even if the spare change does not fully compensate for the bother of stooping, we still have the

climate benefits. Developing countries looking for energy without having to spend hard currency

may find it particularly attractive to recover CH4. Similarly, recycling the industrial gases, if it

saves their purchase, may be desirable. A further consideration is that at this point, very little of the

industrial gases (PFCs, SF6, and HFCs) are emitted in developing countries. Therefore agreement

here would focus on prevention, establishing best practice in developed countries, and assuring

that these practices are used elsewhere when the products and production moves there. This may

be easier to agree on than cutting back on something on which a poor country already depends.

As noted above, either because reducing emissions of these substances is actually cost-effective

or in anticipation of carbon-equivalent penalty for emitting them, many firms are reducing them.

Creating a global agreement on these substances would consolidate these actions, and in many

cases act as a preventative measure against developing practices that would lead to their release.

Not all is completely without pain, however. Cutting agricultural sources of N2O and CH4, tied

as they are to food production, are potentially as big a threat as limits on CO2 and energy use. The

good news is that it appears that substantial mitigation of CH4 from paddy rice is possible with

mid-season drainage, and this appears to also increase yield. The practice has thus spread widely

in China quite apart from any concern about CH4 emissions. CH4 from ruminants is by comparison

not an easily solved problem. Manure handling, however, need not develop into the manure pit

operations prevalent in the US that, due to the anaerobic conditions, generate large amounts of

CH4. Alternatively, building in the capacity to collect and use the methane from these pits as an

energy source could be cost-effective. We discuss how we deal with these issues below.

4. THE MIT IGSM

The MIT Integrated Global System Model (IGSM) (Prinn et al., 1999) includes the Emissions

Prediction and Policy Analysis (EPPA) model, designed to project emissions of greenhouse-

relevant gases (Babiker et al., 2001) and the economic consequences of policies to limit them

(e.g., Paltsev et al., 2003, Reilly et al., 1999; Jacoby et al., 1997); a chemistry and climate model

that includes a two-dimensional (2D) land-ocean (LO) resolving climate model (Sokolov &

Stone, 1998), coupled to a 2D model of atmospheric chemistry (Wang et al., 1998; Wang &

Prinn, 1999; Mayer et al., 2000), and a 2D or three-dimensional (3D) model of ocean

circulations (Kamenkovich et al., 2002). The TEM model of the Marine Biological Laboratory

(Melillo et al., 1993; Tian et al., 1999; Xiao et al., 1997, 1998) simulates carbon and nitrogen

dynamics of terrestrial ecosystems. With regard to the simulations reported here, the particularly
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important aspects of the earth system components of the model are those that represent

atmospheric chemistry. Atmospheric chemistry is resolved separately for polluted conditions,

i.e., emissions in urban airsheds, and background conditions. Urban conditions are resolved at

low, medium and high levels of pollution (Mayer et al., 2001). This is important because the

formation of tropospheric O3 has a highly non-linear dependence on levels of NOx, volatile

organic compounds (VOCs) including CH4, and CO as they vary from background levels to

concentrations observed in different types of urban environments. The hydroxyl radical (OH) is

key to the oxidation of CO and CH4. For example, if levels of CO are high then oxidation of it

will use up much of the OH and therefore extend the lifetime of CH4. In turn, production of OH

is driven by O3 and NOx (which also produces O3). Too much NOx however, will deplete OH

through HNO3 formation. Correctly resolving the atmospheric chemistry is thus important both

for estimating the concentrations of CH4 (as its lifetime endogenously changes with changes in

OH) and levels of tropospheric O3 as they affect warming.

The EPPA component of the IGSM model is a computable general equilibrium (CGE) model.

