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Nonlinear regression is a useful statistical tool, relating observed data
and a nonlinear function of unknown parameters. When the parameter-
dependent nonlinear function is computationally intensive, a straightforward
regression analysis by maximum likelihood is not feasible. The method pre-
sented in this paper proposes to construct a faster running surrogate for such
a computationally intensive nonlinear function, and to use it in a related non-
linear statistical model that accounts for the uncertainty associated with this
surrogate. A pivotal quantity in the Earth’s climate system is the climate sen-
sitivity: the change in global temperature due to doubling of atmospheric CO2
concentrations. This, along with other climate parameters, are estimated by
applying the statistical method developed in this paper, where the computa-
tionally intensive nonlinear function is the MIT 2D climate model.

1. Introduction. A fundamental question in understanding the Earth’s cli-
mate system is quantifying the warming of the atmosphere due to increased green-
house gases. This relationship is formalized by the climate sensitivity, a parameter
defined as the increase in global mean surface temperature due to a doubling of
CO2 in the atmosphere. Although climate sensitivity and other climate parame-
ters are informed by observations, their impact can only be evaluated by simula-
tions of climate with a numerical computer model. Such a model usually includes
atmosphere, ocean, land and ice components and is called an atmosphere ocean
general circulation model (AOGCM). Because climate is defined as a long term
average of weather, an AOGCM is usually run (integrated) over many years in or-
der to establish its mean behavior. Thus, numerical experiments with these models
require extensive computational resources and the number of runs (also termed in-
tegrations) is often limited. For example, the Community Climate System Model
(CCSM) requires months of time on a supercomputer to simulate a few hundred
model years. Typically an AOGCM depends on unknown parameters which need
to be estimated and the statistical challenge is to estimate these parameters along
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with companion measures of uncertainty using a limited set of climate model ex-
periments.

The general statistical problem addressed here is parameter estimation in a non-
linear regression model [e.g., Seber and Wild (1989)], where the nonlinear regres-
sion function is computationally intensive to evaluate, such as an AOGCM. In
particular, the example discussed here involves observed climate data and the MIT
2D climate model [Sokolov and Stone (1988)] as a nonlinear function of three
uncertain parameters collectively denoted by θ : the equilibrium climate sensitiv-
ity S, the diffusion of heat anomalies into the deep ocean Kv and the net aerosol
forcing Faer. Here we take a maximum likelihood approach and pay particular at-
tention to the correlation structure and its effects on the uncertainty measures of
the resulting estimates. The standard nonlinear regression approach for this partic-
ular estimation problem assumes the following statistical model for the observed
climate data:

Y = fθ + ε,(1)

where the errors are assumed normal with zero mean vector and covariance ma-
trix W . The estimated parameters of this statistical model, including θ , are then
obtained by maximizing the likelihood(

1√
2π

)N 1√
detW

exp
{
−1

2
(Y − fθ )′W−1(Y − fθ )

}
.(2)

This is usually achieved by using an iterative algorithm. Notice, however, that this
requires computing fθ for many values of θ , or, equivalently, running the climate
model for a possibly large number of θ values. Such an approach is not feasible for
applications where fθ is an AOGCM or even the simplified MIT 2D climate model.
To overcome this computational difficulty, we will substitute a statistical surrogate
for fθ , denoted f̃θ , which will result in a much faster estimation algorithm for the
unknown parameters θ . The statistical model for the observed data is now

Y = f̃θ + Eθ + ε,(3)

