The Curious Role of "Learning" in Climate Policy:
Should We Wait for More Data?

Mort Webster*

Given the large uncertainties regarding potential damages from climate
change and the significant but also uncertain costs of reducing greenhouse
emissions, the debate over a policy response is often framed as a choice of
acting now or waiting until the uncertainty is reduced. Implicit in the "wait to
learn" argument is the notion that the ability to learn in the future necessarily
implies that less restrictive policies should be chosen in the near term. I
demonstrate in the general case that the ability to learn in the future can lead
to either less restrictive or more restrictive policies today. I also show that the
initial decision made under uncertainty will be affected by future learning only
if the actions taken today change the marginal costs or marginal damages in the
future. Results from an intermediate-scale integrated model of climate and
economics indicate that the choice of current emissions restrictions is
independent of whether or not uncertainty is resolved before future decisions,
because, like most models, the cross-period interactions are minimal. With
stronger interactions, the effect of learning on initial period decisions can be
more important.

INTRODUCTION

International agreement on steps to mitigate greenhouse gases continues
to be elusive. One characteristic of climate change that makes consensus difficult
is the magnitude of uncertainty regarding both the costs and impacts. The
amount of climate change that may occur and the effects resulting from such a
change are potentially very large, including changes in precipitation patterns, sea
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level rise, frequency and severity of extreme climatic events, and even a shift
in the ocean currents that warm Europe. But uncertainty about these effects
remains very large. The costs of restricting greenhouse gas emissions are also
uncertain, and are estimated by some to be quite large as well.

Once emitted into the atmosphere, these gases have long lifetimes,
hundreds to thousands of years for some of them. As a “stock pollutant,” their
effects on the global environment are a function of their total concentrations in
the atmosphere, which change slowly as a result of emissions over many
decades. The uncertainties in climate change, the long-time scales involved, and
the potentially irreversible effects — combined with the fact that control policies
taken today can be reconsidered later - make the climate change issue one of
deciding what to do now given that we may resolve some of the uncertainties in
the future. Thus, discussions of climate policy are typically framed as a choice
of acting now or waiting until we know more about the problem. Costly actions
taken now might prove to be unnecessary if climate change turns out to be not
as bad as we thought. On the other hand, we may regret not acting aggressively
now if we learn that effects are more severe than expected. Researchers and
interest groups alike have made both cases (e.g., Risbey et al. 1991a, 1991b;
Schlesinger and Jiang 1991a, 1991b; Stevens, 1997; United Nations, 1992). In
the policy debate the most common argument is that the expectation of future
learning should lead to less action now (the so-called “wait to learn” argument).

In the economic literature, however, there is no consensus on the issue.
One stream of thought focuses on the additional value of avoiding future
damages when they are uncertain and irreversible, and concludes that the ability
to learn should lead to lower emissions (e.g., Arrow and Fisher, 1974; Henry,
1974; Chichilnisky and Heal, 1993). Others reach the opposite conclusion: that
the ability to learn should lead to higher emissions, because of irreversibility in
the long-lived capital stock (e.g., Viscusi and Zeckhauser, 1976; Ulph and Ulph,
1997; Pindyck, 1999). The most general result is from Epstein (1980), who
shows that learning in the presence of an irreversibility can lead to either more
or less of the irreversible development activity, the direction depending on the
shape of the marginal cost function (i.e., the derivative of the objective
function). If the marginal cost is concave then learning leads to less of the
activity, and if it is convex then learning leads to more of the activity.
Unfortunately, requiring strict concavity or convexity is overly restrictive for
representing climate change, as shown by Ulph and Ulph (1997). Further,
Epstein’s result does not address the conditions under which learning has no
effect on activity level or what determines its magnitude.

A number of studies of uncertainty and decision-making in the climate
issue use integrated economic-climate models. Several of these address
uncertainty, but do not consider the influence of learning on the near-term
decision, focusing instead on related but distinct questions. Examples include the
optimal decision under uncertainty when the uncertainty will later be resolved
(Hammitt et al. 1992), the comparison between choice under perfect certainty
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and choice under uncertainty that is later resolved (Manne and Richels, 1992;
1995), the advantages of adaptive policies (Scott et al. 1999; Lempert et al.
1996) and the value of information (Nordhaus, 1994; Nordhaus and Popp,
1997). Some studies do not treat uncertainty, but have been influential in
thinking about the timing of abatement strategy (Wigley et al. 1996; Yohe and
Toth, 2000).

Studies that have explicitly examined the effect of learning in empirical
models of climate change (Nordhaus, 1994; Kolstad, 1996; Ulph and Ulph,
1997) have found that learning seems to have almost no effect on the period 1
strategy. Their explanations for the lack of an effect of learning rely on two
characteristics of the models:

1) The irreversibility constraint does not bind: i.e., the damage losses are not
severe enough to drive period 2 emissions to zero' (Kolstad, 1996; Ulph
and Ulph, 1997) and,

2) The stock nature of greenhouse gases: the fact that the existing stock decays
very slowly means that period 1 emissions have very little influence on the
total stock of greenhouse gases in the atmosphere (Kolstad, 1996;
Nordhaus, 1994).

