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ABSTRACT 
 
    The four chloromethanes - methyl chloride (CH3Cl), dichloromethane (CH2Cl2), 
chloroform (CHCl3), and carbon tetrachloride (CCl4), are chlorine-containing gases 
contributing significantly to stratospheric ozone depletion and having adverse health 
effects. Large uncertainties in estimates of their source and sink magnitudes and temporal 
and spatial variations currently exist. GEIA inventories and other bottom-up emission 
estimates are used to construct a priori maps of surface fluxes of these species. The 
Model of Atmospheric Transport and CHemistry (MATCH), driven by NCEP 
interannually varying meteorological fields, is then used to simulate the trace gas mole 
fractions using the a priori emissions and to quantify the time series of sensitivities of 
tracer concentrations to different aseasonal, seasonal, and regional sources and sinks.  

    We implement the Kalman filter (with the unit pulse response method) to estimate both 
constant (if applicable) and time-varying surface fluxes on regional/global scales at a 
monthly resolution for the three short-lived species between 2000-2004, and the 
continental industrial emissions and global oceanic sink for CCl4 at a 3-month resolution 
between 1996-2004. The high frequency observations from AGAGE, SOGE, NIES and 
NOAA/GMD HATS and other low frequency flask observations are used to constrain the 
source and sink magnitudes estimated as multiplying factors for the a priori fluxes and 
contained in the state vector in the Kalman filter. The CH3Cl inversion results indicate 
large CH3Cl emissions of 2240 ± 370 Gg yr-1 from tropical plants. The inversion implies 
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greater seasonal oscillations of the natural sources and sink of CH3Cl compared to the a 
priori. Seasonal cycles have been derived for both the oceanic (for CHCl3 and CH2Cl2) 
and terrestrial (for CHCl3) sources, with summer maxima and winter minima emissions. 
Our inversion results show significant industrial sources of CH2Cl2 and CCl4 from the 
Southeast Asian region. Our inversions also exhibit the strong effects of the 2002/2003 
globally wide-spread heat and drought conditions on the emissions of CH3Cl from 
tropical plants and global salt marshes, on the soil fluxes of CH3Cl and CHCl3, on the 
biomass burning sources of CH3Cl and CH2Cl2, and on the derived oceanic flux of CHCl3.  
 
 
Thesis Supervisor: Ronald G. Prinn 
Title: TEPCO Professor of Atmospheric Chemistry 
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Chapter  1  

  Introduction 

    Stratospheric chlorine accounts for 75% of the halogens (chlorine, bromine) involved 

in stratospheric ozone depletion [Madronich et al., 1999]. Methyl chloride (CH3Cl), 

chloroform (CHCl3) and dichloromethane (CH2Cl2) are relatively short-lived 

chloromethanes (with lifetimes of 1.3, 0.5 and 0.4-0.5 years, respectively) that contribute 

about 15% of stratospheric chlorine [Schauffler et al., 1993; Kurylo et al., 1999]. Carbon 

tetrachloride (CCl4) is even longer lived (26-year lifetime) and contributes about 12% to 

total chlorine in the stratosphere [Schauffler et al., 1993]. 

    As a result of the Montreal Protocol and its amendments and adjustments, tropospheric 

mixing ratios of some major ozone-depleting substances (ODSs) such as CFC-11 (CCl3F), 

CFC-113 (CCl2FCClF2), and methyl chloroform (CH3CCl3) have been decreasing since 

1992 [Prinn et al., 2000], and CFC-12 (CCl2F2) reached steady concentrations and then 

began to decrease during recent years. As these ODSs of mainly anthropogenic origin are 

dropping off gradually, those ODSs with substantial natural emissions will play relatively 
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more and more important roles in stratospheric ozone depletion. Among these gases, the 

importance of methyl chloride is highlighted as the most abundant halocarbon, estimated 

to be about 43% of the total reactive chlorine in the troposphere [Khalil and Rasmussen, 

1999b], and 15-25% of the total recent organic chlorine in the stratosphere [Schauffler et 

al., 1993; Montzka et al., 1996]. Chloroform and dichloromethane are defined as very 

short-lived substances (with lifetimes of a few months or less) by WMO 2002 [Montzka 

and Fraser et al., 2003], and as such their contributions to stratospheric chlorine are not 

as important as methyl chloride. Nonetheless, they are two of a number of compounds 

that individually may contribute only a small amount to the stratospheric chlorine but 

together may be worth considering more seriously, especially as the long-lived 

anthropogenic halocarbons are gradually phased out in the atmosphere by the Montreal 

Protocol. Chloroform is much more important for human health reasons in enclosed 

environments and in drinking water where people could be exposed to it over long 

periods of their lives. It is a carcinogen in this capacity and is regarded as a cause for 

concern when high concentrations are discovered, and so it is regulated by the 

Environmental Protection Agency (U.S. EPA). Dichloromethane also has health risks, 

and is classified by EPA as a Group B2 chemical (probable human carcinogen). 

Dichloromethane is largely of industrial origin, and is recommended as one of the 

potential indicators for OH concentrations and trends in the troposphere, so estimates of 

its regional emissions need to be carefully studied. Carbon tetrachloride is the only one 

regulated by the amended and adjusted Montreal Protocol, but global limits on CCl4 
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production apply only after 2005. Inferred emissions in 1999, however, are about 7 times 

greater than the limits to global production set for 2005 [WMO 2002].  

    Thus careful study of the global and regional budgets, and the emission and sink 

patterns of these four chloromethanes is warranted. Although most emission processes 

have been identified, significant uncertainties exist in their magnitudes and variability, 

especially for those with natural sources which are affected in complicated ways by 

seasonal and climate changes. A more detailed knowledge of the sources and sinks of 

these chloromethanes is required in order to improve the understanding of their 

contributions to stratospheric ozone depletion and to environmental pollution issues.  

1.1. Flux estimation and the motivation and goals of the thesis  

    With the aim of identifying and quantifying the natural emissions of these 

chloromethanes (especially for methyl chloride recently), considerable effort has been 

devoted to directly measuring gaseous fluxes from selected surface sources and then 

extrapolating the local measurements to regional and global scales using highly uncertain 

aggregation techniques [Yokouchi et al., 2000b; Yokouchi et al., 2002; Rhew et al., 2000]. 

A typical example is the determination of the global methyl chloride emission from 

coastal salt marshes [Rhew et al., 2000]. Field studies were conducted in two Southern 

California coastal salt marshes, and then global extrapolations were applied by 

multiplying the unit area flux with an estimated global salt marsh area under the 

assumptions that the study sites are representative of salt marshes globally. Some other 

investigations also used emission process models [Khalil et al., 1999; Lobert et al., 1999; 
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Varner et al., 1999] which seek to represent the complicated physical and biological 

processes associated with the emissions using simple equations and input parameters 

such as temperature, wind speed, etc., for which global distributions are available. These 

are “bottom-up” studies. The uncertainties resulting from such approaches are so large 

that we cannot say that we understand the budgets of methyl chloride and other 

chloromethanes well enough to assess their future roles in the environment.  

