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The Curious Role of “Learning” in Climate Policy: Should We Wait for More Data?

Mort D. Webster†

Abstract

Given the large uncertainties regarding potential damages from climate change and the significant but
also uncertain costs of reducing greenhouse emissions, the debate over a policy response is often framed
as a choice of either acting now or waiting until the uncertainty is reduced. Implicit behind the “wait to
learn” argument is the notion that the ability to learn in the future necessarily implies that less restrictive
policies should be chosen in the near-term. I demonstrate in the general case that the ability to learn in
the future can lead to either less restrictive or more restrictive policies today. I also show that the initial
decision made under uncertainty will be affected by future learning only if the actions taken today change
the marginal costs or marginal damages in the future. Without this interaction, learning has no effect on
what we do today, regardless of what we learn in the future. Results from an intermediate-scale
integrated model of climate and economics indicate that the choice of current emissions restrictions is
independent of whether or not uncertainty is resolved before future decisions, because the cross-period
interactions in the model are minimal. Indeed, most climate and economic models fail to capture
potentially important cross-period interaction effects. I construct a simple example to show that with
stronger interactions, the effect of learning on initial period decisions can be more important.
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1. INTRODUCTION

International agreement on steps to mitigate greenhouse gases, to reduce the threat of global
climate change, continues to be elusive. One characteristic of climate change that makes
consensus difficult is the magnitude of the uncertainty regarding both the costs and impacts.
The amount of climate change that may occur and the effects resulting from such a change are
potentially very large, including changes in precipitation patterns, sea level rise, frequency
and severity of extreme climatic events, and even a shift in the ocean currents that warm Europe.
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But uncertainty about these effects remains very large. The costs of restricting greenhouse gas
emissions are also uncertain, and are estimated by some to also be quite large as well.

Greenhouse gases are an example of what, in economic terms, is known as a “stock”
pollutant. Once emitted into the atmosphere, these gases have extremely long lifetimes, hundreds
to thousands of years for some of them. Their effects on the climate system are a function of
their total concentrations in the atmosphere, which change slowly as a result of emissions over
many decades. The uncertainties in climate change, the long-time scales involved, and the
potentially irreversible effects—combined with the fact that control policies taken today can be
reconsidered later—make the climate change issue one of deciding what to do now given that we
may resolve some of the uncertainties in the future. Thus, discussions of climate policy are
typically framed as a choice of either acting to reduce emissions now or waiting until we learn
more about the problem. Stringent and costly actions taken now might prove to be unnecessary if
the climate change problem turns out to be not as bad as we thought. On the other hand, we may
regret not acting aggressively now if we learn that the effects of climate change are much more
severe than expected. Researchers and interest groups alike have made both cases (e.g., Risbey et
al., 1991a, 1991b; Schlesinger and Jiang 1991a, 1991b; Stevens, 1997; United Nations, 1992).
In the policy debate the most common argument is that the expectation of future learning should
lead to less action now than otherwise (the so-called “wait to learn” argument). In the available
economic literature, however, there is no consensus on the issue.

One stream of research on decision-making under uncertainty within economics has focused
on the additional value of avoiding future damages when those damages are uncertain and
irreversible, and so concludes that the ability to learn should lead to lower emissions if those
emissions has irreversible consequences (e.g., Arrow and Fisher, 1974; Henry, 1974; Chichilnisky
and Heal, 1993). Others have reached the opposite conclusion, that the ability to learn should lead
to higher emissions, because of irreversibility in the long-lived capital stock (e.g., Viscusi and
Zeckhauser, 1976; Ulph and Ulph, 1997; Pindyck, 1999). The most general result from the
theoretical literature to date is from Epstein (1980), who showed that learning in the presence
of an irreversibility can lead to either more or less of the irreversible development activity.
For Epstein, direction of the effect depends on the shape of the marginal cost function (i.e., the
derivative of the objective function): if the marginal cost is concave then learning leads to less of
the activity, and if it is convex then learning leads to more of the activity. Unfortunately, requiring
strict concavity or convexity is overly restrictive for representing climate change, as shown by
Ulph and Ulph (1997). Further, Epstein’s result does not address the conditions under which
learning has no effect (i.e., cases with and without learning lead to the same level of activity in
period 1), or what determines whether the magnitude of a divergence is large or small.

Also, a number of studies of uncertainty and decision-making in the climate issue use
integrated economic-climate models. Several of these do address uncertainty, but do not consider
the influence of learning on the near-term decision. Rather, they focus on related but distinct
questions. Examples include the optimal decision under uncertainty when the uncertainty will
later be resolved (Hammitt, Lempert, and Schlesinger, 1992), the comparison between choice
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under perfect certainty and choice under uncertainty that is later resolved (Manne and Richels,
1992, 1995), and the value of perfect information revealed at different times in the future
(Nordhaus, 1994; Nordhaus and Popp, 1997).

Studies that have explicitly examined the effect of learning in empirical models of climate
change (Nordhaus, 1994; Kolstad, 1996; Ulph and Ulph, 1997) have found that learning seems
to have almost no effect on the period 1 strategy. The explanations in these studies for the lack
of an effect of learning rely on two characteristics of the models:

1) The irreversibility constraint does not bind: i.e., the damage losses are not severe enough
to drive period 2 emissions to zero1 (Kolstad, 1996; Ulph and Ulph, 1997) and,

2) The stock nature of greenhouse gases: the fact that the existing stock decays very slowly
means that period 1 emissions have very little influence on the total stock of greenhouse
gases in the atmosphere (Kolstad, 1996; Nordhaus, 1994).

Further, results from empirical models are contradictory, with learning leading to more period 1
abatement in results from Nordhaus (1994) but less abatement in results from Ulph and Ulph (1997).