where Eθ is the error in approximating fθ by f̃θ and ε is observation error. More
precisely, we use analysis of computer experiments methodology [e.g., Santner et
al. (2003)] to analyze climate model output data at a sample of ‘input’ parameter
vectors and build a statistical surrogate to predict the climate model output at new,
untried parameter values. This analysis is empirical Bayesian in its nature [as de-
scribed in Currin et al. (1991) for scalar output and in Drignei (2006) for multiple
outputs], in the sense that a Gaussian process serves as a prior distribution for the
multiple outputs and the posterior distribution is used to predict the output at new
parameters. We take f̃θ to be the posterior mean, but also use the uncertainty about
this mean to adjust the likelihood of observations. To our knowledge, the empiri-
cal Bayesian analysis of multiple output computer experiments, used in the context
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of physical model calibration through maximum likelihood methods, is new. The
statistical model we develop also accounts for different types of uncertainty (e.g.,
climate model internal variability), it includes correlation with respect to various
dimensions (e.g., space–time correlation) and a new feature of our work is to in-
clude the uncertainty of the surrogate model as part of the estimated parameter un-
certainty. The calibration of computationally intensive computer models has been
recently done mostly through fully Bayesian models, for example, Kennedy and
O’Hagan (2001), Craig et al. (2001), Bayarri et al. (2007), Higdon et al. (2008) and
the last two references dealing with multidimensional computer model outputs.

We make use of the data sets from Forest et al. (2002) who implemented a
Bayesian model for the same problem and have shown results from flat and expert
priors (see top row of Figure 2). A notable feature from a climatological point of
view in their work is the skewness of the climate sensitivity S, which appears to
be more pronounced for flat priors. Appendix A presents a geophysical argument
in support of this skewness. Forest et al. (2003), Forest, Stone and Sokolov (2006)
and Sanso et al. (2008) revisited and refined the Bayesian approach. Several other
studies estimated a probability density function for climate sensitivity [Andronova
and Schlesinger (2001), Gregory et al. (2002), Knutti et al. (2002, 2003)]. All such
studies are based on estimating the degree to which a climate model can reproduce
the historical climate record. More recently, this same technique has also been ap-
plied to the climate record for the past 600 years [Hegerl et al. (2006)]. Last Glacial
Maximum (LGM) climate change can also be used as an additional line of evidence
to estimate the probability density function of the climate sensitivity and such re-
sults have been combined by Annan and Hargreaves (2006) to provide a more
complete picture of available constraints for placing bounds on climate sensitivity.

This paper is organized as follows. Section 2 discusses the climate observations,
the climate model and the output data sets. Section 3 develops the statistical surro-
gate for the climate model, while Section 4 shows how this surrogate can be used to
construct a computationally efficient statistical model for the climate observations.
The results are presented in Section 5 and the paper ends with some conclusions
in Section 6.

2. Observed and modeled climate.

2.1. Climate observations. In this analysis we use three separate sets of ob-
servations representing the ocean heat content, surface temperatures and upper air
temperatures.

The oceans play an important role in the planet’s climate system because they
can store and transport large amounts of heat. The subsurface ocean temperature
records are sparse and contain the most uncertainty due primarily to the difficulty
in obtaining such temperature data sets. The data used in this paper originate in the
Levitus et al. (2000) ocean temperature data set from the surface through 3000-
meter depth, showing a net warming over the last half of the twentieth century.
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The upper-air temperature data set used in this paper originates in the improved
upper-air temperature data recorded by radiosondes and described in Parker et al.
(1997). The later data are considered somewhat more reliable than satellite-based
Microwave Sounding Units (MSU) data because they provide a longer record and
a better vertical resolution. Nevertheless, the MSU data have proved to be useful
in removing time-varying biases of radiosonde temperature data caused, for exam-
ple, by changes of instrumentation or operating procedures. Parker et al. (1997)
describe some interpolation, bias- and error-removing methods for the original
sparse and irregular radiosonde upper-air temperature data sets.

Among all the temperature records, the surface temperatures are the longest,
most spatially complete and documented. This is due primarily to the existence of
meteorological stations throughout the world for a relatively long time. The data
sets used in this paper originate in the extended and interpolated data sets of Jones
(1994).

Summary statistics for each observational dataset are used to make the appropri-
ate comparison with the climate model (as discussed later). The averaging methods
for each diagnostic are discussed in Forest et al. (2002) and serve to remove the
short time-scale variability that is not associated with the long time-scales changes
in climate. These averages result in the patterns summarizing the changes in mean
temperatures for each source as discussed in Section 2.3.

