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Abstract

Sensitivities of the net heat flux into the deep-ocean ( netQ ) and of the deep-

ocean heat content (DOC) below 700 m are studied using an ocean general circulation

model and its adjoint. Both are found to have very similar sensitivities. The sensitivity to

the surface freshwater flux (E-P-R) is positive in the Atlantic, but negative in the Pacific

and Southern Ocean. A positive sensitivity to the downward net surface heat flux is found

only in the North Atlantic north of 40˚N and the Southern Ocean. The diapycnal

diffusivity of temperature affects netQ  and DOC positively in a large area of the tropics

and subtropics in both the Pacific and Atlantic Ocean. The isopycnal diffusivity

contributes to netQ  and DOC mainly in the Southern Ocean.

Detailed analysis indicates that the surface freshwater flux affects netQ  and

DOC by changing vertical velocity, temperature stratification, and overturning

circulation. The downward net surface heat flux appears to increase netQ  and DOC by

strengthening vertical advection and isopycnal mixing. The contribution of isopycnal

diffusivity to netQ  and DOC is largely associated with the vertical heat flux due to

isopycnal mixing. Similarly, the diapycnal diffusivity of temperature modulates netQ  and

DOC through the downward heat flux due to diapycnal diffusion.

The uncertainties of netQ  and DOC are estimated based on the sensitivities and

error bars of observed surface forcing and oceanic diffusivities. For DOC, they are about

0.7oK (1˚K = J24107.3 × ) for the isopycnal diffusivity, 0.4˚K for the diapycnal diffusivity

of temperature, 0.3˚K for the surface freshwater flux, and 0.1˚K for the net surface heat

flux and zonal wind stress. Our results suggest that the heat uptake by ocean GCMs in

climate experiments is sensitive to the isopycnal diffusivity as well to the diapycnal

thermal diffusivity.
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1.  Introduction

The oceans are one of the major components of the earth climate system owing in

part to its large heat capacity. The change of the earth s climate is largely regulated by

how rapidly the oceans take up heat [Levitus et al., 2000 and 2001; Barnett et al., 2001].

However, this regulation by the oceans varies greatly between models and is not well

constrained by observation [Forest et al., 2002]. Therefore, a better understanding of what

factors affect ocean heat uptake in ocean models is a necessary step to improve the

simulation of present-day climate and the projection of future climate.

Uncertainty in ocean model simulations can arise from many different sources,

such as the parameterization of mesoscale eddies, surface boundary conditions, and

oceanic model subgrid-scale parameters. The wind stress and freshwater flux from the

atmosphere may have a large error bar due to observational limitations over the oceans

[Isemer and Hasse, 1991; Schmitt et al., 1989]. The wind stress from Hellerman and

Rosenstein [1983] is stronger than that from the Comprehensive Ocean Atmosphere Data

Sets [da Silva et al., 1994]. The wind stress from European Centre for Medium-range

Weather Forecasts (ECMWF) [Trenberth et al., 1989] seems to be very strong over the

Southern Ocean. The diffusivities based on direct ocean observations may vary about ten

times in different regions [Zhang et al., 2001; Ledwell et al., 2000; Jenkins, 1991;

Nakamura and Cao, 2000].

Uncertainties like these can cause different model simulations to have

quantitatively different results in their simulations of climate change. Many simulations

show that ocean circulation and temperature are strongly affected by vertical diffusivity

[Bryan, 1986; Tsujino et al., 2000; Kamenkovich and Goodman, 2000; Cummins et al.,

1990; Marotzke, 1997; Scott and Marotzke, 2001]. The simulation of Hu [1996] indicated

that the thermocline depth and meridional heat transport are sensitive to the vertical

diffusivity. The study of Goose et al. [1999] showed that the vertical diffusion can affect

the ocean ventilation, water mass properties, sea-ice distribution, and chloroflurocarbon
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uptake. The strength and stability of deep ocean circulation are critically associated with

the surface freshwater and heat flux as indicated in many studies [Mikolajewicz and

Voss, 2000; Zhang et al., 1999; Rahmstorf, 1996; Pierce et al., 1995; Rahmstorf, 1995;

Huang and Chou, 1994; Zaucker et al., 1994; Weaver et al., 1993]. The tracer uptake of

the oceans is relatively worse using constant horizontal mixing compared to isopycnal

mixing [Sun, 2000; Duffy et al., 1997]. Also, the choice of surface boundary condition

may have an important impact on the simulation of ocean circulation [Bugnion, 2001;

Huang, 1993].

Key questions are: How do ocean diffusivities and surface forcing affect the

uncertainty of the ocean heat uptake? This has not been discussed extensively in the

studies cited above. What are the mechanisms relating the ocean heat uptake with

diffusivities and surface forcing, and what is their relative contribution to the ocean

circulation and heat capacity? We will address these questions in the rest of this paper:

Section 2 is a brief description of the ocean general circulation model (OGCM), its

configuration, and its adjoint. The calculated sensitivity by the adjoint model is presented

in section 3. We will study the physical mechanisms revealed by the adjoint sensitivity in

section 4. The uncertainty of ocean heat uptake is estimated in section 5. Section 6 is the

summary.

2.  Model

2.1.  Configuration

We use the MIT OGCM [Marshall et al., 1997a; 1997b; 1998] and its adjoint

[Giering and Kaminski, 1998; Giering, 1999; Marotzke et al., 1999]. The model ocean

consists of idealized basins of the Pacific (0-130°E, 70°S-60°N) and Atlantic (130°-

200°E, 70°S-70°N) separated by idealized continents at 0°E and 130°E (refer to Fig. 1a).