The main advantage of CGE models is their ability to capture the influence of a sector-specific

(e.g., energy, fiscal, or agricultural) policy on other industry sectors, on consumption, and also

on international trade. EPPA is a recursive-dynamic and multi-regional model covering the entire

the world economy (Babiker et al., 2001). It is built on the economic and energy data from the

GTAP dataset (Dimaranan & McDugall, 2002; Hertel, 1997) and additional data for the

greenhouse gases (CO2, CH4, N2O, HFCs, PFCs and SF6) and urban gas emissions (CO, VOC,

NOx, SO2, black carbon (BC), organic carbon (OC), and ammonia (NH3)) (Mayer et al., 2001;

Hyman et al., 2003). GHG inventory data and projections of abatement opportunities are based

largely on US EPA data (US EPA 2001a-c, 2002 a,b). It has been used extensively for the study

of climate policy (Jacoby et al., 1997; Babiker et al., 2000, 2002; Viguier et al., 2001; Bernard et

al., 2003; Paltsev et al., 2003; Reilly et al., 2002; McFarland et al., 2003), climate/multi-gas

interactions (Reilly et al., 1999; Felzer et al., 2004), and to study uncertainty in emissions and

climate projections for climate models (Webster et al., 2002, 2003). Table 1 provides an

overview of the basic elements of the model, with greater details in Babiker et al. (2001) and

Paltsev et al. (2003, 2004), and for the non-CO2 GHGs Hyman et al. (2003).

Inventories for non-CO2 GHGs were updated for this study to be consistent with US EPA data

made available for the Energy Modeling Forum (EMF) study. The approach for inclusion of

these gases is detailed in Hyman et al. (2003) and Webster et al. (2002), with greater details on

the methods of developing emissions coefficients that change over time for aggregate EPPA

sectors in Mayer et al., (2001). Briefly, the method is to introduce each separate GHG emission

as an input into a separate nest of the constant elasticity of substitution (CES) production

function of the relevant sectors. For example, CH4 emissions are modeled as coming from

agriculture (paddy rice, ruminant, manure, and biomass combustion related to deforestation);

other industry (food processing waste); energy intensive industry (waste from paper and
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Table 1. Countries, Regions, and Sectors in the EPPA Model

Country or Region Sectors Factors
Developed Non-Energy Capital

United States (USA) Services (SERV) Labor
Canada (CAN) Energy-Intensive Products (EIT) Land
Japan (JPN) Other Industries Products (OTHR) Crude Oil Resources
European Union+a (EUR) Transportation (TRAN) Natural Gas Resources
Australia & New Zealand (ANZ) Agriculture (AGRI) Coal Resources
Former Soviet Unionb (FSU) Energy Hydro Resources
Eastern Europe (EET) Coal (COAL) Shale Oil Resources

Developing Crude Oil (OIL) Nuclear Resources
India (IND) Refined Oil (ROIL) Wind/Solar Resources
China (CHN) Natural Gas (GAS)
Indonesia (IDZ) Electric: Fossil (ELEC)
Higher Income East Asiac (ASI) Electric: Hydro (HYDR)
Mexico (MEX) Electric: Nuclear (NUCL)
Central & South America (LAM) Electric: Solar and Wind (SOLW)
Middle East (MES) Electric: Biomass (BIOM)
Africa (AFR) Electric: Natural Gas Combined Cycle (NGCC)
Rest of Worldd (ROW) Electric: NGCC with Sequestration (GGCAP)

Electric: Integrated Gasification with
Combined Cycle and Sequestration (IGCAP)

Oil from Shale (SYNO)
Synthetic Gas (SYNG)

Emissions of Climate Relevant Substances

Substances Sources
CO2, CH4, N2O, HFCs, SF6, PFCs, CFCs,
CO, NOx, SOx, VOCs, black carbon (BC),
organic carbon (OC), NH3

Combustion of refined oil, coal, gas, biofuels and biomass burning,
manure, soils, paddy rice, cement, land fills, and industrial production.

a The European Union (EU-15) plus countries of the European Free Trade Area (Norway, Switzerland, Iceland).
b Russia and Ukraine, Latvia, Lithuania and Estonia, Azerbaijan, Armenia, Belarus, Georgia, Kyrgyzstan, Kazakhstan, Moldova,

Tajikistan, Turkmenistan, and Uzbekistan.
c South Korea, Malaysia, Phillipines, Singapore, Taiwan, Thailand.
d All countries not included elsewhere: Turkey, and mostly Asian countries.

chemical industries); household consumption (land fills); coal production (coal seam gas); oil
production (venting from production); and gas consumption (leakage from pipelines). Similar
modeling detail is provided for each of the substances. This approach allows us to specify
separate abatement opportunities for each sector, and to distinguish between emissions that come
from production of oil and coal from those that result from consumption/transmission (as in the
case of CH4 from natural gas).