Further, results from empirical models are contradictory, with learning leading
to more period 1 abatement in results from Nordhaus (1994) but less abatement
in results from Ulph and Ulph (1997).

In this paper, I clarify the effect of learning by representing the process
of sequential choice, with the possibility of learning, in a simplified way with
a two-period decision.” The first period represents “now”: actions over the next
few years. The second period represents the opportunity to do something
different “later,” whether we have reduced uncertainty or not. Then the question
is: how does the optimal first period strategy change if uncertainty is resolved
before the second period decision is made? The influence of learning is
examined by considering two extreme cases: (1) “No Learning,” in which the
uncertainty at the time of the period 2 decision is the same as for period 1; and
(2) “Complete Learning,” in which all uncertainty is resolved before the period
2 decision.

1. According to Kolstad and Ulph and Ulph, the irreversibility of the period 1 decision is only
binding if, when the true state of nature is revealed in period 2 through learning, one would wish
to undo the action in period 1. If damages are not severe enough to warrant a decision to “negatively
emit” (take carbon out of the atmosphere), then the irreversibility of emissions in period 1 becomes
irrelevant.

2. A two-period model of sequential decision gives insight into the general effect on the period
1 decision that would be obtained from a model with three, four, or more decision points.
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Figure 1. Policy Choice as Two-period Decision with and without Learning
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These two cases are illustrated in Figure 1. The upper part of the figure
shows the Complete Learning case. After ten years uncertainty about climate
impacts is eliminated, and the decision about increasing or relaxing emissions
constraints is made with perfect knowledge. The lower panel shows the No
Learning case where the decision today and the one in ten years are made under
the same level of uncertainty. The effect of learning can be seen by comparing
the best decision made today in these two cases.

The analysis below demonstrates the conditions for the existence of an
effect of learning on strategy choice, and explains the factors that determine the
direction of the learning effect. Section 2 develops general results using an
analytical dynamic programming model of a two-period decision. Section 3
demonstrates the effect of learning with an integrated assessment model that
represents much of the complexity in the economic and climate systems. Section
4 summarizes the main findings.

2. AN ANALYTICAL MODEL OF LEARNING

The choice of climate policy under uncertainty can be defined as a
dynamic programming problem. Define

=12

X

the set of all possible emissions levels that can be chosen in period ¢

x, = the level of emissions allowed in period ¢, chosen from the set X,
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# = severity of damage costs from climate change
C, (x;, 6) = abatement costs and damage costs in period 1
G, (x;, x,, 8) = abatement costs and damage costs in period 2
and let E,{‘} denote the expectation w.r.t. the marginal distribution of 6.

In each period ¢, a level of allowed emissions x, is chosen. Each period
has a total cost function C,(*) stated in terms of emissions level, which includes
both abatement costs and damages from the accumulated stock of carbon. The
uncertainty in the damages from climate change is represented by different states
of the world ¢ that may obtain, and so the damage costs (and therefore the total
costs) are also a function of 6.

Next, define two value functions, one representing the minimized costs
over both periods, and the other the minimized costs in period 2 only:

V, (x;, x;, §) = the sum of abatement costs and damage costs over both
periods given emissions level x; at f = 1, emissions level x, at

t=2,0=86,

V, (x,, X,, §) = the abatement and damage costs at # = 2 if the emissions level

x, is chosen in light of 6 = 0, given that the emissions level at
t =1 was x,.

In the “learning” case, the uncertainty in the damage costs 6 is
completely resolved before the period 2 decision is made. In the “no learning”
case, the uncertainty in & will be the same in both periods. Comparison of the
optimal period 1 strategy in these two cases will show the maximum possible
effect of learning on strategy. For this study, we consider learning to be
autonomous or exogenous, in which the true state is revealed with the passage
of time. Other approaches to modeling learning include active learning, in which
the evolution of the climate and economy are observed and beliefs are updated,
and purchased learning, in which improved information is purchased with an
explicit cost that is modeled (e.g., R&D). Exploration of those cases is a logical
extension of this work. In this model, learning only resolves the uncertainty in
damage costs, while abatement costs are treated as certain. Also, it is important
to note that, in reality, learning can lead to an increase in uncertainty. Learning
resolves uncertainty in this model as a representation of the assumptions
embedded in the “wait-to-learn” arguments, rather than a representation of all
possibilities.

A dynamic programming problem is always solved through backward
induction, first finding the optimal choice for the last period, and working
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backwards. Thus, the first step for the problem posed here is to choose, at r =
2, the emissions level x,” that minimizes the sum of abatement and damage costs
given that period | emissions level was x, and that the severity of climate change
damages is 6. In the “learning” case, the optimal emissions level x," is chosen
with certainty about 6, and the value function for period 2 is

Vi(x,,0) = min [C,(x;, %, 6)] - (1a)

In the “no learning” case, the optimal emissions level x,” must be chosen under
uncertainty in 6, and the value function for period 2 is

Vi(x,) = meig(l[Ee{Cz(xl,xz,G)}] : (1b)

Without learning, the best strategy is the one that minimizes the expected value
of the costs.