The bottom topography of the model ocean is flat with a depth of 4.5 km except for the

Drake Passage where a sill of 1.6 km is added. Because of the geometry, the resolution of

the western boundary layer can be substantially enhanced by increasing just the
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longitudinal resolution near the north-south boundary, without largely impacting the

integration time [Kamenkovich et al., 2002]. This makes the strength of the boundary

currents and the associated mixing of heat and tracers into the deep oceans much more

realistic than in conventional coarse resolution GCMs. The longitudinal resolution is 1°

near the eastern and western boundaries but 4° in the interior oceans. The model ocean is

divided into 15 vertical levels, and the layer thickness ranges from 50 m at the surface to

550 m at the bottom.

The vertical eddy heat fluxes in the model are parameterized by diapycnal

diffusive heat flux, isopycnal diffusive heat flux, and convective heat flux. The diapycnal

diffusive heat flux is explicitly diagnosed, although it is implicitly calculated in the model

prognostic equation. The isopycnal diffusive heat flux is based on Gent-McWilliams

mixing (GM mixing, hereafter) [Gent and McWilliams, 1990; Gent et al., 1995; Redi,

1982; Gerdes et al., 1991; Griffies, 1998; Griffies et al., 1998; Danabasoglu and

McWilliams, 1995; Large et al., 1997]. The convective heat flux is calculated according

to convective adjustment, assuming that the ocean temperature and salinity in the

adjacent layers are fully mixed when the upper layer is denser than the lower layer. The

diapycnal diffusivities are set to 5105 −× 12 −sm  for both temperature and salinity, and the

isopycnal diffusivity of temperature and salinity is 3101× 12 −sm . The maximum slope of

the isopycnal surface is set to 210− . Horizontal and vertical viscosities are 4105×  and

2101 −× 12 −sm , respectively.

The model ocean is driven by zonal sea surface temperature (SST), wind stress,

monthly mean net surface heat flux, and annual mean zonal freshwater flux. The SST

data are based on Levitus and Boyer [1994]. The wind stress is from Trenberth et al.

[1989]. The net surface heat flux is obtained from Jiang et al. [1999]. The surface heat

flux is calculated by
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where ρ  is water density, pc  is heat capacity of water, τ  is a restoring time of 30 days,

1Z∆  is the thickness of the first model layer, 0T  is observed SST, and SQ  is observed net

surface heat flux. This surface boundary condition has the advantage that it can simulate

both the SST and surface heat flux accurately [Jiang et al., 1999]. The surface freshwater

flux is from Jiang et al. [1999]:
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RPE
FS ∆

−−
= , (2)

where E, P, and R  represent evaporation, precipitation and river runoff, respectively. 0S

is the standard salinity of 35 psu. More detailed description about these data sets is

provided in Jiang et al. [1999] and Kamenkovich et al. [2002]. In all cases, the original

data sets have been averaged zonally for the individual idealized basins before they are

applied.

2.2.  Spinup

The time steps for the tracer and momentum equations are 8 hours and 30

minutes, respectively. The initial model temperature and salinity are based on Levitus and

Boyer [1994] and Levitus et al. [1994]. The model ocean reaches a quasi-equilibrium

state for the deep ocean temperature and salinity after 5000 years of spinup.

The model simulates the water masses reasonably as shown in the barotropic and

meridional overturning stream functions (Figure 1) and zonal averaged temperature and

salinity (Figure 2). The transports in subpolar, subtropical, and tropical gyres are

simulated at reasonable strengths in both the Atlantic and Pacific Ocean (Figure 1a),

except the Antarctic Circumpolar Current is relatively strong due to idealized topography

and strong wind forcing derived from ECMWF [Trenberth et al., 1989]. The transport at

the North Pacific subpolar gyre is also somewhat strong when compared with the
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simulation of Jiang et al. [1999] using similar surface forcing but realistic topography and

the OGCM from Geophysical Fluid Dynamics Laboratory (GFDL).

The overturning transport in the Northern Hemisphere is about 20 Sv (1

13610 −= smSv ) at 50°N and 1000 m, which occurs mainly in the North Atlantic (Figure

1d), and it exhibits 12 Sv of transport across the equator into the South Atlantic. The

transport within the Deacon Cell [Bryan, 1991] near 60°S is about 16 Sv, which is

canceled partly by the transport due to the bolus meridional velocity. The transport of

Antarctic Bottom Water (AABW) is about 8 Sv at 3.5 km, which is evenly distributed in

the Pacific and Atlantic (Figures 1b-d). The transports of the subtropical cells are 20 Sv

near 15°N, and 16 Sv near 15°S at depth of 100 m. These transports are somewhat

weaker than those in Jiang et al. [1999] except for AABW. The North Atlantic

overturning transport in our simulation is slightly weaker than the simulation (24 Sv) of

Kamenkovich et al. [2002] who used the same model topography and surface forcing but

with the MOM2 version of the GFDL OGCM.

The zonal averaged potential temperature and salinity of the simulation in the

Pacific and Atlantic are displayed in Figure 2. The simulated temperature and salinity

look reasonable, although it is difficult to compare with either observations or

simulations with realistic topography.

The model simulation of the vertical heat fluxes is illustrated by horizontal global

averages (Figure 3). For consistency and convenience, the direction of vertical velocity

and heat fluxes is defined to be positive when downward. The net heat flux

GMDDCVWnet QQQQQ +++= , (3)

is balanced mainly between diapycnal heat flux

∫ ∫ ∂
∂

= dxdy
z

T
KcQ tpDD ρ , (4)
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and isopycnal heat flux
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Here tK  is diapycnal diffusivity of temperature, and tsI  is isopycnal diffusivity for

temperature and salinity. ( )σyz ∂∂ /  is the slope of the isopycnal surface. The advective

heat flux is defined as

∫ ∫= WTdxdycQ pW ρ . (6)

Here, W is the downward vertical velocity. WQ  and convective heat flux ( CVQ ) are

relatively weaker above 1 km in the Pacific Ocean, but they contribute substantially to

netQ  in the Atlantic Ocean. The downward advective heat flux at the surface in our model

(5 2−Wm ) is weaker than the simulation (8 2−Wm ) of Gregory [2000]. The net heat flux is

zero below 300 m, which indicates that the model has reached quasi-equilibrium. The net

heat flux looks to be unbalanced near the surface. However, this is probably an artifact

due to explicit calculation of DDQ , although it is treated implicitly in the model

temperature equation.