We estimate an elasticity of substitution for each sector’s emissions such that the partial
equilibrium production function response to changing price of the substance matches bottom-up
abatement curves based on a technology-by-technology assessment, as in EPA (2001a,b,c).
Agriculture is relatively aggregated, with bottom-up abatement curves for different agricultural
sources being summed into a single abatement curve for the sector. We have made these region-
specific based on the shares of various agricultural sources. We assume no feasible abatement
possibilities for ruminant emissions, and very restrictive opportunities for abatement of N2O from
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agriculture in developing countries. In developed countries we include somewhat more abatement
of N2O because studies show the potential for reducing nitrogen fertilizer use without reducing
yield by, for example, soil testing and better crediting of nitrogen in manure. Similarly, there is
more opportunity for CH4 abatement from agriculture in the US because more of it is emitted from
large confined cattle operations where opportunities for abatement have been identified. Little or
none of the CH4 emissions in developing countries comes from livestock operations of this type.
There are consequently much lower emissions per head from livestock in developing countries
compared to the US. Nearly all of what is emitted in developing countries is from ruminants, and
there is no abatement possibility for these regions that we represent as feasible in the model.

If we imagined the development of manure handling operations in developing countries of the

type that are common in the US, our baseline emissions of CH4 would be higher. In that regard,

our simulations may underestimate the importance of focusing on preventative measures.

Similarly, we do not simulate in our baseline a large transition to landfills in developing

countries that would create large amounts of CH4. As modeled, reduction of agricultural methane

from livestock production in developing countries would need to come from reduced agricultural

production, but that is negligible because the value of food is high relative to the GHG cost share

in production, particularly for the low GHG prices we simulate here. We include abatement from

rice paddies based on drainage studies done by International Energy Agency (IEA), as discussed

in Hyman et al., 2003. The IEA data estimated a cost for this practice. Recent observations that

mid-season drainage may actually increase yields could mean it would in some places be, on net,

economically beneficial even apart from the CH4 abatement.

By reflecting abatement opportunities as they differ in developing versus developed countries

and among different sources, the EPPA model is well-designed to consider the questions we

address in this paper. A related aspect of the approach is that, as previously discussed, many of

the detailed bottom-up estimates suggest no regrets, or economically beneficial actions that

would reduce GHG emissions. As discussed in Hyman et al. (2003) one could treat this

information in a model of our type by removing them from abatement opportunities and building

the reductions into the reference scenario. Another approach, and the one we use, is to assume

that because these abatement activities have not occurred there remains a small unmeasured cost

or barrier that is preventing them from being implemented. We thus include these emissions in

the reference, and assume that they require a low carbon-equivalent price in order to be realized.

5. SCENARIOS CONSTRUCTION AND RESULTS

We construct the following seven cases:

1. Ref: A reference case with no explicit climate policy.

2. CH4-only: All abatement options for CH4 below $15/tce (100-yr GWPs).

3. All Non-CO2: As (2) expanded to include N2O, SF6, PFCs, and HFCs.

4. All GHGs: As in (3) expanded to include CO2.
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5. All GHGs = cap: Cap and trade is expanded to include CO2, but total GWP-weighted
emissions reductions are set equal to the GWP-weighted emissions reduction resulting
from the $15/tce in (3).

6. Kyoto: Kyoto with current participants (assuming Russia ratifies and without the US) with
sink allowances agreed at Marrakesh, and full trading among Parties including non-CO2

GHG emissions of the participating parties and no Clean Development Mechanism
(CDM) credits.