2.2. The MIT 2D climate model and the unknown parameters. AOGCMs are
the primary tools for predicting changes in global climate patterns on planetary
scales and at decadal or longer time scales. Mathematically, these models are sys-
tems of partial differential equations derived from the laws of fluid dynamics and
thermodynamics for the atmosphere, ocean, ice and land systems, in three spatial
dimensions (3D) and a temporal dimension. Since these models are nonlinear, they
are usually solved numerically over a space–time grid. These numerical methods,
however, require large computational resources and, therefore, have limited flexi-
bility for exploring parametric (or structural) uncertainty. Most often, for a given
AOGCM, individual parameters are set according to performance of individual
components (e.g., cloud parameterizations or ocean sub-grid scale mixing para-
meterizations) and then held fixed or modified in a heuristic fashion when the
fully coupled AOGCM is assembled and tested. For a more statistical approach
to determine parameters, we require a flexible climate model designed to explore
uncertainty in the large-scale response (e.g., global or hemispheric average temper-
ature changes) in the fully coupled system. The MIT 2D climate model [Sokolov
and Stone (1988)] is one such model designed for these purposes and was used in
this research. Some technical aspects of the MIT 2D climate model are given in
Appendix B.

The MIT 2D model has two parameters that determine the decadal to century
response to external factors that drive the climate. These are the equilibrium cli-
mate sensitivity S (measured in degrees K) to a doubling of CO2 concentrations
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and the global-mean vertical thermal diffusivity Kv (measured in cm2/s) for the
mixing of thermal anomalies into the deep ocean. Sokolov and Stone (1988) have
shown that the large-scale response of AOGCMs can be duplicated by the MIT 2D
model with an appropriate choice of these two parameters. This correspondence
supports the study of the climate system using the simpler MIT model because it
can approximate more complex and realistic three dimensional models. The third
parameter considered in this paper is the net aerosol forcing strength Faer (mea-
sured in W/m2) and controls the amount of cooling of the atmosphere to increased
amounts of particles. The computational time required to simulate 50 years with
the MIT 2D climate model is about 4 hours on a 3 GHz Pentium 4 Linux work-
station and it is several orders of magnitude faster than simulation with a state-
of-the-art 3D AOGCM. Given its flexibility to duplicate AOGCM responses and
its computational efficiency, the MIT 2D climate model is a tool well suited for
answering questions which would be impractical to explore with 3D AOGCMs.

2.3. Specific data sets and model output. Due to the sparsity and the large
uncertainties in the deep-ocean temperature data, only the linear trend in the ob-
served temperature record is retained for analysis so that the ocean observed data
is just a scalar. The upper-air temperature observations are the difference in the
1986–1995 and 1961–1980 mean temperatures, recorded at each 5◦ latitude and
at 8 pressure levels (850 hPa through 50 hPa). In order to simplify the analysis,
10 latitude coordinates containing mostly missing data have been discarded, so
that the final upper-air temperature change observed data set is a 26 × 8 matrix.
The surface temperature data set has been averaged so that the final surface tem-
perature change data set is a 4 × 5 matrix, corresponding to 4 latitude bands by 5
decades.

Let θ = [S,K
1/2
v ,Faer] be the parameter vector. We considered D = 306 para-

meters θi as in Forest et al. (2002), sampled in a parameter space (see Figure 1)
to cover a range of parameters well beyond the domain corresponding to current
AOGCMs. In Forest et al. (2002), an initial, approximately factorial design over
the domain has been selected and then a second, higher density sampling has been
added in the region of highest likelihood to better estimate their entire distribution.
For each parameter vector in this parameter space, the relatively large model output
data set is transformed so that its format matches that of the observed data sets: the
deep-ocean temperature trend (scalar), the upper-air temperature changes (26 lat-
itudes and 8 levels) and the surface temperature changes (4 latitude zones and the
last 5 decades of the last century). There are four replicates for each of these data
sets, called ensemble members, obtained by changing the initial conditions in the
climate model. In this paper we work with averages across ensemble members,
although the ensemble variability will be accounted for in our statistical model.