    An alternative method, applicable to determination of either surface or internal sources 

or sinks indirectly, is to optimally adjust estimates of these sources or sinks in a chemical 

transport model to provide a statistically good fit to imperfect observed concentrations of 

the chemicals of interest [e.g., Prinn, 2000], which we call a “top-down” or inverse 

modeling approach. This method involves solution of an inverse problem in which the 

observables are integrals and the unknowns (the rates of the processes of production, 

destruction, emission or uptake) are contained in integrands. The inversion procedure 

thus obviously requires realistic physical, dynamical and chemical equations or models 

that relate the rates of the processes to the observations, giving the so-called partial 

derivative or sensitivity matrix H . In this respect, the MATCH (Model of Atmospheric 

Transport and CHemistry) model is especially useful because previous studies have 

shown its remarkable capability to simulate reasonably well the actual timing and 

magnitude of peaks in observed concentrations of both short [e.g., 222Rn, Mahowald et al., 

1997b] and long-lived [e.g., CCl3F, Mahowald et al., 1997a; CH4, Chen and Prinn, 2005, 

2006] species.  
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    The performance of the inverse method also relies on the availability and accuracy of 

worldwide observations of trace gas levels. Mole fractions (or mixing ratios) of these 

chloromethanes have been measured in situ at high frequency and in flasks at low 

frequency, in the globally distributed stations of the Advanced Global Atmospheric Gases 

Experiment (AGAGE) [Prinn et al., 2000], the NOAA Global Monitoring Division 

(GMD), and other laboratories. 

    In the light of the highly uncertain flux estimates obtained by source aggregation 

techniques, and the availability of these high precision observations for flux top-down 

estimations, the goal of this thesis is to conduct inverse modeling to produce optimized 

magnitudes and distributions of the surface fluxes of all of the four chloromethanes by 

sequentially adjusting the fluxes in the MATCH model to fit the concentration 

observations. An inverse modeling framework for the study of surface fluxes is presented 

in Figure 1.1. First, an initial guess for the flux magnitudes and distributions (a priori 

“reference” emission fields) is made. This may be obtained, for example, from the 

aggregation of the results of the emission measuring campaigns. Second, this initial guess 

is used to drive the model, producing model-predicted concentrations, which can be 

corrupted by model systematic and random errors. Third, the model predictions are 

compared to the corresponding noise-corrupted observations in an optimal estimator, 

which produces the updated emission fields. The newly updated fluxes can be entered 

into another circle of estimation using additional observations. The high frequency 

observations potentially offer strong constraints on emissions, especially for estimating 
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both seasonal and interannual flux changes. There are several interesting questions that 

are proposed to be addressed in this thesis: 

(1) What are the distributions in space and time of the surface fluxes of chloromethanes 

and what are the driving processes?  

(2) Are tropical plants a large source for methyl chloride as recently proposed from in 

situ studies? 

(3) Are seasonal changes dominant in driving the variations of the surface fluxes for the 

largely natural chloromethanes (CH3Cl and CHCl3)? What are the magnitudes and 

variability of their natural sources and what are the causes for their variability? 

(4) Are the optimized magnitudes and distributions of surface fluxes of carbon 

tetrachloride consistent with their industrial production rates and end-uses?  
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Figure 1.1. General schematic describing the forward and inversion technique for the 

study of chloromethane surface fluxes. 
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1.2. Chapter descriptions 

    The following describes the organization of the thesis, beginning with the available 

data, model and technique, followed by the inversion results and conclusions. 

Chapter 2 introduces the high and low frequency surface observations used to constrain 

the surface fluxes in the inversion processes. Observational errors are defined to 

encompass the instrumental, low frequency sampling, and model grid volume – 

observational location mismatch errors.  

Chapter 3 describes the chemical transport model (MATCH) used throughout this thesis, 

in which the concentrations of OH which is the primary atmospheric sink of CH3Cl, 

CH2Cl2, and CHCl3, and the rates of stratospheric photodissociation which is the primary 

sink for CCl4 have been calculated and scaled to reproduce the appropriate reported 

lifetimes of each gas and of OH indicator gases like CH3CCl3. 

Chapter 4 develops the inversion methodology used to optimally estimate the 

chloromethane surface fluxes. The Kalman filter is adapted to estimate either constant or 

time-varying fluxes, and the unit pulse method [Chen and Prinn, 2006] is used in 

MATCH to compute the sensitivity matrix needed in the filter. An example of inverting 

for the natural surface fluxes of CH3Cl is presented and the inversion behavior is 

examined. 

Chapter 5 presents the inversion results for the seasonal, annual, and interannual surface 

fluxes of CH3Cl, and examines the influences of the seasonal and interannual climate 
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changes on the variations of the flux magnitudes. We further test the sensitivity of the 

inversion to using different sets of observations. We test the inversion results by running 

the optimized fluxes forward in MATCH, followed by a comparison to the observations.  

Chapter 6 Similarly presents, tests, and discusses the inversion results for the seasonal, 

annual, and interannual surface fluxes of the natural sources of CHCl3. Chapter 7 

similarly presents the inversion results for the constant industrial sources and seasonal, 

annual, and interannual natural sources of CH2Cl2. Chapter 8 presents the inversion 

results for the industrial sources and oceanic sink of CCl4.  

Chapter 9 summarizes the main findings and contributions of this thesis. 
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Chapter  2  

  Observations 

    The performance of the inverse modeling is highly dependent on the availability and 

accuracy of the measurements. This thesis work uses both high frequency in situ and low 

frequency flask observations of the concentrations (expressed as mole fractions) of the 

chloromethanes, with greater weight on the high frequency data due to its capability to 

capture the major variations in time. These two sampling strategies broadly represent the 

two complementary approaches to global sampling: high sampling frequency versus high 

spatial coverage. The Advanced Global Atmospheric Gases Experiment (AGAGE) 

operates the greatest number of high frequency stations [Prinn et al., 2000], while the 

Global Monitoring Division (GMD) of NOAA operates the greatest number of flask sites. 

Additional high frequency or flask observations are available from the system for 

observation of halogenated greenhouse gases in Europe (SOGE) and the National 

Institute for Environmental Studies (NIES) in Japan. 
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2.1. High and low frequency observations  

    Table 2.1 lists the stations for the high and low frequency observations that we use in 

the inversions. The ALE/GAGE/AGAGE in situ real-time global measurement network 

is intended to measure the concentrations of anthropogenic or anthropogenic/biogenic 

ozone-depleting and climate-forcing gases in air [Prinn et al., 2000; Sturrock et al., 2001; 

O’Doherty et al., 2004]. The Atmospheric Lifetime Experiment (ALE) began in July 

1978 using Gas Chromatographs (GC) with Electron Capture Detectors (ECD) to 

measure 5 species including carbon tetrachloride at a frequency of four times per day 

[Prinn et al., 2000]. This GC experiment was succeeded in the 1981-1985 time frame by 

the Global Atmospheric Gases Experiment (GAGE), using new GC instrumentation with 

ECD and Flame Ionization Detectors (FID) to measure 3 additional gases including 

chloroform at an increased frequency of 12 times per day [Prinn et al., 1990, 1992; 

Cunnold et al., 1994]. The Advanced Global Atmospheric Gases Experiment (AGAGE), 

began over the 1993-1996 period increasing the measuring frequency to 36 times per day 

and using GCs with three detectors (ECD, FID, and MRD (Mercuric oxide Reduction 

Detectors)) to measure five biogenic/anthropogenic gases and five anthropogenic gases 

[Prinn et al., 2000]. Methyl chloride and dichloromethane have been measured since 

1998 using a new gas chromatographic-mass spectrometric system (GC-MS) [Prinn et al., 

2000], currently present at all five of the AGAGE primary stations. 