In this paper, I will clarify the effect of learning by representing the process of sequential choice,
with the possibility of learning, in a simplified way with a two-period decision.2 The first period
represents “now”: the decision that will be implemented over the next few years. The second period
represents the notion that we can do something different “later,” whether we have reduced uncertainty
or not. For this two-period decision under uncertainty, the question is: how does the optimal first
period strategy change if uncertainty is resolved before the second period decision is made? The
influence of learning is examined by considering two extreme cases: 1) ”No Learning,” in which
the uncertainty at the time of the period 2 decision is the same as for period 1; and 2) “Complete
Learning,” in which all uncertainty is resolved before the period 2 decision.

These two cases are illustrated in Figure 1. The upper part of the figure shows the Complete
Learning case, where the decision is made today about what level of emissions constraints to
implement; then after ten years the uncertainty about climate impacts is eliminated, and then the
decision about increasing or relaxing emissions constraints is made with perfect knowledge.
In contrast, the lower panel in Figure 1 shows the No Learning case where the decision today and
the decision in ten years are both made under the same level of uncertainty about climate change
impacts. The effect of learning can be seen by comparing the best decision made today in each of
these two cases.

                                                  
1 According to Kolstad and Ulph and Ulph, the irreversibility of the period 1 decision is only binding if, when the

true state of nature is revealed in period 2 through learning, one would wish to undo the action in period 1.
If damages are not severe enough to warrant a decision to “negatively emit” (take carbon out of the atmosphere),
then the irreversibility of emissions in period 1 becomes irrelevant.

2 A two-period model of sequential decision gives insight into the general effect on the period 1 decision that would
be obtained from a model with three, four, or more decision points.
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Figure 1. Policy Choice as Two-period Decision with and without Learning

The analysis below demonstrates the conditions for the existence of an effect by learning on
strategy choice, and explains the factors that determine the direction of the learning effect.
In Section 2, I develop general results using an analytical dynamic programming model of a
two-period decision. Then, in Section 3, I demonstrate the effect of learning with an integrated
assessment model that represents much of the complexity in the economic and climate systems.
Section 4 summarizes the main findings.

2. AN ANALYTICAL MODEL OF LEARNING

The choice of a climate change policy under uncertainty can be defined as a dynamic
programming problem, with 2 periods. Define

2,1=t

Xt ≡  the set of all possible emissions levels that can be chosen in period t

xt ≡  the level of emissions allowed in period t, chosen from the set Xt

θ ≡  the severity of damage costs from climate change

C x1 1( , )θ ≡  abatement costs and damage costs in period 1

C x x2 1 2( , , )θ ≡  abatement costs and damage costs in period 2

and let Eθ ⋅{} denote the expectation with respect to the marginal distribution of θ.
In each period t, a level of allowed emissions xt is chosen. Each period has a total cost

function Ct(⋅) stated in terms of emissions level, which includes both abatement costs and
damages from the accumulated stock of carbon. The uncertainty in the damages from climate
change is represented by different states of the world θ that may obtain, and so the damage costs
(and therefore the total costs) are also a function of θ.

Next, define two value functions, one representing the minimized costs over both periods, and
the other the minimized costs in period 2 only:
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V x x1 1 2( , , )θ ≡  the sum of abatement costs and damage costs over both periods given

emissions level x1 at t = 1, emissions level x2 at t = 2, θθ =~
,

V x x2 1 2( , , )θ ≡  the abatement and damage costs at t = 2 if emissions level x2 is chosen in light

of θ̃ θ= , given that the emissions level at t = 1 was x1.

To evaluate the effects of learning, consider two extreme cases. In the “learning” case, the
uncertainty in the damage costs θ is completely resolved before the period 2 decision is made.
In the “no learning” case, the uncertainty in θ will be the same in both periods. By comparing the
optimal period 1 strategy in these two cases, we will see the maximum possible effect of learning
on strategy. For this study, we consider learning to be autonomous or exogenous, in which the
true state is revealed with the passage of time. Other approaches to modeling learning include
active learning, in which the evolution of the climate and economy are observed and beliefs are
updated, and purchased learning, in which improved information is purchased with an explicit
cost that is modeled (e.g., R&D). Exploration of those cases is a logical extension of this work.
In this model, learning only resolves the uncertainty in damage costs, while abatement costs are
treated as certain.

A dynamic programming problem is always solved through backward induction—i.e., by
finding the optimal choice for the last decision first, and then working backwards. For this
problem, we first solve for the optimal decision in period 2 as a function of the period 1 strategy.
Then we substitute this expression into the objective function and solve for the optimal first
period strategy. The first step for the problem posed here is to choose, at t = 2, the emissions
level x2

* that minimizes the sum of abatement and damage costs given that period 1 emissions
level was x1 and that the severity of climate change damages is θ. In the “learning” case, the
optimal emissions level x2

* is chosen with certainty about θ, and the value function for period 2 is

V x x C x x
x X

2 1 2 2 1 2
2 2

( , , ) min[ ( , , )]θ θ=
∈

. (1a)

In the “no learning” case, the optimal emissions level x2
* must be chosen under uncertainty in θ,

and the value function for period 2 is

V x x E C x x
x X

2 1 2 2 1 2
2 2

( , , ) min[ { ( , , )}]θ θθ=
∈

. (1b)

Without learning, the best strategy is the one that minimizes the expected value of the costs.
Once the second period optimal strategy, x2

*, is found, the next step is to substitute this
expression into the value function V1, and solve for the optimal period 1 strategy. We must
choose the optimal period 1 emissions level x1

* that minimizes the expectation of the sum of
costs over both periods. Namely,

V x E C x V x x x
x X

1 1 1 1 2 1 2 1
1 1

( , ˜) min[ { ( , ˜) ( , ( , ˜), ˜)}]*θ θ θ θθ= +
∈

 . (2)

There are several important characteristics of this abstract model worth highlighting. First, the
stock nature of the problem is represented by the dependency of C2, the cost in the second period,
on x1, the decision made in the first period. In multi-period decisions about stock pollutants,
capital stock, or other quantities that accumulate over time, the costs and/or benefits in any
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period are partly a function of decisions made in previous periods. Analogously, the current
period’s decisions will have cost/benefit impacts in future periods. This formulation is in contrast
to flow-type problems in which the implications of each period’s decision are felt in that period
only, and costs have no relation to what has previously occurred (e.g., noise pollution).