2.3.  Adjoint

The adjoint model constructs relationships between a so-called cost function ( cF )

at the last year of a model run and a set of parameters ),,( zyxPn  at a specific spatial

location of the model ocean, which is defined as the adjoint sensitivity:

),,(
),,(

zyxP

F
zyxS

n

c

∂

∂
= , ,1=n  N. (7)

The advantage of the adjoint model is that the sensitivities of cF  to the parameter

),,( zyxPn  at all grid points can be derived in a single adjoint run, while a traditional
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sensitivity study can only test one single grid point for each perturbation. Further, a single

adjoint model run can include many parameters ( 1>N ). Because of these advantages,

adjoint models have been applied in data analysis [Winguth et al., 1998], data

assimilation [Kalnay et al., 2000; Malanotte-Rizzoli, 1998], and sensitivity studies

[Marotzke et al., 1999; Waelbroeck and Louis, 1995]. The disadvantage, however, is that

the adjoint model can only consider a single scalar variable as a cost function, while the

traditional sensitivity study can provide the 3-dimensional impact. The algorithm

deriving the adjoint sensitivity in (7) is accomplished by a tangent linear and adjoint

model compiler, which is documented in Giering and Kaminski [1998], Giering [1999],

and Marotzke et al. [1999].

In our study of deep-ocean heat content (DOC, hereafter), we define a cost

function which is proportional to the mean ocean temperature below dH  (700 m):

)( dc HzTF −<= ∝ ∫ ∫ ∫
−

−

dH

H

p Tdxdydzcρ . (8)

Here, T is the annual mean potential temperature at the end of the adjoint run. This cF

can be thought of as the DOC below 700 m after multiplying by a factor of

124107.3 −× JK . The selection of 700 m is to exclude the major thermocline. Considering

the uncertainties in surface forcing and oceanic diffusivities in simulations of ocean

temperature, we focus on the following seven parameters in our adjoint sensitivity study:

the surface freshwater flux (E-P-R), downward net surface heat flux ( sQ ), zonal and

meridional wind stress ( xτ ,
yτ ), diapycnal diffusivities of temperature ( tK ) and salinity

( sK ), and isopycnal diffusivity for temperature and salinity ( tsI ). The adjoint model runs

for 500 years to estimate the sensitivities indicated in (7) at the time scale of 500 years. In

the following section, we will present the sensitivity distribution of DOC to these seven

parameters in the form of mean temperature.



10

3.  Adjoint sensitivity

3.1.  DOC sensitivity to surface forcing

The DOC sensitivity to the surface freshwater flux (E-P-R) in the Atlantic is

opposite to that in the Pacific (Figure 4a). The sensitivity is about 4 to 4108× 2−Ksm  in

the Atlantic, 4102×− 2−Ksm  in the Pacific, and 4108×− 2−Ksm  in the Southern Ocean

south of 50°S. The interpretation of these sensitivities is that if evaporation increases or

precipitation decreases in the Atlantic Ocean, DOC will increase as indicated in (7). The

situation in the Pacific and South Ocean is opposite to that in the Atlantic. The

distribution of DOC sensitivity seems to be associated directly with the thermohaline

circulation which sinks in the Atlantic and upwells in the Pacific. The sign of DOC

sensitivity is also consistent with the study of Rahmstorf [1996; 1995]. We will revisit

this issue in section 4.1.

The sensitivity of DOC to the net surface heat flux ( sQ ) is only notable in the

North Atlantic north of 40°N and in the Southern Ocean (Figure 4b). The magnitude of

the sensitivity is about 5102 −× 12 −WKm . This means that when downward sQ  increases

in the North Atlantic or Southern Ocean, DOC will increase. In addition, weaker

sensitivities are exhibited in the northeast corner of the North Pacific ( 6105 −× 12 −WKm ),

and in the South Atlantic between 40°S and 55°S ( 5105.1 −× and 5101 −×− 12 −WKm ).

DOC is not sensitive to sQ  in the tropics and subtropics of both the Pacific and Atlantic.

The absorption of surface heat by the deep ocean in high latitudes where convection is

occurring agrees with Huang and Liu [2000].

The DOC sensitivity to the zonal wind stress ( xτ ) is zonally distributed, and its

sign alternates at different latitudinal belts (Figure 4c). The width of these belts is

narrower in the South Atlantic than in the South Pacific. The magnitude of the sensitivity

is higher in the South Atlantic ( 2102 −× 12 −NKm ) than in the South Pacific

( 2101 −× 12 −NKm ). In addition, the sensitivity of DOC to the meridional wind stress is

only notable near the eastern boundary of the Pacific, and both eastern and western
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boundaries of the Atlantic (not shown). The sign of that sensitivity also alternates at

different latitudinal belts.