    The high measurement frequency also enables excellent resolution of short-term 

variability such as pollution events which are typically of 1 to 3 days duration, while 
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monitoring methods using flask collections cannot practically resolve such events. The 

high frequencies thus enable the data during pollution periods to be used to assess source 

strengths for regions proximal to the stations. For example, Cox et al. [2003] used back 

trajectory analysis techniques to identify the air mass origin of high pollution events of 

CH3Cl, CHCl3 and CH2Cl2 at Cape Grim, Tasmania.   

    While in situ measurement networks provide high frequency, highly consistent 

observations, the global stations are located sparsely, limiting the resolution of the 

estimated flux distributions. Given fixed resources, flask sampling allows greater spatial 

coverage than high frequency sampling because samples need only be collected, rather 

than actually measured, at a site. The samples are then delivered to a central laboratory 

for analysis. CCl4 and CH3Cl samples have been collected and analyzed by the HATS 

(Halocarbons & other Atmospheric Trace Species Group) Flask Sampling Program of 

NOAA/GMD [Montzka et al., 1999, 2000]. The NOAA/GMD HATS Flask Network has 

stations shown in Table 2.1 and Figure 2.1. The GMD flask measurement results are from 

typically weekly sampling and analysis of 2 stainless steel or glass flasks that were filled 

simultaneously.  

    Different measuring networks are using different calibration standards, and therefore 

their data need to be converted to the same calibration scale when combined together and 

used in the inversions. Inter-comparison of AGAGE data with other laboratories provides 

the information of the ratios of other standards to AGAGE standard [Krummel et al., 

personal communication]. Throughout this thesis we convert the other network scales to 
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the AGAGE scales, and the calibration factors for CH3Cl, CH2Cl2, CHCl3, and CCl4 

(from left to right) are shown in Table 2.1. Measurements from laboratories other than 

AGAGE or the AGAGE-affiliated SOGE are divided by the corresponding factors to be 

converted to the AGAGE standard in this work.  
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Figure 2.1. Location of chloromethane observing sites from different laboratories.  
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Table 2.1. Location of the chloromethane measuring stations and their calibration factors relative to AGAGE. 

Number ID Station Location Latitude Longitude Altitude Laboratory Calibration 
(CH3Cl/CH2Cl2/CHCl3/CCl4) 

        

High Frequency Observations 

1 MHD Mace Head, Ireland 53.3ºN 9.9ºW 25 AGAGE 1/1/1/1 

2 THD Trinidad Head, California 41.0ºN 124.0ºW 140 AGAGE 1/1/1/1 

3 RPB Ragged Point, Barbados 13.0ºN 59.0ºW 42 AGAGE 1/1/1/1 

4 SMO Cape Matatula, American 
Samoa 

14.3ºS 170.6ºW 42 AGAGE 1/1/1/1 

5 CGO Cape Grim, Tasmania 41.0ºS 145.0ºE 94 AGAGE 1/1/1/1 

6 JUN Jungfraujoch, Switzerland 46.5ºN 8.0ºE 3580 SOGE 1/1/1/1 

7 MTE Monte Cimone, Italy 44.2ºN 10.7ºE 2165 SOGE 1/1/1/1 

8 ZEP Zeppelin St., Norway 78.9ºN 11.9ºE 474 SOGE 1/1/1/1 

9 HAT Hateruma, Japan 24.1ºN 123.8ºE 47 NIES 1.0313/-/1.1716/- 

10 BRW Pt. Barrow, Alaska 71.3ºN 156.6ºW 8 GMD 1.0029/-/-/1.0362 

11 MLO Mauna Loa, Hawaii 19.5ºN 155.6ºW 3397 GMD 1.0029/-/-/1.0362 

12 NWR Niwot Ridge, Colorado 40.0ºN 105.5ºW 3018 GMD 1.0029/-/-/1.0362 

13 SMO Cape Matatula, American 
Samoa 

14.3ºS 170.6ºW 77 GMD 1.0029/-/-/1.0362 

14 SPO South Pole, Antarctica 89.9ºS 24.8ºW 2810 GMD 1.0029/-/-/1.0362 
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Low Frequency Observations 
15 ALT Alert, Northwest Territories,  

Canada 
82.5ºN 62.5ºW 210 GMD 1.0103/1.0890/1.1107/1.0410

16 BRW Pt. Barrow, Alaska 71.3ºN 156.6ºW 11 GMD -/1.0890/1.1107/- 

17 LEF WLEF tower, Wisconsin 46.0ºN 90.3ºW 470 GMD 1.0103/1.0890/1.1107/- 

18 HFM Harvard Forest, MA 42.5ºN 72.2ºW 340 GMD 1.0103/1.0890/1.1107/- 

19 NWR Niwot Ridge, Colorado 40.1ºN 105.6ºW 3472 GMD -/1.0890/1.1107/- 

20 MLO Mauna Loa, Hawaii 19.5ºN 155.6ºW 3397 GMD -/1.0890/1.1107/- 

21 KUM Cape Kumukahi, Hawaii 19.5ºN 154.8ºW 3 GMD 1.0103/1.0890/1.1107/1.0410

22 SMO American Samoa 14.2ºS 170.6ºW 77 GMD -/1.0890/1.1107/- 

23 PSA Palmer Station, Antarctica 64.9ºS 64.0ºW 10 GMD 1.0103/1.0890/1.1107/- 

24 SPO South Pole, Antarctica 89.98ºS 102.0ºE 2841 GMD -/1.0890/1.1107/- 

- Hyphen: is used where there is no measurement or no comparison for the species for that station. 
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2.2. Observational errors 

    Our interpretation using inverse methods requires both a continuous or nearly 

continuous record of monthly means (χ ) and estimates of their uncertainties (which can 

be represented by standard deviations (denoted σ ) under the assumption of a normal 

distribution). The monthly mean mole fractions at the in situ sites can be directly 

computed from the available data made in each month at each station. For the low 

frequency flask measurements, only a few (weekly or bi-weekly) measurements are taken 

in each month. Although monthly mean values can also be calculated as the average 

values of the available data, large uncertainties should be assigned to these means as 

described below. The square of the standard deviations, i.e., the variances (σ ) of the 

uncertainties of the monthly means can be estimated as the sum of the errors associated 

with: (1) the measurement error, (2) the frequency of sampling used to define the 

monthly mean, and (3) the “mismatch” error between the local point observations and the 

model grid volume [Chen and Prinn, 2006]. This assumes reasonably that these errors are 

uncorrelated.  

2

    The measurement error includes those associated with instrumental, sampling, and 

inter-calibration imperfections. The instrumental precision varies slightly between 

different laboratories. 