7. Kyoto-CO2: As in (6) but excluding non-CO2 GHGs from the policy. However, reductions
in emissions of non-CO2 gases because of reductions in fossil fuels (e.g., reduced coal bed
methane emissions because of lower coal use) are included in the IGSM runs.

The reference case serves as a basis of comparison to allow us to estimate the net present

value of the welfare loss (discounted at 5% per annum) under the different scenarios, and to see

the climate benefits of the policy cases. Cases 2 through 4 are normalized on the carbon-

equivalent price, and so we expect more climate mitigation benefit as we include more GHGs,

but we also expect the cost in terms of welfare loss to increase because of the greater GHG

coverage. Case 5 is designed to show the economic cost of limiting coverage to the non-CO2

GHGs by contrasting Case 3 with a scenario where the GWP weighted emissions reductions are

the same but spread over all gases to equilibrate the carbon-equivalent price.

These cases are all done in place of Kyoto: i.e., assuming the Protocol does not enter into

force and the parties that have ratified it abandon that approach and pursue the non-CO2 GHG

approach. This is not meant to represent the realistic intentions of the parties that have already

ratified but to show clearly the difference between the Kyoto approach and non-CO2 GHG

approach. Finally, the last two cases are Kyoto targets, but Case 7 (excluding the non-CO2

GHGs) is designed to separately identify the non-CO2 GHG contribution to the Kyoto Protocol,

and is not meant to suggest that the Kyoto Parties do not intend to control these emissions.

Climate Results. Figure 2 shows the simulated change in global mean surface temperature for

five of the seven simulations. We omit Case 5, All GHGs = cap, because this has the same GWP

weighted reduction in emissions as Case 4, and we are interested in it solely for the economic

comparison.3 We also do not graph Case 7 because it is nearly indistinguishable from Case 6.

The climate results show that the CH4-only policy has a substantial effect on temperature,

particularly in the nearer term. The reduction in the temperature increase reaches about 0.3 to

0.4 oC by 2050-2060, and varies in this range through 2100. The average over these 5 decades is

0.33 oC. In comparison the Kyoto warming reduction only approaches this level by 2100 (the

temperature reduction in 2050 is 0.07 oC, rising to about 0.30 oC by 2100). This result reflects

mostly the fact that the effective lifetime of CH4 is quite short (on the order of 12 years allowing

for OH effects) whereas the Kyoto reductions include abatement of the longer-lived CO2.
                                                  
3 However, as shown elsewhere (Reilly et al., 1999, Sarofim et al., 2004) GWPs do not correctly weight the GHGs

and so the temperature effects are different depending on which gases are reduced. This issue has been explored
thoroughly in the above papers and elsewhere. Here we want to focus on the economic differences of policies
that would be viewed as identical given the agreement to use GWPs.
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Figure 2. Climate change results expressed as decadal average mean surface temperature
change from year 2000 for the reference and for policy scenarios.

The climate benefits of reductions in CH4 are seen mostly within the time horizon of the

simulation, whereas the lifetime of CO2 is on the order of 100 years, and thus the climate benefits

of CO2 reductions in the latter half of the century are mostly not realized until after 2100.4

Sarofim et al. (2004) conduct very long-run model integrations with the MIT IGSM and show

that it can take more than 200 years for similar reductions in emissions of CO2 and other

GWP-weighted GHGs to show similar temperature reductions. Similar to this paper, they show

greater near term benefits of CH4 abatement, compared to CO2.

The All Non-CO2 case shows, of course, greater climate mitigation benefit than the CH4-only

case. The benefit rises to about a 0.57 oC reduction in warming by 2100. These gases include

N2O with a lifetime similar to that of CO2, HFCs, which have on average a shorter lifetime

(~30 to 50 years), and the very long-lived PFCs and SF6, which have lifetimes of thousands of

years. So this is a mixed group of gases, but much of the additional benefit we see through the

year 2100 simulation horizon likely comes from N2O reductions and the shorter-lived HFCs.