3. Statistical surrogate for the climate model. The statistical model for ob-
servations developed in this paper has two components. The first component is a
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FIG. 1. The sampled inputs.

surrogate of the climate model output over the region of model parameters and the
second component connects the surrogate with the observed data. Each of these
components will be discussed next.

3.1. Statistical model for climate model output. All three observational data
sets have a similar statistical model, so we will only present the model for surface
temperature changes in detail. The climate model surface temperature change can
be conveniently organized as an array over time, space and climate parameters,
with dimension NT × NZ × D. (For our data sets, NT = 5, NZ = 4, D = 306.)
To better describe the statistical model, this three-dimensional data set is stacked
as a vector and simply denoted by f. Climatology arguments suggest that the nu-
merical climate model be decomposed into two random components: f = fs + fn

corresponding to a climate signal fs and noise process fn ascribed to climate model
internal variability.

The correlation matrix for the signal fs can be written, under the computation-
ally convenient assumption of separability, as a Kronecker product of smaller cor-
relation matrices C� ⊗CZ ⊗CT reflecting the various dimensions of the problem.
The power exponential [Sacks et al. (1989)] was chosen as a simple but flexible
model to describe the correlations among each dimension of climate signal. The
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matrix C� is defined as

C�(θ, θ ′) = exp

(
−

3∑
i=1

ηi |θi − θ ′
i |pi

)
.(4)

The correlations among zonal bands and across time are also assumed to follow
the power exponential family, although analysis based on the Matérn family [e.g.,
Stein (1999), page 31] has also been carried out. The correlation matrix for the
noise fn will be I ⊗ �, with a consistent empirical estimator of the space–time co-
variance � obtained by assuming the same space–time structure across the D sam-
pled parameters and 4 ensemble members (after subtracting the ensemble mean at
each of the D sampled parameters). A simple method based on wavelet basis func-
tions [Nychka et al. (2002)] was used to estimate a nonstationary form that takes
advantage of the assumption that � does not depend on θ and can be thought of
as a regularization of the sample covariance matrix. The space time fields are ex-
panded in a W-transform multiresolution basis, with W being the matrix of wavelet
basis functions that relate coefficients to the model field and D being the sample
covariance matrix for the coefficients. D is decomposed as D = H2 and the ele-
ments of H are thresholded by setting 90% of the elements to zero, resulting in a
regularized matrix H̃ . We use the estimate � = WH̃2W ′. Then

�� = σ 2(C� ⊗ CZ ⊗ CT ) + ω2(I ⊗ �)

is the overall covariance matrix, so that f ∼ N(μ1,��). The output data analyzed
here are temperature changes and averages, therefore, we assume that any large
scale trends have been eliminated, justifying the choice of a statistical model with
constant mean. An unbiased estimate of the parameter ω2 is obtained by pool-
ing the ensemble sample variances across inputs, space and time. The remaining
statistical parameters are estimated by the maximum likelihood method and all
parameters are fixed at their estimated values throughout the rest of the statistical
analysis.

3.2. The statistical surrogate and its error. The statistical model described
above is used to construct a surrogate for the climate model at an arbitrary para-
meter vector θ in the parameter space. To define the surrogate for fθ and its error,
we consider the conditional distribution of the climate signal fsθ on the climate
model output data f, which is multivariate normal of mean vector

f̃θ = μ1 + �̃θ��−1
� (f − μ1)

and covariance matrix

Vθ = σ 2(CZ ⊗ CT ) + ω2� − �̃θ��−1
� �̃′

θ�,

where �̃θ� = σ 2(Cθ� ⊗ CZ ⊗ CT ) and Cθ� is defined as in (4). The surrogate is
f̃θ and its error E has a multivariate normal distribution N(0,Vθ ). The surrogate
model for the upper air temperature is defined similarly. The surrogate model for
the deep ocean temperature trend is much simpler because it is based on a univari-
ate response.
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4. Likelihood function for the observed data.