Once the second period optimal strategy, x,", is found, the next step is
to substitute this expression into the value function V), and solve for the optimal
period 1 strategy. We choose the optimal period 1 emissions level x,* that
minimizes the expectation of the sum of costs over both periods:

Vi(x,,0) = meix;[Ee{Cl(x,,é)+V2(xl,9)}]. @)

Several characteristics of this abstract model are worth highlighting.
First, the stock nature of the problem is represented by the dependency of C,,
the cost in the second period, on x,, the decision made in the first period. In
multi-period decisions about stock pollutants, capital stock, or other quantities
that accumulate over time, the costs and/or benefits in any period are partly a
function of decisions made in previous periods. Analogously, the current
period’s decisions will have cost/benefit impacts in future periods. This
formulation is in contrast to flow-type problems in which the implications of
each period’s decision are felt in that period only, and costs have no relation to
what has previously occurred (e.g., noise pollution).

The second point to note is the difference between the learning case and
the no learning case. In the no learning case, there is only a single choice of X
that must minimize the mean or expected costs across all possible states of the
world, since we don’t yet know which one is the true state. In the learning case
many different optimal choices of x,” exist, each minimizing costs in the
particular state of the world 6. Of course, even when there is learning by period
2, the period 1 decision must still be made based on the expected value over all
possible states, as can be seen by equation (2).
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The effect of learning can be evaluated as the difference between xit,
the solution to equation (2) when uncertainty is completely resolved (equation
(1a)), and x,", the solution to equation (2) when no learning occurs (equation
(1b)). Rather than show a formal derivation, we consider alternative functional
forms that will later be useful in examining the empirical model.

A. Cost Functions with and without Cross-Period Interaction

Begin by assuming that the period 2 cost function has no cross-products
between the period 1 and period 2 strategies. In constructing the cost functions
we make the simple assumptions that the first period costs, given a state of the
world 6, are linear,

C,(x,,8) = a(6)x, +b(b) , (3)

and that the second period costs are a simple quadratic function of both periods’
decisions,

C,(x,,x,,8) = c(®)x; +d(0)x, + e(O)x; +f(6)x, +8(6) . )

The stock nature of the problem is represented by the terms e(0)x,* and f(6)x, in
the second period cost function. The decision made in the first period will
influence costs in the second period.?

The first step is to solve the second period decision. There are two
cases: one with learning and one without. It can be shown (Webster, 2000) that
the optimal period 2 strategy for the case where uncertainty is resolved is:

o _ d®) )
2¢O

2

Because the period 2 emissions level will be chosen after we know the true state
of the world as represented by the coefficients a - g, the optimal strategy is a
function of those values. In contrast, the optimal period 2 strategy without
learning will be a function of the expectation of these coefficients, since their
true values will still be uncertain:

3. These terms do not capture any change in the marginal damages that may occur with a non-
linear damage function. In this formulation the total period 2 damage is a function of period 1
strategy, but the marginal damage is not. The dependence of marginal damage on first period
strategy is a different effect, and is treated in the next example.
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gV-4 ©)

Having solved for the optimal period 2 strategy in each case, we
substitute for x, in equation (4), and then solve for the optimal emissions level
x,” that minimizes costs over both periods. It also can be shown (Webster, 2000)
that the optimal period 1 emissions for both cases is

xI*L - xI*N - _ a +;f . (7)
2e

Although the period 1 decision does affect the total costs in period 2
(damages from the remaining stock), it does not interact in any way with the
period 2 decision through an influence on marginal cost. The lack of dependency
of period 2 decisions on period 1 actions is clear from equations (5) and (6),
since x, does not appear in either solution. This result leads to a more general
proposition. For any two-period sequential decision under uncertainty
represented by equations (1) and (2).

&*C
If 2 =0 then le =x1N.
dx, Ox,

Proof of this proposition is given in Webster (2000). In sum, if today’s decision
has no effect on the marginal costs of tomorrow’s decision, then whether we
learn or not (which does influence tomorrow’s decision) is irrelevant for today.

What happens when there is an interaction term? To illustrate this case,
assume the same linear cost function for period 1 as in the previous example,
but in the period 2 cost function add a quadratic term d(f)x, x,. Following the
same procedure as above, the cost-minimizing strategy in period 1 when learning
will occur is:

.L 2a

d2(0) ? (8)
{0}

while the cost-minimizing period 1 emissions level in the no learning case is:
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2|

xV = 24L 9)

;2

The period 1 strategy now depends on learning. The solutions have a common
component, 24, scaled by the expectation of a non-linear function, d ¢, in the
case of learning, and by the non-linear function of expectations in the case of no
learning.

What might the cross-period interaction* term d(f)x, x, represent? As
noted earlier, it could represent non-linearity in the damage function. If a larger
stock of CO, from higher period 1 emissions changes marginal damages in
period 2, then this effect will show up in this cross-term. A threshold damage
level as a step function would be an especially large interaction term, since at
the threshold, the marginal damage is a delta function. It could also represent
a dependency of the marginal cost of mitigation in period 2 on period 1
decisions (e.g., capital stock effects). In general, the non-linearity need not be
in the simple form d(6)x, x,. this is the simplest case for which the difference in
solutions with and without learning (equations 8 and 9) are straightforward
expressions. The point is that some dependence of the marginal abatement cost
or marginal damage on the first period strategy is a necessary condition for that
strategy to diverge under learning.