The All GHGs case, where we further extend the $15/tce policy to CO2, has small additional

climate benefits, somewhat under a 0.1oC warming reduction. This reflects the fact that the

$15/tce is a marginal increase in fuel prices and spurs on only small reductions in energy use.

The Case 7 (Kyoto-CO2) climate results, not plotted because they are indistinguishable from
                                                  
4 Here we use lifetimes frequently used in the literature only to provide an order-of-magnitude idea of the difference.

Because carbon is partitioned in different reservoirs, a single lifetime is not truly appropriate, and as noted, the
calculation of the lifetime of CH4 in the MIT IGSM is endogenous but it is not straightforward to extract its
lifetime as it changes over time.
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Kyoto case when graphed, show somewhat less reduction in warming (about 0.05 oC) compared

with Case 6. Kyoto-CO2 actually shows very slight warming compared to the reference in the

2020-2040 decades because the CO2 constraints reduce coal use and associated emissions of

sulfates. This offsetting sulfate effect is greatly reduced in the Kyoto case because more of the

reductions come from the non-CO2 GHGs (and less from reductions in fossil energy use), and in

addition it includes CH4 abatement, which has a more immediate effect on climate.

It is of interest given the high costs often associated with the Kyoto Protocol, where

projections quickly rise to hundreds of dollars per ton carbon-equivalent, that a global policy

focused particularly on the non-CO2 GHGs where the price is on the order of $15/tce could

achieve, at least in the 2100 time horizon, greater climate benefits than a CO2-only version of the

Kyoto Protocol extended to 2100. If we failed to deal with CO2 the accumulating atmospheric

concentrations would, of course, become a greater burden over time. But, if we could make

progress on these inexpensive abatement options, these results show substantial climate benefits.

Economic Costs. We have standardized the non-CO2 scenarios around a $15/tce price, but the

coverage varies yielding different macroeconomic cost in terms of lost consumption. Climate

policy can also interact with pre-existing taxes in the economy, and so carbon price is a poor

indicator of the cost of a policy (Paltsev et al., 2004). Table 2 shows the Net Present Value

(NPV) cost, using a 5% discount rate, of these policy cases through 2100, and the climate

mitigation benefit in terms of reduced temperature change for the 2090-2100 decade. The time

paths of climate change over the century are shown in Figure 2. The NPV welfare cost of the

CH4-only case is $58 billion (1997$), or about 0.005% of the NPV of total consumption over the

century. The cost of the All Non-CO2 case is $182 billion, and if we expand this policy to CO2

the costs more than double to $430 billion. The CH4-only policy cost is about 13% of the

All GHG case ($58 billion/$430 billion) but it achieves slightly more than half the temperature

reduction benefits in 2100 (0.33 oC/0.65 oC). The increased cost from adding N2O, HFCs, PFCs,

Table 2. Economic costs (net present value today of the policy through 2100) and temperature
reduction benefits (2090-2100 decade) of mitigation policies.

Scenario 2 3 4 5 6 7

CH4-only All Non-CO2 All GHGs All GHGs = cap Kyoto Kyoto-CO2

Net Present Value welfare
loss (billions 1997$)

58 182 430 96 6663 8941

Welfare loss (% of NPV of
total consumption)

0.005 0.017 0.039 0.009 0.606 0.813

Temperature reduction
(oC) from reference for
2090- 2100 decade

0.33* 0.57 0.65 — 0.30 0.26

* Mean for 2050-2100; climate benefit by decade in this case is variable, ranging from 0.29 to 0.39 oC. The mean for the
longer period is more representative than a single decade. See Fig. 2 for the full time path of temperature for these cases.

— GWP weighted reduction same as Case 3.
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and SF6 to the policy is nearly 30% of the All GHG case costs, and it contributes about 30% of
the climate mitigation benefit. The cost of expanding the $15 tax to CO2 is 58% of the All GHG
case, ($430 billion – $182 billion)/$430 billion, but this addition contributes only 15% of the
climate mitigation benefit realized in 2100.