The second element of the model to note is the difference between the learning case and the
no learning case. In the no learning case, there is only a single choice of x2

* that must minimize
the mean or expected costs across all possible states of the world, since we don’t yet know which
one is the true state. In contrast, in the learning case many different optimal choices of x2

* exist,
each minimizing costs in the particular state of the world θi. Of course, even when there is
learning by period 2, the period 1 decision must still be made based on the expected value over
all possible states, as can be seen by equation 2.

The effect of learning can be evaluated as the difference between L
x1 , the solution to Eq. 2

when uncertainty is completely resolved (Eq. 1a), and N
x1 , the solution to Eq. 2 when no

learning occurs (Eq. 1b). With the generic form of this model, we cannot say much about what
these two expressions might be, and so in the following sections we consider alternative
functional forms of the cost functions.

2.1 Cost Functions with no Cross-Period Interaction

Begin by assuming that the period 2 cost function has no cross-products between the period 1
and period 2 strategies. In constructing the cost functions we make the simple assumptions that
the first period costs, given a state of the world θ, are linear,

)()(),( 111 θθθ bxaxC += , (3)

and that the second period costs are a simple quadratic function of both periods’ decisions,

)()()()()(),,( 1

2

12

2

2212 θθθθθθ gxfxexdxcxxC ++++= . (4)

In this model, the stock nature of the problem is represented by the terms 2

1)( xe θ  and 1)( xf θ  in
the second period cost function. The decision made in the first period will influence costs in the
second period.3

The first step is to solve the second period decision. There are two cases: one with learning
and one without. It can be shown (Webster, 2000) that the optimal period 2 strategy for the case
where uncertainty is resolved is:

)(2

)(*

2 θ
θ

c

d
x L −= . (5)

Because the period 2 emissions level will be chosen after we know the true state of the world (i.e.,
we will know the values of the coefficients a through g of Eqs. 3 and 4), the optimal strategy is a

                                                  
3 These terms do not capture any change in the marginal damages that may occur with a non-linear damage function.

In this formulation the total period 2 damage is a function of period 1 strategy, but the marginal damage is not.
The dependence of marginal damage on first period strategy is a different effect, and is treated in the next
example in Section 3.2.
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function of those values. In contrast, the optimal period 2 strategy without learning will be a
function of the expectation of these coefficients, since their true values will still be uncertain:

c

d
x

N

2

*

2 −= . (6)

Having solved for the optimal period 2 strategy in each case, we substitute for x2 in Eq. 4, and
then solve for the optimal emissions level x1

* that minimizes costs over both periods. It also can
be shown (Webster, 2000) that the optimal period 1 emissions when learning occurs is

e

fa
x L

2

*

1

+−= (7)

and that the optimal strategy in period 1 without learning is also

e

fa
x N

2

*

1

+−= . (8)

The two solutions for this example are identical: NL
xx 11 = . Although the period 1 decision

does affect the total costs in period 2 (damages from the remaining stock), it does not interact in
any way with the period 2 decision through an influence on marginal cost. The lack of
dependency of period 2 decisions on period 1 actions is clear from Eqs. 5 and 6, since x1 does not
appear in either solution. This result leads to a more general proposition. For any two-period
sequential decision under uncertainty represented by Eqs. 1 and 2, and where the solution to
Eq. 1a is denoted by N

x1  and the solution to Eq. 1b is denoted by L
x1 ,

If  
∂

∂ ∂
=

2
2

1 2

0
C

x x
  then  NL xx 11 = .

The proof of this proposition is given in Webster (2000).
The basic conclusion is that if today’s decision has no effect on the marginal costs of tomorrow’s

decision, then the two choices are independent. Whether we learn or not (which does influence
tomorrow’s decision) is irrelevant for today’s decision. Today’s decision is merely made on the
basis of costs and benefits today, plus the expected discounted costs and benefits that continue to
accrue in future periods as a result of today’s decision (the non-interacting stock effects).

2.2 Cross-Period Interaction

The previous example showed that if the cost function for period 2 has no interaction terms
between the strategies in the two periods, then the period 1 optimal choice is unaffected by
assumptions about learning. What happens when there is an interaction term? To construct this
case, assume the same linear cost function for period 1 as in the previous example,

)()(),( 111 θθθ bxaxC += . (9)

Define the period 2 cost function with a quadratic term in the second period strategy and a single
linear interaction term between the two decisions:

21

2

2212 )()(),,( xxdxcxxC θθθ += (10)
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This functional form offers the simplest formulation with a cross-period effect, dropping other
terms that appeared in Eq. 4. In particular, the linear and quadratic terms in x1 that represent the
non-interacting stock effect from period 1 decisions are omitted. In the previous example these
terms, which influence total but not marginal costs, were shown to have no effect on the period 1
decision.

To consider the effect of learning, we begin, as above, by solving for the optimal period 2
strategy. For the learning case, the cost-minimizing strategy is:

1

*

2
)(2

)(
)( x

c

d
x

L

θ
θθ −= . (11)

The optimal strategy when no learning occurs is:

1

*

2
2

x
c

d
x

N −= . (12)

In contrast to the previous example, the optimal strategy in period 2 here depends on the period 1
strategy (x1) that was chosen and is directly due to the x1x2 cross-product term in Eq. 10.