    The sampling frequency error accounts for how well the observational monthly mean 

is defined given a finite number of measurements. Assuming temporally uncorrelated 
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atmospheric mole fractions, the standard deviation represents the error on a mean 

quantity due to a limited sampling frequency [Wunsch, 1996] which can be expressed as: 

m
mon

frequencysampling

2

  
σ

=σ                                                (2.1) 

where  at each site is the variance of the mole fractions during each month, and can 

be estimated from the high frequency in situ measurements themselves, or from the 

MATCH high frequency output as an approximation, because we do not have high 

frequency measurements everywhere. We compared the high frequency model outputs 

and in situ measurements, and the variability of the model is nearly equal to the 

variability of the actual observations. We use MATCH-derived  for both in situ sites 

and flask sites. The term m  is the number of measurements during the month made by 

the measuring network. This indicates greater usefulness of high frequency in situ 

measurements than low frequency flask measurements, because the in situ measurements 

usually have hundreds or thousands of numbers (  ~ 1000), while the flask 

measurements are typically taken at weekly (bi-weekly) frequency (  ~ 4). Chen and 

Prinn [2006] discussed the high frequency versus low frequency model means. 

Throughout the thesis we use outputs at all model time steps within a month to compute 

the model monthly means (i.e., the high frequency model means).  

2
monσ

2

m

m

monσ

    In the Kalman filter we compare point station observations with grid cell averaged 

concentrations predicted by the model, which causes the so-called “mismatch” or 

“representation” error. This error may either be considered the model error to measure the 
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failure of the model to represent a point measurement, or the observational error to 

measure the failure of a point measurement to represent the volume average. We choose 

to put this error into the observational error, thus effectively assuming a perfect transport 

model for this purpose in the inversion. The standard deviations of the high frequency 

measurements at in situ sites provide reasonable estimates of the mismatch errors, 

because the station during each month samples a substantial fraction of the air mass from 

the large volume of air in the grid cell box containing that station [Prinn, 2000]. For the 

flask measurements, since only weekly or bi-weekly air masses are sampled, we have 

chosen to estimate the mismatch error at each flask site using the standard deviation of 

the modeled mole fractions ( y ) at the nine surrounding grid cells [Chen and Prinn, 2006]: 

2
   9  cellsgridgsurroundinmismatch σ=σ  

( )
29

19
1∑

=

−=
i

kik yy                                              (2.2) 

where i  indicates the index of the surrounding grid cells, and  is the index of the month. 

We are thus assuming that the spatial variability within a single grid cell is related to the 

variability between that grid cell and the neighboring grid cells. Note that the mismatch 

error at any particular site varies month by month. The square root of the sum of the 

variances of the above three types of errors gives the total observational error: 

k

22
  

2
mismatchfrequencysamplingtmeasuremenk σ+σ+σ=σ                              (2.3) 
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    The derived monthly mean mole fractions and their standard deviations are used as key 

parameters in the Kalman filter algorithm designed for surface flux estimation.  
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Chapter  3  

  The MATCH Model 

    The Model of Atmospheric Transport and CHemistry (MATCH) is used in this thesis. 

It is an off-line transport model developed primarily by Philip Rasch, Brian Eaton, 

Natalie Mahowald, and Mark Lawrence, with smaller contributions by many others. 

MATCH contains the basic meteorological component [e.g., Rasch et al., 1997; 

Mahowald, 1996; Mahowald et al., 1997a, b]. Its extension including detailed global 

tropospheric photochemistry, called the Max-Planck-Institute for Chemistry version of 

MATCH (MATCH-MPIC) was developed by Lawrence et al. [e.g., 1999b].  

    MATCH has been widely used and well-tested for a variety of tracers in many 

applications. Rasch et al. [1997] compared MATCH to the on-line NCAR Community 

Climate Model (CCM), and showed that the errors associated with using sampling 

timescales in an off-line model that are longer than the typical 20-30 minute dynamical 

integration time scale, can be made small when the sampling interval is of order 6 hours 

or less. They also showed that one can accurately reproduce the subgrid-scale processes 
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within the off-line model. Mahowald [1996] and Mahowald et al. [1997a, b] compared 

MATCH radon simulations with observations and performed an inverse modeling study 

of CCl3F. Lawrence [1996] introduced MATCH-MPIC and employed it to study the 

photochemistry of the tropical Pacific troposphere. Lawrence et al. [1999b] extended this 

work to investigate the photochemistry of the entire global troposphere. MATCH has also 

been used in studies of the sulfur cycle [Lucas and Prinn, 2005], aerosols, 

photochemistry, and in studies of plume tracers for the Indian Ocean Experiment intense 

field phase [e.g., Rasch et al., 2001; Collins et al., 2001, 2002; Lawrence et al., 2003]. 

Also, von Kuhlmann et al. [2003] have modeled tropospheric ozone and hydrocarbons 

using an updated version. Chen and Prinn [2005, 2006] and Chen [2004] performed 

optimal estimation of methane and carbon dioxide surface fluxes using MATCH. Success 

in these simulations by MATCH demonstrated its capability in representing transport, 

hydrologic processes, and photochemistry for both long-lived and short-lived species. 

3.1. Meteorology in MATCH 

    One important advantage of off-line models is that they are less expensive to run than 

“on-line” models, such as general circulation models (GCMs) and numerical weather 

prediction (NWP) global models, in which the meteorological data are also predicted at 

every time step. MATCH, an off-line transport model, can be driven by archived gridded 

time-dependent meteorological data derived from forecast center analyses. Throughout 

this work, MATCH is driven by NOAA National Center for Environmental Prediction 

(NCEP) reanalysis meteorology. The model-predicted species values can be compared 
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directly with the values from field measurements, rather than comparing values 

representative of model and measured climatological means. 

    The basic meteorology fields input into the model are for temperature, surface pressure, 

meridional and zonal wind speeds, surface wind stresses, and surface latent and sensible 

heat fluxes. These inputs occur at regular (usually 6-hour) intervals. All other 

meteorological parameters (e.g., vertical velocities, cloud fractions, and convective mass 

fluxes) are computed on-line based on these basic meteorological fields. The model time 

step is 40 minutes for the T42 spectral resolution used in this thesis. The archived data 

are linearly interpolated between the neighboring time intervals to obtain the values for 

each time step. Using 6-hourly meteorological data in an off-line simulation was found to 

be sufficient to reproduce the effects that quickly changing fields such as convection have 

on tracers [Rasch et al., 1997].  

    The horizontal spectral resolution of the input analysis data and the integrations is 

chosen to be T42, which corresponds to approximately 2.8º × 2.8º (64 × 128 grid points). 

Due to the large number of simulations required for the reference runs and the unit pulse 

runs used in the inverse modeling, T42 is a reasonably good choice. As computational 

power increases, we could use T62 [Chen and Prinn, 2005, 2006]. In the vertical, 

MATCH uses a hybrid coordinate, which consists of a terrain-following sigma coordinate 

combined with (optional) constant pressure level values (usually employed in the 

stratosphere). The NCEP data are on 28 sigma levels, with 18 levels in the troposphere, 

and 10 levels in the stratosphere.  
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    The three basic types of transport simulated in MATCH are advection, dry turbulent 

mixing, and moist convection [Lawrence et al., 1999b]. Our version implements the 

mass-conserving SPITFIRE (SPlit Implementation of Transport using Flux Integral 

REpresentation) flux-form advection scheme [Rasch and Lawrence, 1998]. Dry turbulent 

mixing is simulated in MATCH based on the non-local boundary layer scheme [Holtslag 

and Boville, 1993]. Finally, a parameterization for moist convection provides the model 

with cumulus transport, convective cloud top and bottom levels, and convective 

precipitation and evaporation rates. Our version uses the Zhang/McFarlane/Hack (ZMH) 

convection scheme [Zhang and McFarlane, 1995; Hack, 1994]. First, the penetrative 

deep convection scheme of Zhang and McFarlane [1995] is used to reduce the 

convective available potential energy (CAPE). Next, the local mixing scheme of Hack 

[1994] is applied to remove any remaining local instabilities by exchanging moisture, 

energy and tracers between neighboring layers. This version of MATCH is also capable 

of simulating nearly the full tropospheric hydrological cycle, with the exception of using 

the surface latent heat fluxes from the archived data as the initial condition.  