A special case of the solutions (8) and (9) will be useful in Section 3.
Consider the discrete distribution case where there are two possible states:

6 = {low, high}.
Denote the cost coefficients as

aflow) = a, ; a(high) = a, .
We also define

P = Pr{6 = high},

the probability of being in the high damage state of the world. Thus, the
expectation with respect to 8 can be written:

4. The “interaction” described here, the dependence of marginal costs in period 2 on the period
1 strategy, is independent of learning. This interaction is present even in the no learning case. Thus,
it is a different phenomenon than “interactive learning” in the tradition of models of learning-by-
doing (e.g., Miller and Lad, 1984).
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a-= Ee{a(e)} =Pay+(1 -Pa, .

For this simple case with only two discrete states, it can be shown that
the optimal period 1 strategies become

X - za(_iz} , (10)
d

L _ 97 chH (11)
2 2 ’
c,dyP +cyd; (1-P)

for the cases without and with learning, respectively. Note that only the
bracketed term differs between equations (10) and (11). For this problem, the
optimal period 1 decision is determined by the average or expected period 1
marginal cost 24, scaled by a term representing the second period marginal
costs. In Section 3 these expressions will be used to explore the divergence
between solutions of an empirical climate assessment model.

B. The Direction of the Learning Effect

The previous examples show that a cross-period interaction is a
necessary condition for learning to influence period 1 strategy. It is not,
however, a sufficient condition. Also, it remains to be shown whether the effect
is positive or negative. Even without deriving the expressions that demonstrate
the determinants of the direction of the learning effect (see Webster, 2000), it
is possible to provide some intuition on how learning might either increase or
decrease the optimal emissions level in period 1.

In the simple model described above, learning always leads to a lower
strategy level x,” because costs change monotonically with strategy level. There
is a downside to doing too much, but no equivalent downside to doing too little.?
Thus, the irreversibility and uncertainty leads to a lower level of the irreversible
activity if learning and correction are possible later. If we consider the costs as
damage losses and x, as emissions, this is equivalent to the Arrow and Fisher
(1974) result that learning leads to lower emissions in period 1. If we consider
the costs as representing only abatement costs and x, as emissions level, this is
equivalent to the investment under uncertainty models of Pindyck (1991) in
which learning will lead to higher emissions (i.e., less abatement with learning).

5. Or the opposite, depending on the signs of the coefficients.
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Real-world problems such as a decision about climate policy involve
both abatement and damage costs that change in opposite directions with the
emissions level. A more general representation is to treat abatement costs
(decreasing in emissions) and damage costs (increasing in emissions) separately.
For a two-stage decision in which learning resolves uncertainty in damage costs,
the optimal emissions strategy chosen with learning may be higher or lower than
without learning. The irreversibility in both damages and control costs causes
two effects from learning, pulling in opposing directions. Learning, thereby, can
lead to higher or lower emissions depending on the relative magnitudes of the
control costs and damage costs.

The dominant direction of the learning bias can be explained in terms
of two elements of the decision: (1) the anticipation of the period 2 strategy, and
(2) the regret over the period 1 choice given the outcome after learning. When
a period | strategy is chosen under uncertainty, and then the uncertainty is
resolved in period 2, some regret over the period 1 choice is inevitable.®
Suppose in period 2 we learn that the damages from climate change are less
severe than expected. Then we will choose a higher level of emissions in period
2 than we did under no learning. Because of the interaction, we will wish that
we had anticipated this higher emissions level in period 2, and also chosen
higher emissions in period 1. We will regret having spent more on abatement
cost in period 1 than turned out to be necessary. Now, suppose instead we learn
in period 2 that the damages are more severe than the expectation. In this case,
we will lower emissions further in period 2 than we would have without
learning. Because of the interaction, we will wish we had anticipated this lower
emissions strategy by emitting less in period 1. We will regret not having taken
enough precaution in the face of uncertain climate damage.

The net effect of learning on strategy is determined by the relative
magnitudes of these two regrets. When the decision is being made in period 1,
we are still uncertain whether we will learn that damages are greater or less than
the expectation. The probability distribution over damage costs reflects our
belief in the relative likelihood of each state of the world that might be revealed
in period 2. If, on balance, the dominant regret will be that we will have spent
too much on abatement before learning that damage costs are lower, then
learning will lead to a net increase in period 1 emissions. We call this the “sunk
cost” situation. If, on the other hand, the dominant regret over all possible
outcomes will be that we should have abated more, then learning will lead to a
net decrease in emissions in period 1. We call this situation the “precautionary
case.” If the regret from abating emissions when damages are revealed to be low
and the regret from abating too little when damages are revealed to be high

6. Except, of course, in the rare case that the revealed true state is exactly equal to the
expectation under uncertainty .
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balance each other, then learning may still not influence the period 1 decision,
even in the presence of an interaction.

Thus, although the direction of learning effect is influenced by the
convexity or concavity of the marginal costs (Epstein, 1980), it also is
determined by the shape of the probability distribution over uncertain abatement
costs and damage costs. When the expected damages from climate change are
low (i.e., low expected net benefits) but there is a small probability of high
damage cost (i.e., skewed towards high damages), learning will lead to lower
period 1 emissions. The regret from learning that damages are high will
dominate, since the low damages were already the expectation. Conversely, if
expected damage costs are high, but there is a small probability of low damage
costs (i.e., skewed towards low damages), then learning will lead to higher
emissions in period 1. This dependence of the direction of the learning effect on
the probability distribution can be illustrated with results from the integrated
assessment model.