Substituting these expressions for x2 in Eq. 10, the cost-minimizing strategy in period 1 when
learning will occur is:

x
a

E
d

c

L
1 2

2*

( )
( )

=








θ
θ

θ

. (13)

The cost-minimizing period 1 emissions level in the no learning case is:

x
ac

d
N

1 2

2* = . (14)

Adding the term d(θ)x1x2 to Eq. 10 has caused period 1 strategy to now depend on learning. The
solutions have a common component, a2 , scaled by the expectation of a non-linear function, d2/c,
in the case of learning, and by the non-linear function of expectations in the case of no learning.

What might the cross-period interaction4 term d(θ)x1x2 in Eq. 10 represent? As noted earlier,
it could represent non-linearity in the damage function. If a larger stock of CO2, resulting from
higher period 1 emissions, changes the marginal damages in period 2, then this change in
marginal damages will show up in this cross-term. It could also represent a dependency of
the marginal cost of mitigation in period 2 on period 1 decisions (e.g., capital stock effects).
Depending on the sign, the coefficient of the cross-term represents the fact that decisions in
different time periods can act as substitutes (d>0) or as complements (d<0). Decisions act as
substitutes when an increase in the period 1 activity level, x1, results in an additional increase
in the marginal cost of choosing higher level of x2 in period 2. Generally substitution exists in
problems where there is some finite resource that can be used across both periods; using more
of the resource in period 1 leaves less of the resource or results in increasingly expensive

                                                  
4 The “interaction” described here, the dependence of marginal costs in period 2 on the period 1 strategy, is

independent of learning. This interaction is present even in the no learning case. Thus it is a different phenomenon
than “interactive learning” in the tradition of models of learning-by-doing (e.g., Miller and Lad, 1984).
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alternatives for the second period decision. Decisions act as complements when an increase in
activity in the first period causes the per-unit cost of period 2 action to decrease. Complementary
situations typically exist when first period action constitutes some form of investment that
reduces future costs.

A special case of the solutions (Eqs.) 13 and 14 will be useful in Section 3. Consider the
discrete distribution case where there are two possible states:

θ = {low, high}.
Denote the cost coefficients as

HL ahighaalowa == )(;)( .

We also define

P high≡ =Pr{ }θ ,

the probability of being in the high damage state of the world. Thus the expectation with respect
to θ can be written:

{ } LH aPPaaEa )1()( −+== θθ .

For this simple case with only two discrete states, it can be shown that the optimal period 1
strategies become

x a
c

d
N
1 22= 



 , (15)

x a
c c

c d P c d P
L L H

L H H L
1 2 22

1
=

+ −




( )

, (16)

for the cases without and with learning, respectively. Note that only the bracketed term differs
between Eqs. 15 and 16. For this problem, the optimal period 1 decision is determined by the
average or expected period 1 marginal cost a2 , scaled by a term representing the second period
marginal costs. In Section 3 we will use these expressions to demonstrate the magnitude of the
divergence between strategies exhibited by an empirical climate assessment model.

2.3 The Direction of the Learning Effect

The previous examples show that a cross-period interaction is a necessary condition for
learning to influence period 1 strategy. However, the presence of an interaction is not a sufficient
condition. Further, if learning does influence the period 1 choice, does it result in higher or lower
emissions? Even without deriving the expressions that demonstrate the determinants of the
direction of the learning effect (see Webster, 2000), it is possible to provide some intuition on
how learning might either increase or decrease the optimal emissions level in period 1.

In the simple model with aggregate total (damage plus abatement) cost functions defined by
Eqs. 9 and 10, learning always leads to a lower strategy level x1

* because costs change
monotonically with strategy level. There is a downside to doing too much, but no equivalent
downside to doing too little5. Thus the irreversibility and uncertainty leads to a lower level of the

                                                  
5 Or the opposite, depending on the signs of the coefficients.
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irreversible activity if learning and correction are possible later. If we consider the costs as
damage losses and xt as emissions, this is equivalent to the Arrow and Fisher (1974) result that
learning leads to lower emissions in period 1. If we consider the costs as representing only
abatement costs and xt as emissions level, this is equivalent to the investment under uncertainty
models of Pindyck (1991) in which learning will lead to higher emissions (i.e., less abatement
with learning).

Real-world problems such as a decision about climate policy involve both abatement and
damage costs that change in opposite directions with the emissions level. A more general
representation is to treat abatement costs (decreasing in emissions) and damage costs (increasing
in emissions) separately. For a two-stage decision in which learning resolves uncertainty in
damage costs, the optimal emissions strategy chosen with learning may be higher or lower than
without learning. The irreversibility in both damages and control costs causes two effects from
learning, pulling in opposing directions. Learning, thereby, can lead to higher or lower emissions
depending on the relative magnitudes of the control costs and damage costs.

The dominant direction of the learning bias can be explained in terms of two elements of the
decision: 1) the anticipation of the period 2 strategy, and 2) the regret over the period 1 choice
given the outcome after learning. When a period 1 strategy is chosen under uncertainty, and then
the uncertainty is resolved in period 2, some regret over the period 1 choice is inevitable6.
Suppose in period 2 we learn that the damages from climate change are less severe than
expected. Then we will choose a higher level of emissions in period 2 than we did under no
learning. Because of the interaction, we will wish that we had anticipated this higher emissions
level in period 2, and also chosen higher emissions in period 1. We will regret having spent more
on abatement cost in period 1 than turned out to be necessary. Now, suppose instead we learn in
period 2 that the damages are more severe than the expectation. In this case, we will lower
emissions further in period 2 than we would have without learning. Because of the interaction,
we will wish we had anticipated this lower emissions strategy by emitting less in period 1.
We will regret not having taken enough precaution in the face of uncertain climate damage.