3.2. Photochemistry in MATCH  

3.2.1. OH fields 

    Although MATCH can be extended to simulate the complicated photochemistry in the 

atmosphere [e.g., Lawrence et al., 1999b; von Kuhlmann et al., 2003; Lucas and Prinn, 

2005], only simple chemistry needs to be incorporated into the basic MATCH model for 

the simulation of chloromethanes because they are not major sinks for OH or sources of 
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HOx. The predominant removal process in the troposphere for CH3Cl, CH2Cl2 and CHCl3 

is oxidation by the hydroxyl (OH) radical, which is the primary oxidizing chemical in the 

atmosphere. The reactions are as following [Sander et al., 2003]: 

CH3Cl + OH → CH2Cl + H2O                                        (3.1) 

CH2Cl2 + OH → CHCl2 + H2O                                       (3.2) 

CHCl3 + OH → CCl3 + H2O                                           (3.3) 

CCl4 + OH → products                                                   (3.4) 

    The temperature-dependent rate constant for reaction with the OH radical is given in 

the Arrhenius form: 

)]/1)(/exp[()( TREATk −=                                           (3.5) 

where  is the pre-exponential factor (cmA 3 molecule-1 s-1), E  (J mol-1) is the activation 

energy, R  is the universal gas constant, and T (K) is the temperature. Table 3.1 lists the 

values of these parameters that we have used [Sander et al., 2003], and the illustrative 

values of the rate constants at a selected tropospheric average temperature of 272 K 

[Spivakovsky et al., 2000] for the four chloromethanes. The reaction rate constants are 

also used to generate the OH-removal lifetimes by reference to CH3CCl3, whose OH-

removal lifetime is 5.0 years [WMO 2002; Prinn et al., 2005]. In the model simulation, 

these reaction rate constants are updated each time step based on the ambient conditions 

(temperature, pressure, etc.) in the grid cells. 
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Table 3.1. Rate constants (cm3 molecule-1 s-1) of the reactions for each chloromethane 

and the associated lifetimes for their removal (except for CCl4, see foot note). 

 A  E / R  OHk (at 272 K) Lifetime (years)

CH3CCl3 + OH 1.6 × 10-12 1520 6.0 × 10-15 5.0 

CH3Cl + OH 2.4 × 10-12 1250 2.4 × 10-14 1.2 

CH2Cl2 + OH 1.9 × 10-12 870 7.8 × 10-14 0.39 

CHCl3 + OH 2.2 × 10-12 920 7.5 × 10-14 0.40 

CCl4 + OH ~ 1.0 × 10-12 > 2300 < 2.1 × 10-16 261

 

    The reaction rate obviously depends on the assumed concentration of OH. The OH 

fields chosen are from the output generated using the version of MATCH-MPIC 

described in Lawrence et al. [1999b], Jöckel [2000], and von Kuhlmann et al. [2003]. 

This MATCH version incorporates a full photochemical component, representing the 

major known sources (e.g., industry, biomass burning), transformations (chemical 

reactions and photolysis), and sinks (e.g., wet and dry deposition) for studies of ozone 

and hydrocarbons in the troposphere. Chen and Prinn [2005, 2006] used the monthly 

mean MATCH-MPIC 3-D OH fields at T63 resolution adjusted to fit global AGAGE 

CH3CCl3 observations (we reduced these to T42 for this thesis). Finally, a diurnal cycle 

scaled to the solar zenith angle is further applied to the daily average OH concentrations 

interpolated by MATCH from the monthly mean OH concentrations. This ensures zero 

                                                 
1 This 26-year global lifetime comes from the principle sinks for CCl4 which are stratospheric photo-
dissociation with a 35-year lifetime [WMO 1998], and the oceans with a 94-year lifetime [Yvon-Lewis and 
Butler, 2002]. 
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nighttime values while maintaining the daily average OH concentrations [Chen and Prinn, 

2005, 2006]. Since the annual and global average OH did not change much (within 3%) 

over the period of 2000-2004 [Figure 2, Prinn et al., 2005], we used annually repeating 

OH fields. This allows us to assess the effect of the interannually varying transport 

(captured in the NCEP data) on the concentrations of the gases.  

3.2.2. Stratospheric sink 

    In the stratosphere, the chloromethanes are photodissociated and/or oxidized by the 

hydroxyl radical. However, the stratospheric sink plays different roles in the total 

atmospheric sink of each chloromethane. The stratospheric sink is small for CH3Cl (7.6% 

of the total atmospheric loss), and is very small for the shorter-lived species CH2Cl2 

(1.7% of the total) and CHCl3 (< 2% of the total) [Keene et al., 1999; Cox et al., 2003]. 

Most of the stratospheric loss of CH3Cl arises from OH attack [Seinfeld and Pandis, 

1998], which is accounted for by the 3-D OH fields in MATCH. Reactions with OH in 

the stratosphere for CH2Cl2 and CHCl3 have also been included in MATCH. For CCl4, 

stratospheric photodissociation is the most important sink, and is much larger than its 

destruction by O1(D) [Golombek and Prinn, 1986, 1989, 1993]. In this thesis we only 

consider stratospheric photodissociation for CCl4, because of lack of information about 

and the negligible role of the stratospheric sink for the other three short-lived species. 

The chemical destruction rates (J values in s-1) for stratospheric photodissociation of CCl4 

have been calculated from a more detailed 3-D model for the stratosphere [Golombek and 

Prinn, 1986, 1989, 1993]. Here we interpolated the monthly mean photodissociation rate 
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fields that vary with latitude and altitude to the MATCH grids. We do not explicitly 

model stratospheric destruction of CCl4 by O1(D) since it is minor as mentioned above. 

Figure 3.1 shows the latitude-altitude 2-D distributions of the stratospheric 

photodissociation rates of CCl4 in January (a) and July (b). In general the J values are 

highest in the top layers of the model where the available light is the strongest, and the J 

values decrease downward. For each vertical layer, the highest J values occur near the 

latitude of 20ºS in January and 20ºN in July following the seasonal variation of insolation 

on the earth. 