3. EFFECT OF LEARNING IN INTEGRATED ASSESSMENT MODELS
A. The MIT Integrated Global System Model

The analytical model above employed highly simplified cost functions.
In this section the effect of learning is illustrated using a climate policy
assessment model of intermediate complexity. The integrated assessment model
used is the MIT Integrated Global System Model [IGSM] (Prinn et al. 1999),
augmented with a damage function related to change in global mean
temperature. The economic component of the model, the Emissions Projections
and Policy Analysis (EPPA) model (Babiker, 2000) is a recursive-dynamic
computable general equilibrium model, consisting (in the calculation applied
here) of twelve geopolitical regions linked by international trade, ten production
sectors in each region, and four consumption sectors. The climate component
is a two-dimensional (zonal averaged) representation of the atmosphere and
ocean (Sokolov and Stone, 1998). The climate model includes parameterizations
of all the main physical atmospheric processes, and is capable of reproducing
many of the non-linear interactions simulated by atmospheric GCMs.

In order to choose one set of strategies as “optimal,” we require a basis
for comparing the costs of reducing emissions with the benefits of avoiding
damages. We augment the EPPA mitigation cost model with the Nordhaus
damage function (Nordhaus, 1994). This damage function has been widely used
(e.g., Kolstad, 1996; Lempert et al. 1996; Peck and Teisberg, 1992; Pizer,
1999), and facilitates the comparison of results here with other studies. The
Nordhaus damage function estimates the percentage loss of gross world product
as a function of the global mean temperature change,
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d@®) = n[ATOT" (12)

where d(¢) is the fraction of world product lost due to climate damages in year
t, and AT(?) is the increase in global mean temperature from preindustrial levels.

Solving for an optimal sequential decision under uncertainty requires a
large number of simulations of the empirical economic-climate model. Used
directly, the IGSM requires too much computation time for this application, so
we estimated a reduced-form version using the Deterministic Equivalent
Modeling Method (Tatang et al. 1997; Webster and Sokolov, 2000). These
simpler functional forms replicate the results of the original IGSM to within a
1% error of the mean (Webster, 2000). The reduced-form models are used in
all calculations below.

To set up the sample calculation, the sequential decision problem for
climate change is defined in Section 3B. The effect of learning in the IGSM is
described in Section 3C, and then in Section 3D, results from the analytical
model are used to explain the effect of learning in this model. Finally, in Section
3E, I use non-linearity in the damage function as an example of a strong
interaction which can be added to the model to increase the effect of learning.

B. Sequential Decision Using the IGSM

As above, we frame a two-period sequential decision under uncertainty.
The decision-maker represents the aggregate “Annex I,” the industrialized
nations that would constrain emissions under the Kyoto Protocol. The decision-
maker seeks to minimize the net present value of total consumptions losses.
These result both from constraints on carbon emissions and impacts of climate
change. The stream of costs over time is discounted at a reference rate of 3%,
which is subjected to sensitivity analysis. The possible strategies represent choice
over levels of emissions abatement only; other possible complementary policies
of research, adaptation, and geo-engineering are not considered here. Only
Annex I nations constrain emissions in this model, while the less developed
nations increase their emissions of greenhouse gases unrestricted over the 100-
year time horizon.

The strategies are defined as maximum allowable growth rates in
emissions. The first period strategy can be any rate between 0% per year
(emissions stabilization) and 1.4 % per year (unconstrained for all regions) over
the years 2010-2019 (Table 1). The second period strategy is chosen from a low
of ~0.8% per year and a high of 1.2% per year (unconstrained), and constrains
emissions for the years 2020-2100. The period 1 strategy also determines the
absolute emissions level in 2010, as indicated in Table 2, which shows the
reduction in relation to the Annex I Kyoto target (United Nations, 1997).
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Table 1. Strategy Choices in Each Period: Maximum Allowable Emissions

Growth
Decision Strategy Years Most Stringent  Least Stringent Constraint (no
Period Variable Constraint limits on emissions growth)
1 Policy2010 2010-2019 0%/Year 1.4%/Year
2 Policy2020 2020-2100 -0.8%/Year 1.2%/Year

Table 2. Emission Targets for 2010 as a Function of Strategy Level

Policy2010 2010 Emissions Constraint Emissions Growth Rate
x) 2010-2019
0 100% of Kyoto 0%
02 85% of Kyoto 0.2%
0.4 70% of Kyoto 0.4%
0.6 55% of Kyoto 0.6%
0.8 40% of Kyoto 0.8%
1.0 25% of Kyoto 1.0%
1.2 10% of Kyoto 1.2%
1.4 Reference 1.4%

(no controls)

Based on previous work (Webster, 2000; Webster and Sokolov, 2000},
we consider three uncertain parameters that have the greatest impact on damage
costs:

e  Climate Sensitivity: this parameter determines the change in global mean
temperature at equilibrium that results from a doubling of CO, (Sokolov and
Stone, 1998).