3.2.  DOC sensitivity to diffusivity

The DOC sensitivity to diapycnal diffusivities of temperature ( tK ) is largely

positive (Figures 5a-b), which seems to be in agreement with the result indicated in

Tsujino et al. [2000]. The magnitude of the sensitivity is about 4 2−Ksm  in both the

Pacific and Atlantic (Figure 5). In the Pacific (Figure 5a), the sensitivity is the strongest

about 700 m, and becomes weaker towards the surface, the deeper ocean, and the higher

latitudes. The strongest sensitivity is directly associated with the calculation of DOC

being below 700 m. In the Atlantic (Figure 5b), the sensitivity distribution is slightly

different from that in the Pacific: The strongest sensitivity is located at about 700 m in the

North Atlantic subtropics near 15°N, and shifts upward to about 300 m in the South

Atlantic subtropics near 30°S. The similarity is that the sensitivity also decreases towards

the surface, deeper ocean, and higher latitudes as in the Pacific Ocean. In addition, there

are weaker negative sensitivities near 800 m and 40°S (–1 2−Ksm ) and near 2 km between

40°S and 40°N (–0.5 2−Ksm ), and a weaker positive sensitivity below 2.5 km (1 2−Ksm ).

Obviously, the DOC sensitivity to the diapycnal diffusivity is associated with the

diapycnal diffusive heat flux, as will be discussed in detail in section 4.3.

In contrast with the strong DOC sensitivity to the diapycnal diffusivity of

temperature, the sensitivity of DOC to the diapycnal diffusivity of salinity ( sK ) is much

smaller (not shown), since it does not directly contribute to the vertical heat fluxes

although it can change the density and oceanic currents, and therefore make an indirect

contribution to the vertical heat fluxes.

The contribution of the isopycnal diffusivity to DOC is different from that of

the diapycnal diffusivities. The sensitivity of DOC to the isopycnal diffusivity for

temperature and salinity ( tsI ) is only noticable in the South Pacific south of 50°S at a

magnitude of 7106 −× 2−Ksm  (Figure 6a). In the South Atlantic, the DOC sensitivity is
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about 7108 −×− 2−Ksm  south of 55°S, 7108 −× 2−Ksm  above 500 m between 60°S and

50°S (Figure 6b). The DOC sensitivity in other regions is negligible except for minor

sensitivities near the northern boundary of the North Atlantic in Figure 6b. The reason is

that there is a large slope of the isopycnal surface and thus large GM mixing. The

detailed mechanism will be discussed in section 4.4.

3.3.  Understanding DOC

Upon studying the adjoint sensitivity of DOC to the surface forcing and oceanic

diffusivities, an interesting question we have not addressed is: Are these adjoint

sensitivities relevant to the ocean dynamics and thermodynamics? First, the change of

DOC below 700 m must be associated with the change of downward net heat flux across

700 m, although the net heat flux will eventually be balanced and becomes zero as

indicated in Figure 3a. Secondly, the change of the net heat flux across 700 m will be

associated with changes of vertical heat flux components as shown in (3). Therefore, the

heat budget is analyzed using the adjoint model. The analysis of adjoint sensitivities of

these heat flux components to those seven adjoint parameters may help understand the

physics upon which the adjoint sensitivities are based.

To accomplish this goal, five additional adjoint runs were designed by setting the

adjoint cost function to be the horizontally integrated net heat flux and its four

components across 700 m, respectively, as indicated in (8). These five adjoint runs are

also integrated for 500 years to reach a quasi-equilibrium state. However, we will present

these adjoint sensitivities at year 100 in the following section, since the sensitivity of net

heat flux always diminishes as the adjoint model reaches the quasi-equilibrium state.

4.  Sensitivity of heat budget

4.1.  Surface freshwater flux

The sensitivity of downward net heat flux ( netQ ) at 700 m to the surface

freshwater flux (E-P-R) is about 1 to 19102× 1−Jm  in the Atlantic, about –0.5 to 19101×−

1−Jm  in the Pacific, and about 19102×− 1−Jm  in the Southern Ocean south of 50°S
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(Figure 7a). The pattern of netQ  sensitivity is in good agreement with the pattern of DOC

sensitivity shown in Figure 4a. Therefore, we have confidence that the DOC sensitivity is

relevant to the ocean thermodynamics: In the Atlantic, when evaporation increases or

precipitation decreases, the downward net heat flux across 700 m increases, and therefore

DOC increases. The opposite situation occurs in the Pacific and Southern Ocean.

A further interesting question is: What contributes to the downward net heat flux

change? To answer this question, we have examined the adjoint sensitivities of the four

heat flux components as shown in Figures 7b-e. If evaporation increases, the advective

heat flux ( WQ ) increases in almost the entire ocean basins (Figure 7b) except for the

northwest corner of the North Atlantic.  The sensitivity of WQ  to E-P-R in the Atlantic is

about 4 to 191010× 1−Jm , which directly contributes to netQ  sensitivity (compare Figures

7a-b). The sensitivity of WQ  is about 19102× 1−Jm  in the South Pacific and 19101× 1−Jm

in the North Pacific, which is opposed by the negative sensitivity from GM mixing GMQ

(Figure 7e).

We suggest that WQ  increases  because of the general enhancement of downward

vertical velocity (W) due to denser surface water when E-P-R increases. Since WQ  is

already downward, it increases as indicated in (6). This is consistent with the difference

of sensitivity strength between the Pacific and Atlantic, since the temperature is higher in

the Atlantic than in the Pacific at the same depth (see Figures 2a-b).

The sensitivity of diapycnal diffusive flux ( DDQ ) to E-P-R also contributes largely

to the sensitivity of netQ  in the Atlantic (compare Figures 7a and 7d). The magnitude of

DDQ  sensitivity is about 2 to 19104× 1−Jm  in both the Pacific and Atlantic except for

near the northern boundaries of both the Pacific and Atlantic north of 40°N. The positive

sensitivity is directly associated with the enhancement of vertical temperature

stratification as shown in (4), since the vertical velocity anomaly is downward when E-P-

R anomaly is positive. But, the temperature stratification is reduced instead of increased
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in the North Atlantic north of 40°N where the convection is strong. Therefore, DDQ

sensitivity to E-P-R is negative (Figure 7d).