The net effect of learning on strategy is determined by the relative magnitudes of these two
regrets. When the decision is being made in period 1, we are still uncertain whether we will learn
that damages are greater or less than the expectation. The probability distribution over damage
costs reflects our belief in the relative likelihood of each state of the world that might be revealed
in period 2. If, on balance, the dominant regret will be that we will have spent too much on
abatement before learning that damage costs are lower, then learning will lead to a net increase
in period 1 emissions. We call this the “sunk cost” situation. If, on the other hand, the dominant
regret over all possible outcomes will be that we should have abated more, then learning will
lead to a net decrease in emissions in period 1. We call this situation the “precautionary case.”
If the regret from abating emissions when damages are revealed to be low and the regret from

                                                  
6 Except, of course, in the rare case that the revealed true state is exactly equal to the expectation under uncertainty.
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abating too little when damages are revealed to be high balance each other, then learning may
still not influence the period 1 decision, even in the presence of an interaction.

Thus, although the direction of learning effect is influenced by the convexity or concavity of
the marginal costs (Epstein, 1980), it also is determined by the shape of the probability distribution
over uncertain abatement costs and damage costs. When the expected damages from climate
change are low (i.e., low expected net benefits) but there is a small probability of high damage
cost (i.e., skewed towards high damages), learning will lead to lower period 1 emissions. The
regret from learning that damages are high will dominate, since the low damages were already the
expectation. Conversely, if expected damage costs are high, but there is a small probability of low
damage costs (i.e., skewed towards low damages), then learning will lead to higher emissions in
period 1. We will demonstrate the dependence on the probability distribution of the direction of
the learning effect with results from the integrated assessment model in the next section.

3. EFFECT OF LEARNING IN INTEGRATED ASSESSMENT MODELS

3.1 The MIT Integrated Global System Model

The analytical model used above to explore the effect of learning employed highly simplified
cost functions. In this section the effect of learning is illustrated using a climate policy
assessment model of intermediate complexity. The integrated assessment model used is the MIT
Integrated Global System Model [IGSM] (Prinn et al., 1999), augmented with a damage function
related to change in global mean temperature. The economic component of the model, the
Emissions Projections and Policy Analysis (EPPA) model (Babiker, 2000) is a recursive-
dynamic computable general equilibrium model, consisting (in the calculation applied here) of
twelve geopolitical regions linked by international trade, ten production sectors in each region,
and four consumption sectors. The climate component is a two-dimensional (zonal averaged)
representation of the atmosphere and (Sokolov and Stone, 1998). The climate model includes
parameterizations of all the main physical atmospheric processes, and is capable of reproducing
many of the non-linear interactions simulated by atmospheric GCMs.

In order to choose one set of strategies as “optimal,” we require a basis for comparing the
costs of reducing emissions with the benefits of avoiding damages. We augment the EPPA
mitigation cost model with the Nordhaus damage function (Nordhaus, 1994). This damage
function has been widely used (e.g., Kolstad, 1996; Lempert et al., 1996; Peck and Teisberg,
1992; Pizer, 1999), and facilitates the comparison of results here with other studies. The
Nordhaus damage function estimates the percentage loss of gross world product as a function
of the global mean temperature change,

πη )]([)( tTtd ∆= (17)

where d(t) is the fraction of world product lost due to climate damages in year t, and ∆T(t) is the
increase in global mean temperature from preindustrial levels.

Solving for an optimal sequential decision under uncertainty requires a large number of
simulations of the empirical economic-climate model. However, the IGSM requires too much
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computation time for this many simulations to be feasible. To perform the calculations, we
estimated reduced-form versions of the IGSM using the Deterministic Equivalent Modeling
Method (Tatang et al., 1997; Webster and Sokolov, 2000). These simpler functional forms have
been shown to replicate the results of the original IGSM to within a 1% error of the mean
(Webster, 2000). The reduced-form models are used in all calculations below.

To set up the sample calculation, the sequential decision problem for climate change is
defined in Section 3.2. The effect of learning in the IGSM is described in Section 3.3, and then
in Section 3.4, results from the analytical model are used to explain the effect of learning in this
model. Finally, in Section 3.5, I use induced technical change as an example of a strong
interaction which can be added to the model to increase the effect of learning.

3.2 Sequential Decision Using the IGSM

As above, we frame the control choice as a sequential decision under uncertainty, with the
two decision points as illustrated in Figure 1. The decision-maker in this model represents the
aggregate “Annex I,” the industrialized nations that would constrain emissions under the Kyoto
Protocol. The objective function for the decision-maker is to minimize the net present value of
total consumptions losses. Consumption losses occur both as a result of constraining carbon
emissions and as a result of the impacts of climate change. The stream of costs over time is
discounted at a reference rate of 3%, which is subjected to sensitivity analysis. The set of
possible strategies in this model represents choice over levels of emissions abatement only;
other possible complementary policies of research, adaptation, and geoengineering are not
modeled here. We assume that only Annex I nations constrain emissions in this model, while
the less developed nations increase their emissions of greenhouse gases unrestricted over the
entire 100-year time horizon.

The strategies are defined as maximum allowable growth rates in emissions. The first period
strategy can be any rate between 0% per year (emissions stabilization) and 1.4% per year
(unconstrained for all regions) over the years 2010-2019 (Table 1). The second period strategy is
chosen from a low of −0.8% per year and a high of 1.2% per year (unconstrained), and constrains
emissions for the years 2020-2100. The period 1 strategy also determines the absolute emissions
level in 2010, as indicated in Table 2, which shows the reduction in relation to the Annex I
Kyoto target (United Nations, 1997).