e Rate of Ocean Uptake: the 2D climate model parameterizes the mixing of
both heat and carbon from the mixed-layer ocean into the deep ocean. A
slower ocean will result in both higher carbon concentrations in the
atmosphere and in more rapid warming (Sokolov and Stone, 1998).

e Damage Valuation: to reflect the large uncertainty in the valuation of
climate change impacts, the damage coefficient » from equation (12) is
uncertain (Nordhaus, 1994).
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The probability distributions for the three uncertain parameters are
discrete two-point approximations based on continuous distributions, and are
subjected to extensive sensitivity testing. The reference continuous distributions
are obtained from expert elicitation. The distributions for climate sensitivity and
for ocean uptake are given in Webster and Sokolov (2000), based in part on
Morgan and Keith (1995). The distribution for the damage valuation is taken
from Roughgarden and Schneider (1999), based on the assessment by Nordhaus
(1994b). Because the distributions are based on expert elicitation, they are
subject to all the biases of subjective judgment about probability (Morgan and
Henrion, 1990). Also, for almost all parameters, there is wide disagreement
between experts. It is crucial therefore to subject all results from decision
models to sensitivity testing of the assumed distributions. We approximate the
continuous distributions with the discrete distributions shown in Table 3.
Sensitivity testing is then performed by varying the probability of the high
damage state (Branch 2).

Table 3. Distributions for Uncertain Quantities

Branch 1 (P = 0.8) Branch 2 (P = 0.2)
Climate Sensitivity (°C) 2.5 4.5
Oceanic Uptake (cm?/s) 2.5 0.5
Damage Cost Coefficient (%) 0.02 0.16

As in the analytical model of Section 2, learning is modeled as the
revelation of the true state of damage costs in period 2. More sophisticated
models of learning such as including explicit costs of reducing uncertainty or
Bayesian updating of probability distributions from observations are left for
future studies. Also, as above, learning does not resolve the uncertainty in
abatement costs.

C. The Influence of Learning in the IGSM

Using the IGSM and the two-period sequential framing of emissions
control choice, the effect of learning can be empirically demonstrated. When
using the default probability distributions given in Table 3, the optimal strategy
in period 1 is the same in both the learning and no learning cases, which is to
leave emissions unconstrained. Emissions are constrained in both cases in period
2, and the optimal strategy depends on what is learned. The main focus of this
paper, however, is what happens to period 1 emissions. To ensure that the
equality of period 1 strategies is not dependent on the specific probability
distributions used, we compare the optimal period 1 strategies for different
assumptions of the probability of high damage cost. Sensitivity analysis not
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reported here indicates that, of the three uncertain parameters treated, the
minimized total expected losses are most sensitive to the damage valuation
parameter. If the probability of high damage cost (n = 0.16) is varied from 0
to 1.0, while the probabilities of high climate sensitivity and slow ocean uptake
are kept at the reference values of 0.2, the same strategy (no controls) is optimal
with and without learning.

Table 4. Optimal Period 1 Strategy With and Without Learning
(% of Kyoto Reductions)

Probability of High Damage No Learning Optimal Cap Learning Optimal Cap
0.0-0.75 0% 0%
0.75-0.94 10% 10%

0.94 - 0.96 10% 25%
0.96 - 1.0 25% 25%

In order to find a divergence between the optimal strategy with learning
and the optimal strategy without learning, the probabilities of all three uncertain
parameters must simultaneously be adjusted far from the reference values. For
example, Table 4 shows the comparison of optimal strategies with and without
learning when the probability of high climate sensitivity (4.5°C) is assumed to
be 0.85, and the probability of slow ocean uptake (0.2 cm’/s) is also assumed
to be 0.85. With these values and the probability of high damage valuation
anywhere between 0 and 0.75, it is still optimal to leave emissions unconstrained
in both cases. If the probability of high damage is increased further to between
0.75 and 0.94, it is optimal to constrain emissions just a little (10% of the Kyoto
caps). The only difference between the strategies occurs when the probability of
high damage cost is between 0.94 and 0.96: in this region, it is optimal to
constrain emissions more if learning will occur (25% of Kyoto reductions with
learning as compared to 10% without).” Finally, for probabilities between 0.96
and 1.0, the optimal strategies are again the same, 25% of the Kyoto reductions.

As the probabilities of all three uncertain parameters are varied
simultaneously, other sets of assumptions will yield differences between strategy
with and without learning, but only for a small fraction of possible assumptions.
In addition, such regions of divergence in strategies only exist for assumptions
about the uncertain parameter distributions that are inconsistent with expert
judgment.

7. Welfare, not shown here, behaves as expected: discounted welfare is always higher in the
learning case than the no learning case, and in both cases welfare decreases as the probability of high
climate damage increases.
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In addition to varying the probability distributions, other assumptions
of the decision model can be altered in an attempt to get a stronger effect on
strategy by learning. Other cases that have been tested include

. Lengthening the first period from ten to forty years (i.e., first period
decision determines emissions from 2010-2050),

. Assuming very slow ocean uptake with certainty (to increase the
“irreversibility” of emissions),

. Varying discount rates between 0% and 10%,

and several other tests (Webster, 2000). In all of these cases, the optimal first
period decision with learning and the optimal decision without learning are
almost always the same. The ranges of uncertain parameters that result in a
divergence are small, and usually occur under parameter distributions that are
inconsistent with expert opinion. Similar results are obtained by modeling
uncertainty in abatement costs and allowing learning to resolve this uncertainty
(Webster, 2000).