    These values are then modified by a constant global factor to reflect the appropriate 

best estimate of the stratospheric lifetime for CCl4. Due to the very rapid vertical and 

horizontal variations of the J values, the interpolation from the Golombek and Prinn 

model to the MATCH model produces typically factor-of-two errors. Without any 

adjustment factor, the data would give a lifetime of ~ 13.8 years (the target lifetime is ~ 

35 years). We have conducted modeling trials by multiplying the data by factors less than 

1 and checking the implied lifetimes to obtain the factor yielding 35 years. 
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Figure 3.1. The log10 of the stratospheric photodissociation rates (in s-1) for carbon 

tetrachloride in January (a) and July (b) that correspond to a stratospheric destruction 

lifetime of 35 years.  
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Chapter  4 

  Methodology for Inverse Modeling 

    Inverse modeling using mathematical methods that optimally combine observations 

with model calculations is routinely applied in meteorology, oceanography, seismology 

and remote sensing. Inverse modeling of global biogeochemical cycles has also received 

much attention because of the recognition of the important roles of chemically and 

radiatively active species in Earth’s environment. This biogeochemical inverse modeling 

activity is made possible by large observational programs, which include world-wide 

measurements of trace gas concentrations and their isotopic composition in monitoring 

station networks.  

4.1. The state-space model and the measurement equation 

    The construction of a number of inversion techniques has been based on a state-space 

representation. In a state-space representation, we incorporate the underlying dynamics as 

a stochastic model, to be distinguished from deterministic model. This is because 

deterministic systems have unavoidable shortcomings so they can not provide a totally 
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sufficient means of performing the analysis. There are several reasons. First of all, no 

mathematical description of any dynamic (physical, chemical, etc.) system is perfect. 

Any such model depicts only those characteristics of direct interest to the modeler’s 

purpose. Secondly, dynamic systems are driven not only by our own inputs, but also 

disturbances which we can neither control nor model deterministically. Finally, the 

measurement devices that we use to observe the actual system behavior can not 

practically provide perfect and complete data about the system. Specifically, we define a 

practical stochastic model, the basic form of which is the evolution of a state vector x  

driven by white Gaussian noise, as expressed by the so-called “state-space” equation or 

“system” model [e.g., Gelb et al., 1974; Prinn, 2000]: 

)(t

)1()1()1()( −+−−= tttt ηxMx                                        (4.1) 

Equation (4.1) describes a time-dependent model incorporating a set of rules for 

computing the state vector at time t  from knowledge of its value at previous time 1−t  by 

using the matrix operator M  (the “evolution” or “transition” matrix, bold capital 

letters refer to matrices and bold lower case letters refer to vectors hereafter), and the 

stochastic external or boundary forcing (or the “controls”) 

)1( −t

)1( −tη  with a zero mean and 

a covariance matrix . The controls can also represent the model random forcing.  TηηQ ≡

    Correspondingly available are measurements which are similarly corrupted by white 

Gaussian noise. The general standard linear form relating the state vector to a time series 

of observed quantities is: 
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)()()()(o tttt εxHy +=                                                 (4.2) 

where the matrix H  in general represents arbitrarily complex linear or pseudo-linear 

relations between the quantities of interest (e.g., the surface fluxes) stored in the state 

(column) vector x  and the observations (e.g., the concentration measurements) arrayed in 

the column vector  with the inevitable measurement noises arrayed in ε  which has 

zero mean and the covariance matrix . Equation (4.2) is called the 

“measurement” equation or model, and the matrix H  is called the “measurement” or 

“partial derivative” or “sensitivity” matrix.  

oy

TεεR ≡

    The Kalman filter is chosen as the inversion technique throughout the thesis. This 

“optimal estimation” method uses the measurements to give a “minimum variance” 

estimate of the state vector taking into account the accuracy of the observations, the 

nature and accuracy of the physical and chemical processes embodied in the model, the 

initial conditions and any prior knowledge of the behavior of the state vector [e.g., Gelb 

et al., 1974].  

4.2. The Kalman filter 

    The Kalman filter has been used in a number of studies to estimate the atmospheric 

lifetime or global source of CFCs [e.g., Cunnold et al., 1983; Hartley and Prinn, 1993; 

Mulquiney and Norton, 1998; Prinn et al., 2000] and other trace gases [e.g., Xiao et al., 

2007]. The Kalman filter is an optimal recursive data processing algorithm first derived 

by Kalman [1960] for the discrete case and by Kalman and Bucy [1961] for the 
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continuous case. It processes all available measurements, accounting for their precision, 

to estimate the current values of the quantities of interest (the states), with use of: (1) 

knowledge of the system and measurement instrument dynamics, (2) the statistical 

description of the system errors, measurement noises, and uncertainty in the dynamics 

models, and (3), any available information about the initial conditions of the state 

variables of interest. The covariance matrix, P , of the error in the state estimate is also 

computed, and from this we have an estimate of the uncertainty in the state estimate. The 

Kalman filter, like all filters, aims to reduce the influence of noise in the measurements 

on the state estimation [Mulquiney et al., 1993]. The word “recursive” means that, unlike 

certain other data processing concepts, the Kalman filter does not require all previous 

data to be kept in storage and reprocessed every time a new measurement is taken. This 

will be of importance to assessing the value of each observation and to the practicality of 

implementation.  

    In the following, we briefly describe how the Kalman filter inverts the measurement 

equation. In reality, most of the measurements are not continuous in time, so we replace 

the time t  by some discrete time index k as in Prinn [2000]. The standard equations of 

the model and data in the discrete form are: 

1-k1-k1-kk ηxMx +=                                                  (4.3) 

kkk
o
k εxHy +=                                                     (4.4) 

0]E[ k =ε , , , k
T
kk ]E[ Rεε = 0]E[ T

kk =′εε kk ′≠                       (4.5) 
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0]E[ k =η ,                                             (4.6) k
T
kk ]E[ Qηη =

0)0(~ xx = , 0
Tt

0
t
0 ]))0(~)()0(~E[( Pxxxx =−−                            (4.7) 

Equation (4.4) (a discrete form of Equation (4.2)) describes the projection of the states 

onto the observations. The statistics of the measurement errors and the controls are 

described in Equations (4.5) and (4.6), where E[] denotes the expectation value. R  can 

include the model error, instrumental error, and mismatch (between the measured and 

modeled atmospheric volumes) error, and Q  can represent random forcing in the system 

model due to transport model errors [Prinn, 2000]. Finally, the a priori initial condition 

and its uncertainty are given by Equation (4.7) where the tilda (~) denotes an estimate 

and the superscript t denotes the true value (which we never know exactly). The basic 

Kalman filter recursion is composed of three steps which can be derived from minimum 

variance or maximum likelihood estimation methods [Gelb et al., 1974; Prinn, 2000; 

Todling, 2000]: 

k

k

Step 1: Extrapolation/prediction: 

a
1-k1-k

f
k xMx =                                                         (4.8) 

1k
T

1k
a

1k1k
f
k −−−− += QMPMP                                             (4.9) 

Before the use of  and its error covariance matrix , we extrapolate the state vector 

and its error covariance matrix to the next time step from the knowledge of the mechanics 

o
ky kR
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of the model, where the unknown control terms ( ) have been replaced by the best 

estimate we can make of them, specifically their mean, which is zero. An “f” or “a” 

superscript has been added to  and  to show that these are “forecast” values before 

the use of the data at time k or “analysis” values after the use of time k data. Also we 

define  and   to initialize the filter. 