Of course these less comprehensive policies are more expensive than a comprehensive global

policy covering all gases designed to achieve the same GWP-weighted reduction. The All GHGs

= cap case, with a cap on all gases including CO2, costs about half as much as the All Non-CO2

case. Hence even these marginal reductions from a low carbon price reduce the policy cost. The

problem is that the negotiations to put policies in place to achieve this appears stalemated because

countries are concerned that current policy approaches using a fixed cap would become too costly.

We see this in the Kyoto scenarios (6 and 7), which are measured in trillions of dollars rather than

billions (Table 2). And, with narrow regional coverage they achieve less climate benefit.

Interactions. There are a number of interactions that come into play in the estimate of cost and

climate mitigation benefit. To the extent that CO2 polices reduce coal use, they can also reduce

sulfate aerosols, and this reduction has a warming effect that offsets the cooling from CO2

reductions, as noted earlier. CO2 also enhances growth of vegetation and carbon storage, and thus

policies that reduce CO2 also reduce uptake by vegetation in the IGSM runs, and as a result the

reductions in emissions are not quite as effective as if this did not occur. Changes in energy use

also affect emissions of many O3 precursors. Specifically, CH4 and NOx and CO produced in

combustion of fossil fuels are all O3 precursors. We find that Cases 2 through 4, with larger

reductions in CH4, reduce tropospheric O3 levels about 5% on average by the end of the century

compared to the reference. In comparison, the Kyoto scenarios reduce O3 by about 3% due to

reduced NOx and CO only. While a small effect, O3 is a warming substance and thus this makes

the CH4 policies somewhat more effective than CO2 policies in reducing temperature. A further

effect of methane abatement is a lower CO2 concentration because the CH4 would have been

oxidized. If the CH4 emissions reductions from fossil energy sources (coal mining, petroleum

production, and leakages from natural gas transmission and distribution) that we estimated for

Cases 2 to 4 are used for fuel in order to displace other natural gas use, the displaced natural gas

would have oxidized into about 14 GtC, or about 2 to 3 years of current annual fossil carbon

emissions. So abating these emissions also reduces atmospheric CO2.

In the above calculation we do not include oxidation of the CH4 involved in abatement from

biogenic sources because we assume the biomass material that produced this CH4 was atmospheric

CO2 before it was taken up by the vegetation. The agricultural activities leading to these emissions

are cycling the carbon on fairly rapid timescales, and so we assume that avoiding the formation of

CH4 under anaerobic conditions leaves this vegetation to instead decay directly into CO2. This

would be the case for paddy rice for example.5 On the cost side, many countries have existing fuel
                                                  
5 If CH4 from manure is collected and used as an energy source to offset a fossil source this would through the offset

lead to a reduction in carbon.
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taxes, and climate policy directed toward fuels interacts with these existing taxes to raise the cost

of the climate policy. Paltsev et al. (2004) show that the extra cost due to this tax interaction effect

can be several times the direct cost of the carbon policy itself. This fact likely explains why

expanding the $15/tce policy to CO2 increases the costs as much as it does (Table 2).

6. CONCLUSIONS

The current policy challenge is to make a start toward stabilizing greenhouse gases in the

atmosphere. An idealized policy would be comprehensive geographically, and would include all

substances that affect the radiative balance of the atmosphere. There are technical, scientific, and

policy-related reasons why it has not been possible to jump-start a fully comprehensive policy.

Issues of measuring carbon sinks have limited how this potential CO2 reduction source has been

included in climate policies. Aerosols have important radiative effects; sulfates cool the surface

whereas other aerosols like black carbon have more complex warming and cooling effects on

climate. Tropospheric O3 has been a major contributor to historical forcing but the complex and

non-linear interactions among its precursors make it difficult to confidently identify reductions in

emissions of specific substances that would in all circumstances lead to reductions of O3.