D. Magnitude of the Learning Effect in the IGSM

The analytical model in Section 2 leads to a suspicion that the reason
for this lack of influence of learning is that the inter-period interactions in this
model are insignificant. And indeed, despite the complexity captured by the
economic and climate models in the IGSM, few of the possible interactions over
time of emissions control levels are represented in this model. The magnitude
of the cross-period interactions can be estimated by examining the reduced-form
models that are fit to the full IGSM. We estimate the control costs and the
damage costs in each period as a function of the strategy level chosen in each
of the two periods. To facilitate comparison with the analytical results from
Section 2, we use the same quadratic functional form as the cost functions there,
including a single linear cross-term.

Two estimated cost-functions were fit: one for low climate damage
costs and one for high damage costs. The reduced-form estimates of total costs
in period 2 as a function of the strategies are given in equations (13) and (14)
for the high damage and low damage assumptions, respectively.®

8. Again, recall that the policies x, and x, are maximum allowable emissions growth rates.
Thus, the total (abatement + damage) cost at first decreases with increasing x; (as stringency is
relaxed) until the effect of climate damage becomes large enough at high emission rates to increase
the total cost.
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TC,(x,,x,, H) = 27108 -2482x, + 153x] -2648x, +226x; +177x,x,  (13)

TC,(x,, %, L) = 18712 -2601x, + 145x7 - 2962x, + 196x; +161x,x,  (14)

From equations (15) and (16), we know that the optimal period 1
strategies with and without learning are each equal to a common term scaled by
a term that varies depending on whether learning will occur. Using the
coefficients from equations (13) and (14), and assuming that the probability of
high damage costs P = 0.5 to maximize the uncertainty, the optimal period 1
strategies are proportional to:

¢, C
xS —— = 0.00738 (15)

N Elc}

X} = 0.00739 (16)
Eld)}?

Because the ratio differs only slightly from 1.0, learning will have little
influence on period 1 strategy.

What interactions in the IGSM are represented by these coefficients?
One contributor is the vintaging of capital in the economic model component.
In the EPPA model, a portion of the preexisting capital stock in any period is
not malleable: the proportions of input factors are frozen at the current
technology levels. As a result, low abatement in the first period results in
investment in new carbon-emitting capital, some of which cannot be shifted if
abatement is undertaken in the second period (Jacoby and Sue Wing, 1999). A
less stringent policy in period 1 (higher emissions) will cause a higher marginal
cost of emissions reductions in the second period. Another interaction in EPPA
is the depletion of fossil fuel resources, but the interaction effect on period 2
strategy appears to be very weak.

An interaction is also present in the climate and ocean model
components. The rate of ocean uptake of carbon will gradually slow over time
due to rising surface temperatures, which will cause higher period 2 carbon
concentrations in the atmosphere. The slowing of ocean uptake at higher
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temperatures® becomes an interaction; higher emissions in the first period cause
an increase in surface warming, which will further lower the rate of ocean
uptake of CO, and leave higher concentrations in the atmosphere'® (Holian,
1998). Because of the change in ocean circulation, higher period 1 emissions
increase the marginal damage cost of period 2 emissions. All of the cross-
period interactions in the IGSM are relatively small effects, and therefore
learning does not have an appreciable influence on period 1 strategy.

Other interactions might exist in the real world that are not represented
in the IGSM. One example is a non-linear damage relationship. The Nordhaus
damage function used in this study and elsewhere, while non-linear in
temperature change, is very nearly linear over the range of CO, concentrations
resulting from a reasonable range of near-term policy choices (Pizer, 1999).
Much concern about climate change is motivated by the possibility of its effect
on the rate of overturning in the North Atlantic Ocean. A shift in the rate of
deep-water formation, in addition to its serious climatic implications, would also
alter the marginal damages of future emissions, and would constitute an inter-
period interaction. Another possible effect of period 1 policy on future marginal
abatement costs is via the rate of technological improvement. If the rate of
improvement in energy efficiency and in the development of low-carbon
_ alternative technologies can be stimulated through the presence of a price on
carbon from policy, as some argue it would be (e.g., Grubb, 1997), this
dependence constitutes an inter-period interaction.

While each of these phenomena are argued to be important
characteristics of the climate change issue, they are not represented either in the
MIT IGSM or in most other climate assessment models. The main reasons for
omitting them is that they are less well understood than other aspects of the
system and difficult to represent in the models, and their likelihood and
magnitude are highly uncertain. In the absence of these larger potential inter-
period interactions, studies structured as sequential decisions will never find an
influence of learning on today’s decision. Thus the conclusion to draw from
model studies is not that the likelihood of learning is irrelevant to the choice of
near-term control, but that the models currently used for analysis are inadequate
for addressing this question.