4.1. Likelihood function for a single data set. Here we develop the model for
the observed surface temperatures, whereas Section 4.2 presents the complete sta-
tistical model for all three data sets.

The statistical surrogate developed above will not predict perfectly the climate
model output at new parameters, nor do we expect it to match perfectly the ob-
served data. Therefore, if Y denotes generically the observed data set in vector
format, then the corresponding statistical model is

Y = f̃θ + Eθ + ε,

where ε is observation error with multivariate normal distribution N(0, τ 2RZ ⊗
RT ) and the elements of the matrices RZ and RT are power exponential correla-
tions with parameter vector ξ . Here E and ε are assumed independent. An impor-
tant statistical point is that the discrepancy between fθ and f̃θ is modeled explicitly
through the analysis of the computer experiments’ approach in the previous sec-
tion. The likelihood of the model for Y is

L(Y|θ, τ, ξ) =
(

1√
2π

)NY 1√
det(Vθ + τ 2RZ ⊗ RT )

(5)

× exp
{
−1

2
(Y − f̃θ )′(Vθ + τ 2RZ ⊗ RT )−1(Y − f̃θ )

}
.

Whereas the computationally intractable likelihood (2) contains the nonlinear
climate model fθ and the covariance matrix W of the observation error, the more
computationally efficient likelihood (5) depends on the surrogate f̃θ of the climate
model and a covariance matrix based on two components: surrogate error and ob-
servation error.

4.2. Full likelihood. Let Ys,Yo,Yu denote the observed surface temperature
change, the observed deep ocean temperature trend and the observed upper air
temperature change respectively. These three data sets are assumed independent
conditioned on the true climate signal at θ so that the overall likelihood to be opti-
mized is a product of the likelihood functions developed in the previous subsection,
for the three specific data sets:

L(Ys,Yo,Yu|θ, τs, τo, τu, ξs, ξu) = L(Ys |θ, τs, ξs)L(Yo|θ, τo)L(Yu|θ, τu, ξu).

(Notice that the observation error for the ocean temperature trend is univariate
normal.) This likelihood takes about 5 seconds to be evaluated in Matlab on a
computer with dual 2.6 GHz Xeon processors and 4 GB RAM.

There are geophysics arguments in support of a right skewed distribution for
the climate sensitivity parameter (see Appendix A) and the literature on the esti-
mation of this parameter reports various degrees of skewness. This, in turn, makes



PARAMETER ESTIMATION FOR NONLINEAR REGRESSION 1225

it difficult to agree on an upper confidence bound for this important parameter:
how large will the global mean surface temperature be when the CO2 amount is
doubled? Here we would like to investigate this aspect through the finite sam-
ple distribution of the maximum likelihood estimators. An established method for
such purpose is the parametric bootstrap [Efron and Tibshirani (1993)], where syn-
thetic data Ȳs, Ȳo, Ȳu will be generated from the multivariate normal of likelihood
L(Ys,Yo,Yu|θ̂ , τ̂s, τ̂o, τ̂u, ξ̂s, ξ̂u), with the maximum likelihood estimates taken
as “true” values of the parameters. The new likelihood of the simulated data will
be maximized and the point estimate (θ̄ , τ̄ , ξ̄ ) will be obtained. This process is
repeated B times and, therefore, B independent simulated values (θ̄ , τ̄ , ξ̄ ) will be
obtained, which will further be used to summarize the distribution of (θ̂ , τ̂ , ξ̂ ), for
example, through confidence regions. A direct search method in Matlab has been
used to optimize the likelihood functions throughout this paper.