Table 1. Strategy Choices in each Period: Maximum Allowable Emissions Growth

Decision
Period

Strategy
Variable

Years Most Stringent
Constraint

Least Stringent Constraint
(No Limits on Emissions Growth)

1 Policy2010 2010-2019 0%  per Year 1.4% per Year

2 Policy2020 2020-2100 –0.8%  per Year 1.2% per Year
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Table 2. Emission Targets for 2010 as a Function of Strategy Level

Policy2010 2010 Emissions Constraint

0% 100% of Kyoto
0.2% 85% of Kyoto
0.4% 70% of Kyoto
0.6% 55% of Kyoto
0.8% 40% of Kyoto
1.0% 25% of Kyoto
1.2% 10% of Kyoto
1.4% Reference (No Controls)

Based on previous work (Webster, 2000; Webster and Sokolov, 2000), we consider three
uncertain parameters that have the greatest impact on damage costs:

• Climate Sensitivity: this parameter determines the change in global mean temperature at
equilibrium that results from a doubling of CO2. Different sensitivities are obtained in the
MIT 2D climate model by adding an additional cloud feedback (Sokolov and Stone, 1998).

• Rate of Ocean Uptake: the 2D climate model parameterizes the mixing of both heat and
carbon from the mixed-layer ocean into the deep ocean. A slower ocean will result in both
higher carbon concentrations in the atmosphere and in more rapid warming (Sokolov and
Stone, 1998).

• Damage Valuation: to reflect the large uncertainty in the valuation of climate change
impacts, we treat the damage coefficient η from Eq. 17 as uncertain. This coefficient
reflects the percentage of gross world output that would be lost from a 3˚C temperature
rise (Nordhaus, 1994).

The probability distributions for the three uncertain parameters are discrete two-point
approximations based on continuous distributions, and are subjected to extensive sensitivity
testing. The reference continuous distributions are obtained from expert elicitation. The
distributions for climate sensitivity and for ocean uptake are given in Webster and Sokolov
(2000), based in part on Morgan and Keith (1995). The distribution for the damage valuation is
taken from Roughgarden and Schneider (1999), based on the assessment by Nordhaus (1994b).
Because the distributions are based on expert elicitation, they are subject to all the biases of
subjective judgment about probability (Morgan and Henrion, 1990). Also, for almost all
parameters, there is wide disagreement between experts. It is crucial therefore to subject all
results from decision models to sensitivity testing of the assumed distributions. We approximate
the continuous distributions with the discrete distributions shown in Table 3. Sensitivity testing
is then performed by varying the probability of the high damage state (Branch 2).

Table 3: Distributions for Uncertain Quantities
Branch 1 (P=0.8) Branch 2 (P=0.2)

Climate Sensitivity (oC) 2.5 4.5
Oceanic Uptake (cm2/s) 2.5 0.5
Damage Cost Coefficient (%) .02 .16
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As in the analytical model of Section 2, learning is modeled as the revelation of the true state
of damage costs in period 2. This is the simplest representation of learning that allows the
examination of the effect of learning on strategy. More sophisticated models of learning such as
including explicit costs of reducing uncertainty or Bayesian updating of probability distributions
from observations are left for future studies. Also, as above, learning does not resolve the
uncertainty in abatement costs.

3.3 The Influence of Learning in the IGSM

Using the IGSM and the two-period sequential framing of emissions control choice, the effect
of learning can be explained in this more complex setting. Figure 2 shows the emissions for both
the No Learning and the Learning cases, using the reference probability distributions given in
Table 3. We find, not surprisingly, that with learning (dashed lines) the choice among the eight
discrete strategies in period 2 differs from the choice in the no learning case (solid line),
depending on which of the eight possible states is revealed about the three uncertain parameters.
As viewed from 2000, the probability (P) of a strategy being chosen in the learning case is
indicated in Figure 2. With probability P = 0.8, we will learn that the damages are not as serious
as expected, and will choose higher emissions. With P = 0.14, we learn that damages are worse
than expected and emit less. There is a 0.06 probability that we will choose the same emissions
as in the no learning case. The main focus of this paper, however, is what happens to period 1
emissions. Here there is no difference between the learning and no learning cases, and, in fact,
the optimal strategy in period 1 is to do nothing in all cases.

Figure 2. Optimal Annex I Emissions With and Without Learning

The result that learning has no effect on first period strategy is surprising but, as noted earlier,
one consistent with other studies. Is this result dependent on the specific probability distributions
used? Sensitivity analysis not reported here indicates that, of the three uncertain parameters
treated, the minimized total expected losses are most sensitive to the damage valuation
parameter. If the probability of high damage cost is varied from 0 to 1.0, while the probabilities
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of high climate sensitivity and slow ocean uptake are kept at the reference values of 0.2, the
same strategy (no controls) is optimal with and without learning. For any distribution of the
damage cost parameter, however, the optimal strategy in period 1 is independent of whether
learning occurs.

In order to find a divergence between the optimal strategy with learning and the optimal
strategy without learning, the probabilities of all three uncertain parameters must simultaneously
be adjusted far from the reference values. Figure 3 shows the optimal strategies with and without
learning when the probability of high climate sensitivity (4.5˚C) is assumed to be 0.85, and the
probability of slow ocean uptake (0.2 cm2/s) is also assumed to be 0.85. Here, there is difference
between the strategies chosen with and without learning when the probability of high damage
cost is between 0.95 and 0.975. In this region, it is optimal to constrain emissions more if
learning will occur. As the probabilities of all three uncertain parameters are varied
simultaneously, other sets of assumptions will yield differences between strategy with and
without learning, but only for a small fraction of possible assumptions. In addition, such regions
of divergence in strategies only exist for assumptions about the uncertain parameter distributions
that are inconsistent with expert judgment, as in Figure 3.