In the mean time, the strength of the overturning circulation increases when E-P-

R increases in the Atlantic, according to the study of Bugnion [2001] under surface

boundary condition (2). The reason may be that the surface water feeding into the

overturning circulation in the Atlantic becomes denser. The strengthening of overturning

circulation can enhance the vertical temperature stratification in regions of upwelling and

eventually increase DDQ . The situation in the Pacific is opposite to that in the Atlantic.

The strengthening of overturning circulation with increasing E-P-R in the Atlantic seems

to be consistent with the studies of Rahmstorf [1995; 1996] and Mikolajewicz and Voss

[2000]. However, the study of Zhang et al. [1999] indicated that the overturning

circulation in a model of the North Atlantic would be enhanced, as long as the difference

of freshwater flux between the tropics and high latitudes increases: Either precipitation

decreases in high latitudes, or evaporation decreases in the tropics.

On the other hand, as indicated in Figure 7e, the sensitivity of isopycnal diffusive

flux ( GMQ ) to E-P-R is negative almost over the entire ocean basin except for the North

Atlantic north of 50°N. The magnitude of GMQ  sensitivity ranges from –2 to 19108×−

1−Jm  in both the Pacific and Atlantic. This may again be because the increase of E-P-R

enhances downwelling and thus the temperature stratification and the meridional

temperature gradient on the isopycnal surface. Therefore, upward GMQ  increases as

indicated in (5). In the Southern Ocean, the dominant effect may be that the enhancement

of convection due to the increase of E-P-R results in a steeper slope of the isopycnal

surface. Therefore, the upward GMQ  strengthens and DOC weakens. However, in the

North Atlantic north of 50°N where convection is very active, the enhancement of E-P-R

increases the temperature in the deep ocean, which results in a reduction of meridional

temperature gradient and upward GMQ .
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Comparison of the sensitivity patterns of netQ  and GMQ  in Figures 7a and 7e

shows that the negative sensitivity of GMQ  directly contributes to the negative sensitivity

of netQ  and DOC in the Pacific and Southern Ocean as shown in Figure 4a. However, the

negative sensitivity over the Atlantic between 50°S and 50°N is less than compensated by

the sensitivities from vertical advective heat flux WQ  and diapycnal diffusive heat flux

DDQ .  In addition, the sensitivity of convective heat flux ( CVQ ) is negative and weak

although it is relatively strong in the North Atlantic at a magnitude of 19102×− 1−Jm

(Figure 7c). CVQ  does not contribute very much to netQ  or DOC sensitivity.

In short, in the case of a positive E-P-R anomaly, the downward advective heat

flux and diapycnal diffusive heat flux increase in the Atlantic due to enhancing

downward vertical velocity, overturning circulation, and temperature stratification.

Therefore, DOC increases. In the Pacific and Southern Ocean, a positive E-P-R anomaly

increases the meridional temperature gradient (Figure 7a) and slope of the isopycnal

surface, and therefore increases the upward GM mixing that results in the decrease of

DOC. These mechanisms are shown schematically in Figure 8.

4.2. Net surface heat flux

The DOC sensitivity to the net surface heat flux ( sQ ) is closely associated with

the sensitivity of net heat flux ( netQ ) at 700 m as a comparison of Figures 4b and 9a

shows. The netQ  sensitivity is only notable in the North Atlantic north of 40°N at a

magnitude of 2 to 9108× 2m , and in the Southern Ocean south of 50°S at a magnitude of

9108× 2m .

The positive sensitivity of netQ  in the North Atlantic north of 40°N (Figure 9a) is

caused by the vertical advective heat flux ( WQ ) as indicated in Figure 9b, which is at a

magnitude of 91010× 2m . This can be simply explained by most of the heat anomaly

being absorbed by the deeper ocean as indicated in the study of Huang and Liu [2001].

As a result, the temperature near 700 m and downward WQ  increase according to (6),

which increases DOC. Figure 10 shows schematically the hypothesized physical
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processes. Note that the increase in WQ  does not necessarily imply an increase in the

vertical velocity (W). Other studies in fact show that W  and meridional overturning

circulation are reduced if sQ  increases [Bugnion, 2001; Mikolajewicz and Voss, 2000;

and Weaver et al., 1993]. In addition, the heat fluxes of convection ( CVQ ) and GM

mixing ( GMQ ) also contribute partly to the positive sensitivity of netQ  and DOC in the

North Atlantic north of 40°N as indicated in Figures 9c and 9e in this area.

In the Southern Ocean south of 50°S, it is very clear that the sensitivity of netQ  is

exclusively associated with GMQ  (compare Figures 9a and 9e). The magnitude of GMQ

sensitivity to sQ  is about 91010× 2m . The reason resulting in this positive sensitivity

might be that, for a given downward sQ  anomaly, the temperature along the Antarctic

Circumpolar Ocean increases due to the penetration of surface heat flux by convection

and absorption by the deeper ocean. This leads to the decrease of meridional temperature

gradient and flattening of the isopycnal surface, which favor the decrease of upward GMQ

and the increase of DOC according to (5). These processes are also indicated

schematically in Figure 10. In addition, there is a negative GMQ  sensitivity to sQ  between

45°S and 55°S at a magnitude of –5 to 91010×− 2m . The negative sensitivity of GMQ

contributes directly to the sensitivity of netQ  at 700 m and DOC in the South Atlantic as

indicated in Figures 9a and 9e. This might be associated with downward heat transport by

the downward branch of the Deacon Cell in Figure 1b. The heating due to sQ  may reduce

the meridional circulation within the Deacon Cell, which may generate a negative

anomaly of temperature and a positive anomaly of meridional temperature gradient. This

positive anomaly would then enhance GMQ  (see equation 5) and DOC may decrease.