9. The solubility of CO, in the surface ocean layer is governed by Henry’s Law, which allows
the conversion between concentration and partial pressure: [CO,)* = a,, - pCO,. Henry’s
coefficient a,,, has a strong dependence on temperature.

10. The feedback mechanisms described here are distinct from an abrupt collapse or even
slowdown of the thermohaline circulation. The mechanism described here is a gradual change in the
rate of absorption of carbon by the surface ocean, but not in the vertical mixing between surface and
deep ocean water.
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E. Example of an Inter-Period Interaction: Non-Linear Damage Function

In the discussion above, we mentioned several sources of interactions
not represented in the IGSM and other assessment models that could be
significant for climate change. Here we present the case of a non-linear damage
relationship as one example of the effect of learning in the presence of an
interaction. The Nordhaus damage function used is linear in CO, concentrations,
but in fact the precise characteristics of damages from climate change,
particularly on natural systems, are poorly known.

To illustrate the effect of non-linearity, we modify the damage function
in equation (12). Rather than having a single value for the coefficient n and the
exponent , these values change above a threshold level of CO, concentrations.
Below 650 ppm, we use the same values as in previous examples. But above
650 ppm, the coefficient in the high damage case is double the high value below
650, and the exponent increases to 3. Thus the effect is that above the threshold,
damages increase more rapidly. Note that the damages above the threshold are
still far from catastrophic, but that this function now has a “kink” where the
slope changes. This non-linearity creates a cross-period interaction, because the
marginal damages in period 2 depend on the period 1 emissions and the resulting
distance from the threshold.

Table 5. Optimal Period 1 Abatement with a Non-Linear Damage Function
(% of Kyoto Reductions)

Probability of High Damage No Learning Optimal Cap Learning Optimal Cap
0.0-0.15 0% 0%
0.15-0.45 0% 25%

0.45 - 0.85 25% 25%
0.85-1.0 25% 40%

Table 5 shows the optimal period 1 strategy with and without learning
when the damage function is non-linear. Notice that in both cases as the
probability of high damage increases so does the optimal level of abatement in
period 1. In contrast with the no interaction case shown in Table 4, there are
significant regions for which the stringency of period 1 abatement is influenced
by learning. With a probability of high damage between 0.15 and 0.45, 25% of
Kyoto reductions are optimal with learning as compared to no reductions
without. In these regions, it is optimal to abate more in period 1 if we will learn
later. The more stringent policy in period 1, while having imposing immediate
abatement cost, has a double benefit: in addition to the reduction in carbon
emissions that may cause damage later, there is an additional gain by decreasing
the probability of future catastrophe. If it turns out (after learning) that it is a
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low damage world, emissions caps can be lifted and the wasted effort will be
minimal. Without learning, we will never know, and so a higher probability of
damage is required before an increase in stringency is justified. As the
probability of a high climate damage changes, there is variation in whether the
additional gain outweighs the additional abatement cost in only the learning case.
There are probability ranges where it does (0.15-0.45; 0.85-1.0) and ranges
where it does not. Other cases can be constructed with interactions that will lead
in the other direction; i.e., more stringent abatement is optimal if we will not
learn later (see, e.g., Webster, 2000b).

4. IMPLICATIONS FOR POLICY

Whether there is an effect of learning on the first period decision
depends on the existence of an interaction effect between periods. Using a
climate model of intermediate complexity, it is seen that, for most parameter
distributions, the optimal emissions control today is independent of whether or
not learning will occur. This result can be traced to the fact that the cross-period
interactions in this model and many others in use are small. When an inter-
period interaction is added, the strategy today will depend on whether we will
learn, and may lead to more or less stringent abatement depending on the
relative shapes of the probability distributions of control costs and damages.

In climate policy discussions an argument continues over the
advisability of waiting for better understanding of climate change before
undertaking costly emissions abatement. In fact, the ability to learn more and
reduce uncertainty in the future is not necessarily a valid argument for delaying
abatement. The ability to learn may lead to either higher, lower, or the same
level of emissions today, depending on several factors including the probability
distributions of the costs and benefits of emissions reductions.

So, what is the “act now or wait to learn” debate really about? To some
degree, it does not emerge from differing beliefs over whether we will learn or
not. The policy prescriptions are influenced by differing beliefs about the
expected costs of abatement and the expected climate damages. Those who
believe that climate damages will be small and emissions abatement costly will
argue for a delay in abatement. Those who believe that climate damages are
more likely to be severe and emissions abatement cheap will argue for beginning
emissions abatement activities immediately. Many prescriptions result from the
differences in perception of costs and benefits and not from considerations of the
effects of uncertainty reduction in future decades.

These results have important implications for research in climate
modeling. The omission of possible inter-period interactions from integrated
assessment models changes the qualitative insights regarding what we should do
today. The inclusion of possible interactions, and explicit treatment of their
uncertainty, should be a priority for integrated assessment modeling. Of
particular importance are the 3D ocean circulation and potential thermohaline
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collapse, induced innovation effects of policy, and threshold effects in
ecosystems damage. Of course, whether these interaction effects exist, and if so
the magnitudes of the effects, are not well known. In fact, as we have shown
here, it is the uncertainty in these phenomena, and not the other uncertain
parameters traditionally treated, that might cause the prospect of learning to bias
strategy choice under uncertainty.
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