5. Results. The statistical model described in Section 3.1 has been fitted to
the output data and the parameter estimates for the power exponential correlations
given in Table 1. An important component of the statistical model is the choice
of covariance family for the statistical surrogate. To determine the sensitivity to
the power exponential correlation, the Matérn family was also considered and we
present how the inference on the climate parameters is effected by this alternative
model for correlations. Table 1 indicates smoothness in the latitude–time dimen-
sions for surface temperatures and latitude–pressure dimensions for upper-air tem-
peratures. Therefore, Matérn correlations generating one-time mean square differ-
entiable realizations (i.e., with the smoothness parameter ν set to 1.5) have also
been fitted in those dimensions, with the correlation parameter estimates shown
in Table 2. More specifically, the statistical model for the output data based on
the Matérn correlations is identical to the model presented in Section 3, except
that the elements of the matrices CZ and CT are now Matérn instead of power
exponential correlations, with temporal and latitude range parameters denoted by
αt and αs , respectively. The power exponential maximized loglikelihood minus
the Matérn maximized loglikelihood is 97 for the surface temperature and 1555
for the upper air output data sets, respectively. The models with these correla-
tions have been further used to build the surrogates and the associated errors as

TABLE 1
Estimates of parameters in the statistical model for output data (the power exponential model):

surface temperature (upper row), upper air (middle row) and deep ocean (lower row)

μ η1 p1 η2 p2 η3 p3 ηt pt ηs ps σ 2 ω2

0.217 1.365 0.425 1.189 0.273 2.283 0.903 1.227 1.147 1.255 1.501 0.024 0.016
−0.047 1.206 0.302 1.031 0.185 1.274 0.390 14.476 1.849 4.382 1.431 0.007 0.004

0.001 3.430 1.999 21.636 1.999 1.545 1.927 — — — — 2 × 10−6 7 × 10−9
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TABLE 2
Estimates of parameters in the statistical model for output data (the Matérn model): surface

temperature (upper row), upper air (lower row). The deep ocean estimates and ω2 are
the same as in Table 1

μ η1 p1 η2 p2 η3 p3 αt αs σ 2

0.211 1.399 0.426 1.239 0.267 2.287 0.908 3.987 2.682 0.022
−0.021 1.142 0.323 0.963 0.193 1.171 0.376 6.873 12.244 0.006

described in Section 3.2. These have been used in the likelihood of the observed
data (Section 4). B = 300 bootstrap simulations were obtained, which have been
further used to obtain nonparametric kernel marginal density estimates and con-
fidence intervals/regions. The results are summarized in Figure 2. The upper row
contains the univariate marginal density estimates with 99% confidence intervals
for both power exponential (solid) and Matérn (dot) models, as well as posterior
pdfs from Forest et al. (2002); it appears that a mild right skewness of the estimated
densities for the climate sensitivity S is present. The lower row contains the kernel

FIG. 2. Upper row: estimated univariate marginal densities based on power exponential correla-
tions (solid) with 99% confidence intervals (diamond), and on the Matérn correlations (dot) with
99% confidence intervals (square), and the posterior pdfs from Forest et al. (2002): expert prior for
climate sensitivity (dash) and flat priors (dash–dot); Lower row: estimated bivariate densities with
contours representing 99%, 95% and 90% confidence regions (solid lines: power exponential; dotted
lines: Matérn).
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density estimates of the bivariate marginal densities under the power exponential
(solid) and Matérn (dot) models. The contours correspond to 90%, 95% and 99%
levels confidence regions. The results from these two correlation models (power
exponential and Matérn) do not appear to be largely different. The inclusion of
correlations was helpful in better constraining the climate system parameters than
in the statistical model considered in Forest et al. (2002), which did not include
such correlations.

6. Conclusion. This paper has presented a computationally efficient statisti-
cal model as an alternative to a naive nonlinear regression model involving a com-
putationally intensive nonlinear function. Our approach is to construct a statistical
model that includes a faster running surrogate for the computationally intensive
nonlinear function and it is underlined by some general principles. The statistical
model offers a comprehensive framework to accommodate various sources of un-
certainty. For example, we incorporated an error term to represent climate internal
variability and a component for uncertainty in the surrogate, as well as an obser-
vation error term. The covariance matrices are full rank and estimated from the
available forced model output data. The statistical model proposed accounts for
correlation in all dimensions of the problem (e.g., it includes spatio-temporal cor-
relation). This strategy was helpful to better constrain the unknown climate model
parameters through tighter confidence intervals and regions, especially for the cli-
mate sensitivity S and ocean diffusivity Kv parameters.