4.3. Diapycnal diffusivity of temperature

As shown in Figures 4-5, the adjoint sensitivities to diffusivities in the Pacific are

somewhat similar to those in the Atlantic. Therefore we will focus on the mechanisms in

the Atlantic in this and the following sections 4.3 and 4.4.
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The sensitivity of net heat flux ( netQ ) at 700 m to the diapycnal diffusivity of

temperature ( tK ) is in agreement with DOC sensitivity in the Atlantic. As shown in

Figure 11a, the sensitivity of netQ  exhibits a maximum of 14106× 2−Jm  near 10°N and

700 m. The maximum netQ  sensitivity shifts upward to 300 m in the South Atlantic at

30°S. The netQ  sensitivity becomes weaker in the upper and lower ocean, and towards

higher latitudes. A weak netQ  sensitivity of 14102× 2−Jm  is found below 2.5 km. In

addition, there is a weak negative sensitivity of netQ  near 2 km between 40°S and 30°N.

A negative netQ  sensitivity of 14102×− 2−Jm  also contributes to DOC sensitivity near

700 m and 40°S. These characteristics of netQ  sensitivity are entirely coherent with the

DOC sensitivity shown in Figure 5b.

When we look into the possible contributors to netQ  sensitivity, it is very clear

that the sensitivity of diapycnal diffusive heat flux ( DDQ ) to tK  (Figure 11d) dominates

the sensitivities of netQ  and DOC in the Atlantic. Consistent with the distribution of netQ

sensitivity (Figure 11a), the sensitivity of DDQ  exhibits a maximum of 15106× 2−Jm  near

20°N and 700 m, and shifts upward to 400 m at 25°S. Since tK  is directly associated

with DDQ  as shown in (4), it is easy to understand why the diapycnal diffusivity of

temperature is a major factor affecting netQ  through DDQ .

The contributions from vertical advection ( WQ ), convection ( CVQ ), and GM

mixing ( GMQ ) are either very weak or in the opposite sign to netQ  sensitivity (Figures

11b, 11c, and 11e), even though the strength of the meridional overturning circulation is

generally increased by an increase of tK  in the tropics and subtropics [Bugnion, 2001;

Marotzke, 1997]. The exception is that a negative GMQ  sensitivity of 15102×− 2−Jm

seems to contribute to the sensitivities of netQ  and DOC near 45°S and 700 m. This can

be explained by an increase of meridional temperature gradient, since DDQ  is relatively

larger in lower latitudes due to stronger temperature stratification (see Figures 2a-b).

Therefore, the meridional temperature gradient increases, which results in a negative

sensitivity of GMQ  since the gradient is negative as indicated in (5) and shown in Figure
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11e. The association between the sensitivities of GMQ  and DDQ  can be seen clearly from

their well correlated spatial pattern shown in Figures 11d and 11e.

4.4. Isopycnal diffusivity

The sensitivity pattern of downward net heat flux ( netQ ) at 700 m to the isopycnal

diffusivity for temperature and salinity ( tsI ) matches perfectly with that of DOC in the

South Atlantic (compare Figures 12a and 6b). The magnitude of netQ  sensitivity is about

71010×− 2−Jm  south of 55°S, 7108× 2−Jm  above 500 m between 60°S and 50°S. The

sensitivity of netQ  is negligible in other regions except near 60°N below 1 km where

there are a positive and a negative sensitivity in a small area.

Comparing the pattern of netQ  sensitivity to tsI  (Figure 12a) with the sensitivities

of its four components (Figures 12b-e), we find that the sensitivity of GM mixing ( GMQ )

dominates the netQ  sensitivity (compare Figures 12a and 12e) and DOC sensitivity south

of 40°S. The sensitivity of GMQ  is about 8103×− 2−Jm  south of 55°S, about 8102×

2−Jm  above 500 m between 60°S and 50°S. The distribution of GMQ  sensitivity agrees

well with the distribution of netQ  sensitivity south of 40°S. The sensitivities from the

other three components are either weak ( WQ  and CVQ  sensitivities in Figures 12b and

12c) or have the opposite sign ( DDQ  sensitivity in Figure 12d) to netQ  sensitivity. We

note that the isopycnal diffusivity for temperature and salinity ( tsI ) does nevertheless

appear to have a large impact on the meridional overturning circulation in the region of

the Gulf Stream [Bugnion, 2001].

The cause of the negative GMQ  sensitivity south of 55°S seems to be

straightforward. In that region, the meridional temperature gradient is positive and the

slope of the isopycnal surface is negative. According to (5), an increase in tsI  would

indeed normally lead to a decrease in GMQ . However, the GMQ  sensitivity to tsI  becomes

positive in the region above 500 m between 60°S and 50°S. This may be because the

slope of the isopycnal surface is reduced due to GM mixing in the meridonal direction:
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This would cause the upward GMQ  in (5) to decrease. Figure 13 presents schematically

the mechanisms associated with tsI  and DOC.

In the South Pacific south of 40°S, the negative sensitivity (Figure 6a) is primarily

controlled by a GMQ  sensitivity that is directly associated with tsI  as indicated in (5) (not

shown).

5.  Uncertainty of DOC and netQ

As stated in our introduction, the world ocean largely controls how rapidly

climate changes due to its tremendous heat capacity (DOC). Consequently, projections of

global warming depend on climate models being able to simulate the heat uptake

accurately [Barnett et al., 2001]. Our estimates of the sensitivity of the heat uptake to

model input parameters can give us insight into why the models differ so wildly in their

simulations of heat uptake [Forest et al., 2002], and into the uncertainty of oceans in

regulating our climate. Furthermore, we can compare the different sources of uncertainty

to see which are the most important.