1-kη

a a

Tf f

o

o

kx kP

00 xx = 00 PP =

Step 2: Computation of the Kalman gain matrix: 

-1
k

T
k

f
kk

T
k

f
kk )( RHPHHPK +=                                       (4.10) 

The effect of  is to construct a weighting factor in which one effectively compares the 

error covariance  in the predicted measurement ( ) with the error 

covariance  of the real measurement ( ).  

kK

kkk HPH kkk xHy =

kR ky

Step 3: State vector correction/improvement:  

)( f
kk

o
kk

f
k

a
k xHyKxx −+=                                         (4.11) 

f
kkk

f
k

a
k PHKPP −=                                                (4.12) 

Equation (4.11) takes the weighted average between the state vector prediction  and 

the state vector correction inferred from the current . In this “predictor-corrector” 

structure, based on all previous information, a prediction of the values that the desired 

variables and measurement will have at the next measurement time is made. Then, when 

f
kx

ky
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the next measurement is taken, the difference between it and its predicted value (often 

called the innovation or mismatch υ ; not to be confused with the 

observation residual y  which is calculated at the optimal solution) is used to 

“correct” the prediction of the desired variables. A block diagram portrayal of the 

algorithm is shown in Figure 4.1. 

fo −≡

ao −

H Q

kkkk xHy

kkk xH

 

     

k
o
k  , Ry  

  kK  

  kH  1-kM Delay 

a
kx

a
1-kx  f

kx

1-kη

kυ  

Figure 4.1. Sampled-data Kalman filter block diagram [adapted from Maybeck, 1979].  

 

    The Kalman filter goes through all the available data up to the final one. The state 

estimates are optimal in the sense that the trace of the state error covariance matrix is 

minimized. The Kalman filter requires M , , , and R  to be known. These 

quantities can all vary with time. A guess of the initial state and its error covariance is 

also required. 

k k k k
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    The Kalman filter is convenient in that all the previous information before and 

including the time step k is contained in  and , and there is no need to reprocess it 

(as in a “batch” inversion) every time a new measurement is taken. A key feature 

(advantage) of the Kalman filter is that the error covariance matrix, , evolves in time 

using the state-space model. We use the square root of the diagonal elements of  to 

give the uncertainties (1 ) on our state variable estimates. The off-diagonal elements of 

contain the error covariances between state variables. Note that the matrix 

a a

a

a

σ

a

kx kP

kP

kP

kP IHK ≤kk , 

which means that , and thus that the variances of the errors in the state vector 

element estimates should decrease with the use of more and more measurements by 

amounts sensitively dependent on the measurement errors. However, for a measurement 

at time k whose , then , so that , and  (i.e., there is no 

improvement of the state vector estimate because the measurement is too noisy to be 

useful in the filter). The opposite limit occurs when the measurement is perfect so that 

, then , so that , and . This means we totally trust 

Equation (4.4) at time k (now it effectively becomes ) which we can solve  

directly for , and  (assuming  = 0 and  is time-invariant).   

f
k

a ≤

∞→ → fa = fa =

→ -1→ o-1a = a =

o

a a

k PP

kR 0kK kk xx kk PP

0kR kk HK kkk yHx 0kP

kkk  0 yxH =+

kx 0k =P kQ x
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4.3. Adaptation of the Kalman filter  

4.3.1. Construction of the state vector and its error covariance matrix 

    In this subsection we adapt the Kalman filter to estimate chloromethane surface fluxes 

from different sources and sinks at monthly (or 3-month) time resolution on regional or 

global scales. For this purpose, it is adequate to use monthly mean observations to 

constrain the monthly (or 3-monthly) surface fluxes. What we actually estimate are the 

magnitudes of the regional or global fluxes by location and/or process, assuming we 

know their spatial distributions within each region (referred to as the a priori reference 

maps). Specifically, the state vector in the Kalman filter contains variables representing 

the regional or global magnitudes of the surface fluxes of the chloromethanes with 

month-to-month or quarter-to-quarter variations allowed for the seasonal processes. 

There are two further features of our definition of the state vector. Firstly, we will 

actually estimate multiplying factors for the a priori reference magnitudes for the surface 

fluxes. This concept of normalization avoids the situation in which the magnitudes of the 

fluxes are orders of magnitude different which can easily lead to near-singular matrices in 

numerical computations. Secondly, for an Eulerian chemical transport model, it is 

necessary to define the state vector as the adjustment to its a priori or reference value 

[Prinn, 2000]. Regarding the temporal resolution for estimations, we treat the 

anthropogenic and natural surface fluxes in different ways. For the natural sources and 

sinks, we are interested in their possible seasonal variations (e.g., driven by 

climatological variables) and so we estimate each flux type regionally or globally on a 
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monthly basis for the time period of 2000-2004. The industrial sources of the three short-

lived chlorohydromethanes (CH3Cl, CH2Cl2, and CHCl3) are assumed to not be changing 

very much either intra-annually or interannually and are therefore treated as constants 

during 2000-2004. The exception is CCl4 whose mole fraction trends suggest variations 

in its industrial sources. We estimate the sources and sinks of CCl4 at a 3-month (seasonal) 

resolution, because we expect smaller variability than for the chlorohydromethanes, and 

because the time period we are interested in (1996-2004) is double the time period for the 

three chlorohydromethanes and our computer time is limited.  

    Here we use the “unit pulse” method of Chen and Prinn [2006]. Suppose we have  

invariant/constant (aseasonal) and n  seasonally varying surface flux variables. The full 

state vector is therefore composed of n

asn

s

12*nsas +  elements. This is a huge number 

considering the size of the estimation error covariance matrix of the state vector and 

imposes a huge demand on computer time and memory during the inversion. However, 

given the fact that the global horizontal mixing time in the model is about 1 year, namely, 

an observation cannot meaningfully separate monthly fluxes that are more than one year 

old [Chen and Prinn, 2006], it is a good approximation to use a specific monthly 

observation at time k to deduce not all but only those monthly fluxes from time k back to 

time k-T (where T = 11 months), i.e., 12 months’ seasonal fluxes. So the resultant down-

sized state vector is defined as: 
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where  is a subvector containing all the  aseasonal flux variables, and  is a 

subvector containing all the n  monthly/seasonal flux variables at time k. Notice that 

 is the “oldest” seasonal fluxes that the observation  can provide information 

about, and therefore it is the final, optimized solution for fluxes at time k-T and is 

removed from the state vector before a new observation  comes in. To achieve this 

removal, Chen and Prinn [2006] borrow the mathematics (but not the underlying 

concepts) behind the extrapolations of Equations (4.8) and (4.9). A constant transition 

matrix is used with the following form: 
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where and represent square identity sub-matrices of sizes  and  

corresponding to the n  aseasonal fluxes and n  seasonal fluxes, respectively. The 0’s 

asnI
snI asn sn

as s
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represent matrices with all zero elements. The transition matrix operates on the state 

vector as follows: 
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    Multiplying  by M  not only removes  which is saved as the final, optimized 

solution, but also introduces a new X  whose initial guess is its (zero) a priori value. 