Moreover, aerosols and ozone are short-lived and not well-mixed in the atmosphere and so their

climate effects display a different geographic pattern, and may differentially affect cooling,

warming, and precipitation compared with the longer-lived GHGs (Reilly et al., 2003). Even

among the GHGs, their differing nature has made it impossible to define a simple, scientifically

accurate index by which to compare them, and so policies that use 100-year GWPs poorly

represent the relative climatic effects (Reilly et al., 1999; Sarofim et al., 2004). On the policy

side, developing countries have resisted joining the group of countries in the Kyoto Protocol that

have taken on caps, at least for the present. Recognizing these many difficulties, to get started

one would like to find that less-than-comprehensive set of policies that would be effective, have

a chance of broad acceptance among most countries, and would not be highly inefficient.

Fortunately, these last two conditions, cheap and acceptable, often go hand in hand.

We have considered policies that are global in nature but focused on the non-CO2 GHGs. The

radiative effects of the non-CO2 GHGs are well-known, and so there is no scientific doubt that

reducing them will lead to climate mitigation benefit. On the cost side, it has become ever clearer

with more study and attention that there are many ways to abate these non-CO2 emissions at low

cost, or possibly with economic benefit. Whereas reducing CO2 emissions from energy has been

seen as a threat to economic growth among developing countries, the non-CO2 GHGs are less

fundamental to an economy and so reducing them does not pose as large of a threat. We estimate

that abatement opportunities for CH4 that could be achieved at less than $15/tce would over the

next century reduce warming by 0.3 to 4 oC. Expanding this to other non-CO2 GHGs would

reduce warming by another 0.2 oC, for a total reduction of about 0.56 oC. This is substantially

more than the 0.30 oC reduction we estimate the Kyoto Protocol in its current form would
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achieve if Parties to it maintained it as is through 2100. Furthermore, we estimate the costs of the

non-CO2 policies to be a fraction of the Kyoto policy extended through 2100. If one were thus

forced to choose between (1) extending the Kyoto targets for future commitment periods for just

the narrow group of countries that have so far ratified the agreement (and assuming Russia also

ratifies), and (2) retaining a lower carbon-equivalent price in these regions but extending

mitigation efforts geographically to include just the non-CO2 GHGs (or to include CO2 but with

the price capped so as to limit concerns about the cost of the policy), the latter approach would

have greater climate mitigation benefits and far lower costs. It thus seems worthwhile to see if

the latter approach would be more acceptable to countries that have thus far not adopted targets.

Stabilization of greenhouse gases in the atmosphere will require that carbon emissions from

fossil energy be reduced. Unfortunately, we are stuck in a policy stalemate of how to proceed on

carbon dioxide. Non-CO2 GHG abatement would occur through the Kyoto Protocol and even

abatement in developing countries could be achieved under it through the CDM. However, the

opportunities to avoid these emissions may slip away as we wait for ratification of the Kyoto

Protocol. Even if ratified the CDM itself may be ineffective at getting the reductions in

developing countries. Whether as a next step to expand Kyoto, or as a separate initiative running

parallel to it, the world could well make substantial progress on limiting climate change by

pursuing an agreement to abate the low cost non-CO2 GHGs.

While we simulated control with an emissions tax and/or cap and trade system, other policy

approaches may be equally effective. Abatement of these substances may be controlled by

establishing best practice measures, or through regulatory standards without being highly

inefficient. Policies might simply be established to not use landfills as a waste disposal method, or

to create them such that methane would be collected and used as an energy source. Methods that

capture rather then vent SF6 from electrical switchgear testing, already used by many companies,

could simply be mandated. As long as we are focused on methods that are relatively low cost, it is

not obvious that great inefficiencies arise from less than ideal market incentive mechanisms. And

given the existence of other pre-existing distortions in the economy and the inability to establish

accurate indices by which to establish equivalent multi-substance taxes (or the rate at which

different substances would trade) the idealized instruments may not work ideally. The bottom line

is that there appear to be low cost abatement options that we should act on as soon as we can, and

through whatever policies or measures different countries find acceptable to their circumstances,

and thus hopefully make it possible to get broad country participation.
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