According to our adjoint sensitivity defined in (7), the uncertainties of DOC and

netQ  can be calculated, respectively, as
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Here nPδ  is the error bar of adjoint parameter nP . The estimate of DOC and netQ

uncertainties is likely to be an overestimate owing to the absolute sign. To estimate the

uncertainties of DOC and netQ  according to our adjoint sensitivity, we need to know the
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error bars of our adjoint parameters. Based on Schmitt et al. [1989], the error bar of net

surface heat flux ( sQ ) is about 30 2−Wm , which is about 25% of its climatology. The

error bar of E-P-R is about 30-40 cm per year, which is about 30% of its climatology

according to the study of Isemer and Hasse [1991]. The error bar of wind stress is about

0.03 2−Nm , which is about 30% of its climatology based on Isemer and Hasse [1991].

Since the meridional wind stress yτ  is set to be zero in our model, we use xy ττ 2.0=  to

estimate the DOC uncertainty caused by yτ . The error bar of ocean diffusitivities is

probably even larger than that of the surface forcing. Estimates of diapycnal diffusivities

( tK , sK ) range from 510−  to 410− 12 −sm  [Ledwell et al., 2000; Ledwell and Hickey,

1995; Ledwell and Bratkovich, 1995; Polzin et al., 1997]. Estimates of isopycnal

diffusivity ( tsI ) range from 3101×  to 3107× 12 −sm  according to Zhang et al. [2001].

Based on these studies, we take 30% surface forcing and 50% diffusitivities as their error

bars in our estimate of DOC and netQ . The result is calculated according to (10) and (11),

and shown in the second and third columns of Table 1.

The estimated uncertainty of DOC in Table 1 (second column) indicates that the

uncertainty from tsI  has the largest contribution of 0.7°K. The uncertainty from tK  is

0.4°K. The E-P-R contributes to the DOC uncertainty about 0.3°K. The uncertainties

from sQ , xτ ,
yτ , and sK  are about 0.1°K. We need to note that the DOC uncertainty of

1°K represents a heat capacity of about 24107.3 ×  J for our model ocean or 10106.1 ×

2−Jm . It would take about 125 years for the forcing from a doubling of carbon dioxide (4

2−Wm ) to accumulate this much energy. The effect of surface freshwater flux on DOC

and overturning circulation seems to be dominant over that of surface heat flux. This is

consistent with Weaver et al. [1993] in a study of the thermohaline circulation. However,

the sensitivity study of Mikolajewicz and Voss [2000] indicated that the surface heat flux

might be as important as the surface fresh water flux to the thermohaline circulation.

In addition, we have to note that these uncertainties are not uniformly distributed

over the global ocean: The uncertainty from tsI  occurs in the Southern Ocean south of
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40˚S (Figure 6). The uncertainty from tK  is found in the large area of the tropics and

subtropics in both the Atlantic and Pacific (Figure 5). The uncertainty from E-P-R occurs

mainly in the Atlantic tropics and subtropics (Figure 4a). The uncertainty from sQ  occurs

mainly in the North Atlantic north of 40˚N, and the Southern Ocean south of 50˚S. The

uncertainty from xτ  is largely found in the South Atlantic and South Pacific. We also

need to note that our estimate of DOC uncertainty depends very much on the error bars of

our adjoint parameters. The error bars of these parameters need to be confirmed further.

Especially, the 50% error bar of diffusivities may still be too small. On the other hand,

our estimate in (10) and (11) is likely to be an overestimate, since the uncertainty from

different regions in reality may partially cancel. The magnitude of netQ  uncertainty is

consistent with DOC uncertainty, and ranges from 0.01 to 0.22 PW (1 WPW 1510= ) as

illustrated in the third column of Table 1.

6.  Summary

The adjoint sensitivity and uncertainty of DOC from seven parameters at the time

scale 500 years were studied using the MIT OGCM and its adjoint. These parameters are

the surface freshwater flux, downward net surface heat flux, zonal and meridional wind

stress, and diapycnal and isopycnal diffusivities of temperature and salinity. The physical

mechanisms are explored using adjoint sensitivities of downward heat fluxes ( netQ  and its

four components) into the deep ocean below 700 m at the time scale of 100 years.

Our study indicates that DOC and netQ  are sensitive to the isopycnal diffusivity

for temperature and salinity, and sensitive to the diapycnal diffusivity of temperature, but

less sensitive to the diapycnal diffusivity of salinity. The DOC uncertainty is about 0.7°K

from isopycnal diffusivity for temperature and salinity, diapycnal diffusivity of

temperature. DOC and netQ  are also sensitive to the surface freshwater flux, zonal wind

stress, and downward net surface heat flux. The DOC uncertainty is about 0.3°K owing to

the surface freshwater flux, and about 0.1°K owing to the zonal wind stress and

downward net surface heat flux. The uncertainty and sensitivity of netQ  are very coherent
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with those of DOC. These uncertainties represent estimates of the relative importance of

the different factors in affecting the ocean heat uptake in coarse resolution GCMs.

The DOC sensitivity to the diapycnal diffusivity of temperature occurs mainly in

the tropics and subtropics in both the Pacific and Atlantic. The sensitivity is largely

positive, and its maximum is found near the level below which DOC is calculated. The

sensitivity decreases towards the upper and lower ocean, and towards lower and higher

latitudes. The change of DOC owing to diapycnal diffusivity of temperature is primarily

associated with the diapycnal diffusive heat flux, which is reasonable and consistent with

intuition. The DOC increases when the diapycnal diffusivity increases.