In addition to varying the probability distributions, other assumptions of the decision model
can be altered in an attempt to get a stronger effect on strategy by learning. Other cases that have
been tested include

• Lengthening the first period from ten to forty years (i.e., first period decision determines
emissions from 2010-2050),

• Assuming very slow ocean uptake with certainty (to increase the “irreversibility” of
emissions),

• Varying discount rates between 0% and 10%,

Figure 3. Optimal First Period Strategy with and without Learning. Probability of high
climate sensitivity is 0.85 and probability of slow ocean uptake is 0.85.
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and several other tests (Webster, 2000). In all of these cases, the optimal first period decision
with learning and the optimal decision without learning are almost always the same. The ranges
of uncertain parameters that result in a divergence are small, and usually occur under parameter
distributions that are inconsistent with expert opinion.

3.4 Magnitude of the Learning Effect in the IGSM

The analytical model in Section 2 leads to a suspicion that the reason for this lack of influence
of learning is that the inter-period interactions in this model are insignificant. And indeed,
despite the complexity captured by the economic and climate models in the IGSM, few of the
possible interactions over time of emissions control levels are represented in this model. The
magnitude of the cross-period interactions can be estimated by examining the reduced-form
models that are fit to the full IGSM. We estimate the control costs and the damage costs in each
period as a function of the strategy level chosen in each of the two periods. To facilitate
comparison with the analytical results from Section 2, we use the same quadratic functional
form as the cost functions there, including a single linear cross-term.

Two estimated cost-functions were fit: one for low climate damage costs and one for high
damage costs. The reduced-form estimates of total costs in period 2 as a function of the strategies
are given in Eqs. 18 and 19 for the high damage and low damage assumptions, respectively.
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From Eqs. 15 and 16, we know that the optimal period 1 strategies with and without learning are
each equal to a common term scaled by a term that varies depending on whether learning will
occur. Using the coefficients from Eqs. 18 and 19, and assuming that the probability of high
damage costs P = 0.5 to maximize the uncertainty, the optimal period 1 strategies are
proportional to:
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Because the ratio differs only slightly from 1.0, we expect little influence on the period 1 strategy
from learning. This summary calculation is indicative of why, even across a wide range of
distributions and similar tests, we find very few instances when learning affects the period 1
decision. Examining the coefficients in Eqs. 18 and 19, we see that the cross-term coefficients
are not zero, but relative to the independent effects of the strategies in each period, the
interactions are very weak.

What are the interactions in the IGSM represented by these coefficients? One process in the
IGSM that will cause the first period strategy to affect the second period marginal costs is the
vintaging of capital in the economic model component. In the EPPA model, a portion of the
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preexisting capital stock in any period is not malleable (cannot be shifted to different sectors
when relative prices shift) and the proportions of input factors are also frozen at the current
technology levels. As a result, a lack of abatement in the first period can result in investment in
new carbon-emitting capital, some of which cannot be shifted if abatement is undertaken in the
second period (Jacoby and Sue Wing, 1999). As a result, a less stringent policy in period 1
(higher emissions) will cause a higher marginal cost of emissions reductions in the second
period. Another interaction in EPPA is the depletion of fossil fuel resources, but the interaction
effect on period 2 strategy appears to be very weak.

An interaction is also present in the climate and ocean model components. The rate of ocean
uptake of carbon will gradually slow over time due to rising surface temperatures, which will
cause higher period 2 carbon concentrations in the atmosphere. The slowing of ocean uptake
at higher temperatures7 becomes an interaction; higher emissions in the first period cause an
increase in surface warming, which will further lower the rate of ocean uptake of CO2 and
leave higher concentrations in the atmosphere8 (Holian, 1998). Because of the change in ocean
circulation, higher period 1 emissions increase the marginal damage cost of period 2 emissions.
All of the cross-period interactions in the IGSM are relatively small effects, and therefore
learning does not have an appreciable influence on period 1 strategy.

Are there other possible interactions that might exist in the real world but are not represented
in the IGSM? One such interaction would exist if the damage function were non-linear or had
some threshold level above which marginal damages changed. The Nordhaus damage function
used in this study and elsewhere, while non-linear in temperature change, is very nearly linear
over the range of CO2 concentrations resulting from a reasonable range of near-term policy
choices (Pizer, 1999). Much concern about climate change is motivated by the possibility of its
effect on the rate of overturning in the North Atlantic Ocean. A shift in the rate of deep-water
formation, in addition to its serious climatic implications, would also alter the marginal damages
of future emissions, and would constitute an inter-period interaction. Another possible effect of
period 1 policy on future marginal abatement costs is via the rate of technological improvement.
If the rate of improvement in energy efficiency and in the development of low-carbon alternative
technologies can be stimulated through the presence of a price on carbon from policy, as some
argue it would be (e.g., Grubb, 1997), this dependence constitutes an inter-period interaction.

While each of these phenomena are argued to be important characteristics of the climate
change issue, they are not represented either in the MIT IGSM or in most other climate
assessment models. The main reasons for omitting them is that they are less well understood than
other aspects of the system and difficult to represent in the models, and their likelihood and
magnitude are highly uncertain. In the absence of these larger potential inter-period interactions,

                                                  
7 The solubility of CO2 in the surface ocean layer is governed by Henry’s Law, which allows the conversion between

concentration and partial pressure: CO a pCO
sea

sol
sea

2 2[ ] = ⋅ . Henry’s coefficient asol has a strong dependence on temperature.
8 The feedback mechanisms described here are distinct from an abrupt collapse or even slowdown of the thermohaline

circulation. The mechanism described here is a gradual change in the rate of absorption of carbon by the surface
ocean, but not in the vertical mixing between surface and deep ocean water.
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studies structured as sequential decisions will never find an influence of learning on today’s
decision. However, it is premature to conclude from model studies that the likelihood of learning
is irrelevant to the choice of near-term emission control policy. Rather, the conclusion is that the
models currently used for analysis are inadequate for addressing this question.