APPENDIX A: CLIMATE SENSITIVITY

An important characteristic in the Earth’s climate system is the climate sensi-
tivity S: the change in global temperature due to doubling of atmospheric CO2
concentrations. In complex climate models derived from the fundamental equa-
tions of physics, the individual processes interact and the feedbacks between the
key processes lead to the overall amplification of the temperature change. At the
basic level, the additional greenhouse gases (e.g., carbon dioxide, methane and
nitrous oxide) have a direct impact on the outgoing longwave radiation in the at-
mosphere and in the absence of feedbacks (i.e., the nontemperature atmospheric
state variables remains unchanged), this change to the system will eventually lead
to a given amount of temperature change. But, when the temperature changes, this
will inevitably lead to additional changes in the temperature and humidity profiles,
cloud distributions, snow and ice cover, and other state variables. These additional
changes are the climate system feedbacks that can amplify or reduce the direct
impact of the greenhouse gases on the radiative forcing. If we let �To be the tem-
perature change due to the direct impact on the radiative transfer, we note that
�To includes one feedback, the direct impact of temperature change on the in-
frared spectrum by changing greenhouse gas concentrations, but does not include
additional feedbacks from other components of the climate system. It is customary
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to let the total change in global mean surface temperature above the equilibrium
value be written as �T2x = �To

(1−φ)
[e.g., see Hansen et al. (1984) or Schlesinger

and Mitchell (1987)]. Thus, we have a one-to-one correspondence between the
feedback and the climate sensitivity (�T2x and the uncertainties in each can be
related).

This relation between climate sensitivity and feedbacks has been known since
the early days of climate research and was described in the Charney Report [NRC
(1979)], formalized in Hansen et al. (1984) and included in textbooks as early as
Henderson-Sellers and McGuffie (1987). Hence, we now have a simple expres-
sion to relate the uncertainty in these three variables and from first principles, �To

and φ are the two variables which can be quantified individually using climate
models and combined to yield �T2x . Schlesinger and Mitchell (1987) quantified
the uncertainties in feedbacks and recognized that the uncertainties in individual
processes will combine to provide an estimate of the total uncertainty. Given the
number of processes in the system, it is typical to consider the net feedback to
have a normal distribution. However, we also need to consider �To as an addi-
tional uncertain variable with its own normal distribution, although this is a small
contribution compared to φ. By combining these two distributions for �To and
φ, the resulting distribution for climate sensitivity is expected to be right skewed,
although one cannot clearly infer only from these arguments how long the right
tail will be.

APPENDIX B: TECHNICAL ASPECTS OF THE MIT 2D CLIMATE MODEL

The MIT 2D climate model consists of a zonally averaged atmospheric model
coupled to a mixed-layer Q-flux ocean model, with heat anomalies diffused below
the mixed-layer. The model details can be found in Sokolov and Stone (1988).
The atmospheric model is a zonally averaged version of the Goddard Institute for
Space Studies (GISS) Model II general circulation model [Hansen et al. (1983)]
with parameterizations of the eddy transports of momentum, heat and moisture by
baroclinic eddies [Stone and Yao (1987, 1990)]. The model version we use has
24 latitude bands and 11 vertical layers with 4 layers above the tropopause.

The model also employs a Q-flux ocean mixed layer model with diffusion of
heat anomalies into the deep-ocean below the climatological mixed layer. This
model of the ocean component of the climate system is fully described by Hansen
et al. (1983) and only increased computations by a few percent. The model uses the
GISS radiative transfer code which contains all radiatively important trace gases,
as well as aerosols and their effect on radiative transfer. The surface area of each
latitude band is divided into a percentage of land, ocean, land-ice, and sea-ice
with the surface fluxes computed separately for each surface type. This allows
for appropriate treatment of radiative forcings dependent on underlying surface
type such as anthropogenic aerosols. The atmospheric component of the model,
therefore, provides most important nonlinear interactions between components of
the atmospheric system.
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