The DOC sensitivities to the isopycnal diffusivity for temperature and salinity are

very important. The sensitivity distribution in the Pacific is similar to that in the Atlantic.

All these sensitivities are found dominantly in the Antarctic Circumpolar Ocean, where

the slope of the isopycnal surface is large and GM mixing is the strongest. The change of

DOC owing to isopycnal diffusivity is largely associated with the heat flux due to GM

mixing. These conclusions seem to be mutually consistent.

The DOC sensitivity to the surface freshwater flux is positive in the Atlantic, but

negative in the Pacific and Antarctic Circumpolar Ocean. When evaporation increases,

the DOC below 700 m increases in the Atlantic but decreases in the Pacific. The change

of DOC owing to the freshwater flux is associated with downward velocity and

temperature stratification in the Pacific and Atlantic, but associated with convection, the

slope of the isopycnal surface, and GM mixing in the Antarctic Circumpolar Ocean. The

change of overturning circulation due to the surface freshwater flux may also have

contributed to the change of temperature stratification. Our conclusion is consistent with

other studies in the Atlantic [Bugnion, 2001; Rahmstorf, 1996 and 1995].

The DOC sensitivity to the net surface heat flux is largely positive, and only

notable in the North Atlantic north of 40°N and in the Antarctic Circumpolar Ocean. The

DOC increases when downward net surface heat flux increases in these areas. In the
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North Atlantic, the change of DOC owing to the surface heat flux is mainly associated

with vertical advective heat flux through the increase of ocean temperature near 700 m.

But, it is associated with the GM mixing through the reduction of meridional temperature

gradient and the enhancement of the slope of the isopycnal surface in the Antarctic

Circumpolar Ocean. It seems that the heat flux can only penetrate into the deep ocean in

the higher latitudes, which agrees with the previous study of Huang and Liu [2001].

For a perturbation of net surface flux in the tropical and subtropical regions, it

cannot penetrate into the deep ocean. It does not seem to be transported to the higher

latitudes either. Otherwise, it will eventually modify the DOC as the local perturbation

does. The only possibility is that the perturbation is damped by the relaxation of SST as

indicated in (1). This may also explain why the DOC is sensitive to E-P-R over the entire

basin, since its perturbation in the lower latitudes could be advected to the higher

latitudes without damping out under the flux boundary condition (2). The effect of the

surface boundary conditions (1) and (2) was also noted by Bugnion [2001] and Huang

[1993], and further study is on the way.

We did not discuss the mechanism of DOC sensitivity to the zonal wind stress,

although its sensitivity and associated uncertainty are not trivial if it is compared with

other parameters in Table 1. As indicated by Bugnion [2001], Toggweiler and Samuel

[1995], Tsujino and Suginohara [1999], and Hasumi and Suginohara [1999], the zonal

wind stress and its associated Ekman pumping may have a large contribution to the

overturning circulation. However, much of this sensitivity disappears if the ocean is

coupled to a simple atmospheric model [Bugnion, 2001]. Also, a careful analysis

indicates that the pattern of wind stress does not match that of DOC sensitivity very well.

In addition, the pattern of DOC sensitivity in the Pacific is very different from that in the

Atlantic as indicated in Figure 4c, although the wind stress does not exhibit large

difference. We expect further study to be done to clarify the effect of surface wind stress

on the deep ocean circulation and heat content.
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Our results from the adjoint sensitivity analysis indicate that the DOC sensitivities

at the time scale of 500 years are consistent with those at the time scale of 1000 years, as

shown in the fourth column of Table 1. But, their values change largely, indicating that

the adjoint calculation has not reached its equilibrium. The sensitivities of DOC below

200 m at the time scale of 500 years also seem to be consistent with those below 700 m

as indicated in the fifth column of Table 1. Of course, the actual sensitivity of heat

content below 200 m is larger than that below 700 m, although their mean temperature

sensitivity is similar as presented in Table 1.

Finally, we need to note that our sensitivity study is based on the adjoint OGCM

that is not coupled with the atmosphere. Therefore, it is not clear whether our conclusions

about the sensitivities to surface fluxes would be robust in the coupled ocean atmosphere

system. In a coupled system, these fluxes will be modified in non-uniform ways.

However, since the diffusivities are specified in ocean GCMs independently of whether

they are coupled to an atmosphere, our results for these sensitivities are more likely to

apply to a coupled system. In particular, our results suggest that the heat uptake by the

deep oceans and the DOC are sensitive to both the diapycnal thermal diffusivity and the

isopycnal diffusivity.
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Table 1.  Uncertainties from different parameters. Second column: the uncertainty of

DOC below 700 m at the time scale of 500 years, 1°K is equivalent to J24107.3 × . Third

column: the uncertainty of downward heat flux at 700 m at the time scale of 100 years,

Fourth column: the uncertainty of DOC below 700 m at the time scale of 1000 years.

Fifth column: the uncertainty of DOC below 200 m at the time scale of 500 years, 1°K is

equivalent to J24102.4 × .

Tδ  (K)
500 yr
> 700 m

Qδ  (PW)
100 yr
> 700 m

Tδ (K)
1000 yr
> 700 m

Tδ (K)
500 yr
> 200m

E-P-R ± 0.34 ± 0.093 ± 0.55 ± 0.34

sQ ± 0.07 ± 0.018 ± 0.15 ± 0.07

xτ ± 0.14 ± 0.053 ± 0.20 ± 0.17

yτ ± 0.03 ± 0.011 ± 0.05 ± 0.04

tK ± 0.40 ± 0.127 ± 0.55 ± 0.47

sK ± 0.09 ± 0.030 ± 0.13 ± 0.11

tsI ± 0.71 ± 0.219 ± 1.17 ± 0.70
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