3.5 Example of an Inter-period Interaction: Induced Technical Change

As suggested above, strong interactions can produce a learning effect. This fact can be
illustrated using induced technical change as an example. EPPA, like many economic models
used for climate policy studies, assumes that the rate of technological improvements is
independent of the stringency of emissions policy. The appropriate model formulation for
endogenous technical change and the magnitude of such an effect, if it exists, have long been
debated among economists (e.g., Kennedy, 1964; Samuelson, 1965; Goulder and Schneider,
1999). The model presented here is merely intended to illustrate that the influence of learning on
decision changes when such a dependency is included.

We can simulate a dependency of future marginal costs on policy using the reduced-form
sequential decision models, without having to modify EPPA itself. In addition to representing the
uncertainty in damage costs, the reduced-form models also capture uncertainty in the abatement
costs for each possible strategy. In the standard version of the sequential decision model
(presented in Section 3.2), the probability distribution of the abatement costs in period 2 is
exogenous and independent of the strategy in period 1. As a crude representation of endogenous
technical change, we make the probability distribution of abatement costs partly a function of the
period 1 strategy.

Because of the disagreement over the magnitude of an endogenous innovation effect, we
parameterize the model so that the magnitude of the effect can vary from 0 (no endogenous
technical change; same as original model) to 1.0 (the probability of high abatement costs is
completely determined by the policy in period 1). Using this model, we want to know how the
divergence between optimal period 1 strategy with and without learning will change when we
include endogenous technical change. Figure 4 shows the optimal period 1 strategies with and
without learning for different probabilities of high damage cost. Here, in contrast with the results
from Figure 3, there are significant regions where the strategy in period 1 depends on whether
uncertainty will be resolved by period 2. The results in Figure 4 correspond to the assumption that
the endogenous technical change effect is strong (0.9), and to the reference probability distributions
for climate sensitivity and deep ocean uptake. Even if the endogenous technical change effect is
weaker, a noticeable difference between strategies with and without learning exists.

Previous studies of the effect of learning have concluded that learning in period 2 does not
affect period 1 strategy because the damage was not “irreversible enough” (Kolstad, 1996; Ulph
and Ulph, 1997). This example shows that it is not that climate damages are not “irreversible
enough,” but rather that the IGSM does not include significant cross-period interactions. When
stronger cross-period interactions are added or simulated as part of the model system, learning
does have a significant effect on decision.
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Figure 4. With endogenous technical change, learning leads to different period 1 strategy than
without learning. The direction of the bias depends on the probability of high damages.

Finally, notice in Figure 4 that the direction of the bias on strategy from learning is not always
in the same direction. For low expected climate damage costs (i.e., low probability of the high
damage cost case), the optimal period 1 strategy is the same whether or not we learn. Then for
moderate expected damage costs, learning leads to more stringent emissions controls. It is worth
abating more if we can learn and correct later, but not if we won’t learn any more. This is a result
of the skewness of the damage cost distribution as discussed in Section 2.3. The relative regret
for distributions in this range is greater if we learn that high damages are the true state (the
“precautionary” case). For high expected damage costs learning leads to less stringent emissions
controls than if we could not learn more, because here the damage cost distribution is skewed in
the direction of low damages. In this case (the “sunk cost” case), we control more if we won’t
learn more, but if we can learn and adjust later, we undertake less abatement. Thus the ability to
learn in the future may lead to more stringent or to less stringent policy today, depending on our
beliefs about the probability distributions of the damages (benefits) and of the abatement costs.

4. IMPLICATIONS FOR POLICY

This paper has explored the question of whether the ability to reduce the uncertainty about
climate change in the future should lead to a delay in emissions abatement or at least to less
stringent abatement. The analysis shows that whether there is an effect of learning on the first
period decision depends on the existence of an interaction effect between periods. Using a
climate model of intermediate complexity, it is seen that, for most parameter distributions, the
optimal emissions control today is independent of whether or not learning will occur. This result
can be traced to the fact that the cross-period interactions in this model are small. When an
inter-period interaction is added to the model, the strategy today will depend on whether we
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will learn, and may lead to more or less stringent abatement depending on the relative shapes
of the probability distributions of control costs and damages.

We began by considering the argument, still prevalent in climate policy discussions, that
we should wait for better understanding of climate change before undertaking costly emissions
abatement. Here it is shown that the ability to learn more and reduce uncertainty in the future is
not necessarily a valid argument for delaying abatement! Learning in the future can lead to
higher emissions today if we will learn, lower emissions today if we will learn, or the same
emissions whether we learn or not. Which way we adjust because of learning depends on several
factors including the probability distributions of the costs and benefits of emissions reductions.

What is the “act now or wait to learn” debate really about? The disagreement over the
appropriate level of emissions control today is not based on differing beliefs over whether we
will learn or not. The policy prescriptions are really based on differing beliefs about the expected
costs of abatement and the expected climate damages. Individuals and organizations that believe
that climate damages are likely to be small and that emissions abatement is likely to be costly
will argue for a delay in abatement. Similarly, those who believe that climate damages are more
likely to be severe and that emissions abatement may not be very costly will argue for beginning
emissions abatement activities immediately. These prescriptions result directly from the
perceived costs and benefits and not from considerations of the effects of reducing uncertainty
in future decades.

These results have important implications for research in climate modeling. The omission of
possible inter-period interactions from integrated assessment models changes the qualitative
insights that emerge regarding the question what we should do today. The inclusion of possible
interactions, and explicit treatment of their uncertainty should be a priority for integrated
assessment modeling. Of particular importance are the 3D ocean circulation and potential
thermohaline collapse, induced innovation effects of policy, and threshold effects in ecosystems
damage. Of course, whether these interaction effects exist, and if so the magnitudes of the
effects, are not well known. In fact, as we have shown here, it is the uncertainty in these
phenomena, and not the other uncertain parameters traditionally treated, that might cause the
prospect of learning to bias strategy choice under uncertainty.
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