For the aseasonal components, the transition matrix retains the previous values, which is 

consistent with the estimation of constant fluxes over all time steps.  

kx s
T-kX

s

s

s

1k+

    Operation of  on the error covariance matrix P  of  has similar effects as on x  

by removing the error covariances of X , but it introduces zeros for the initial error 

covariances of X  to be estimated. This problem is solved by the inclusion of the 

matrix Q  of the following form: 

M a
k kx k

T-k

1k+

k
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where  represents our choice of the initial error covariances associated with the 

new seasonal flux adjustments ( ). For the seasonal fluxes we use initial errors of ± 

30% to ± 100% of their reference magnitudes, which the Kalman filter then reduces 

through the use of 12 subsequent months of observations. The aseasonal fluxes are also 

initialized with errors equal to or larger than their reference magnitudes, introduced by 

the non zero values in the upper-left corner of . The large aseasonal a priori errors are 

always substantially reduced using all observations over the entire time series, since they 

represent assumed constant fluxes.  

]E[ T
kkηη

s

a

a

1k+X

0P

4.3.2. Computation of the sensitivity matrix 

    In the above subsection we discussed the construction of the state vector  and 

matrices , , and which are needed in the Kalman filter. In this subsection we 

discuss the computation of the sensitivity matrix. In canonical form, a chemical transport 

model is a mapping of input variables (sources, sinks, etc.) onto output variables 

(concentrations in mole fractions). If this mapping is differentiable, its first derivative is 

kx

0P kM kQ
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the Jacobian (sensitivity) matrix H . The elements of H  for our applications can be 

written as: 

k k

j
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j
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t
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o
ik

ijk x
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x
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x
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Δ
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≈
∂
∂

≈
∂
∂

=                                             (4.17) 

for aseasonal fluxes or 
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Δ
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≈
∂
∂

≈
∂
∂

=                                            (4.18) 

for seasonal fluxes. Equations (4.17) and (4.18) express the sensitivity of the change in 

the measurement at location i  resulting from a change in the unknown constant state 

variable  (this could be the trace gas source or sink or other estimated parameters such 

as transport rates) or the seasonal state variable x  in a previous month k'. By 

approximating  by  in the model, we are actually trying to compare the average  

predicted in a grid volume of the model to an actual measurement  at a point 

(measuring site). This “mismatch” between the measured and modeled atmospheric 

volumes may cause errors that could be considered either measurement or modeling 

errors. Note that even for a fixed change 

jx

jk'

o

o

x

iy iy iy

iy

jΔ  in variable , the sensitivity Δ  is not 

invariant because of the evolution of the chemical transport system, which means H  is 

time-varying.  

jx yi

 62



    A straightforward approach for computing H  for an n-dimensional state vector  is to 

do n+1 model runs, the first run using a reference (e.g. a priori best estimate) of x , the 

other n runs using values of x  with one element slightly perturbed from its reference 

value, thus enabling computation of H  through Equations (4.17) and (4.18). For a 

complicated chemical transport model, the equivalent and more efficient way is to do a 

single model run with n+1 chemically identical (but separately labeled) chemical species. 

One of the chemical species uses a reference (e.g. a priori best estimate) of x , while the 

other n species use values of x  with one element slightly perturbed from its reference 

value.  

x

    We use different procedures to generate the aseasonal and seasonal sensitivities. For 

aseasonal fluxes we perturb a single process/region above the reference level by 1% and 

run it over the entire data period. The sensitivities are then determined by subtracting the 

perturbation and reference runs, and dividing by the total emission perturbation to 

produce a sensitivity time series in terms of parts per trillion (ppt) / (Gg yr-1) (1Gg = 109 

grams). The aseasonal sensitivity elements thus contain the influence of all previous 

months from the very beginning of the period. For seasonal fluxes we distinguish each 

single month during the entire period to study the seasonality. Therefore we calculate the 

sensitivities to each single month by perturbing a single process/region above the 

reference level for only that month (k') and then tracking the tracer within the model after 

that month for a subsequent period over which the emission pulse decays due to 

atmospheric dispersion and chemical loss. We call this the unit pulse method for the 

seasonal sensitivity calculations. For the period of 2000-2004 we have done 5 years × 12 

 63



months = 60 monthly pulse runs. Each of the 60 monthly pulses is a separate multi-tracer 

run starting at a different month. As noted before, the global mixing (dispersion) time in 

the model is about one year, so we have run each of the 60 monthly pulses for 12 months 

instead of over the full 2000-2004 period. 

    Figures 4.2 (a) and (b) show some examples of the calculated sensitivities of individual 

sites to an individual seasonal process of CH3Cl source as functions of time. Here, a 

January 2000 emission pulse from the tropical plants in Africa is displayed. It is a 

uniform pulse with an intensity of 10 Gg yr-1 lasting for one month. Note that the 

sensitivities are greatest in the first 3-4 months and then decrease because of atmospheric 

mixing and chemical loss. Responses at different sites have different behaviors because 

of their different locations relative to the source region in the global circulation fields. 

The Barbados and Samoa stations are located in the tropical easterly wind region and are 

therefore directly downwind of the African region. Hence, they respond rapidly with 

sharp peaks. The Barbados station is even closer to the African region than the Samoa 

station, so its response is even more rapid, followed by a decrease at both stations due to 

dispersion. The other three stations are either further away from or not in the same zonal 

wind band as the source region. Therefore their responses are relatively smooth with 

steady slow increases in mole fractions followed by decreases due to OH destruction. 

Also note that the responses at the different sites tend to converge to a single value after 

one year, which is consistent with an emission pulse in a well-mixed atmosphere, and 

serves to validate our choice of a 12-month estimation period.  
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    We also note that the high frequency (every 40 minutes) sensitivities (Figure (4.2) (a)) 

show negative values occasionally. They are likely due to the numerical round off (noise) 

in the MATCH simulations, because these sensitivities are the differences between two 

very close runs (perturbation and reference runs) for an emission pulse of small 

magnitude. Because we only need to use the model monthly mean mole fractions, we 

have averaged these to monthly mean sensitivities (Figure (4.2) (b)) and thus avoided the 

negative values.  
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Figure 4.2. MATCH-modeled sensitivities of methyl chloride high frequency (a) and 

monthly mean (b) mole fractions at the AGAGE measuring stations to a January, 2000 
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emission pulse from African tropical plants. Eventually the mole fractions reach values 

consistent with a small methyl chloride emission pulse in a well-mixed atmosphere, 

followed by a slow decrease due to OH destruction. 

 

    In Figure 4.3 we put the sensitivity time series for the whole 60 monthly pulses from 

African tropical plants together. There is interannual variability as well as seasonal 

variability. Since the magnitude of the pulse is identical and the OH fields are annually 

repeating, the interannual variability of the monthly pulse sensitivities is due only to the 

interannually varying transport.  

2000 2001 2002 2003 2004 2005 2006
0

1

2

3

4

5

6

7

8x 10-3

Year

C
H

3C
l M

ol
e 

Fr
ac

tio
n 

pp
t /

 (G
g 

yr
-1

)

 

Figure 4.3. MATCH-modeled sensitivities of Cape Grim, Australia (CGO) to the 60 

monthly emission pulses from tropical plants in Africa for the period of 2000-2004. For 

each pulse we have run for 12 months and the sensitivities are displayed. 
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4.4. Inversion behavior 

    In this section we study the inversion process when applying this methodology to the 

optimal estimation of the surface fluxes of methyl chloride. Most of the sources and sinks 

of methyl chloride are seasonally varying such as emissions from tropical plants, biomass 

burning, oceans, salt-water marshes, and the soil sink. Certain processes are further 

divided into several geographical regions of interest, for example emissions from tropical 

plants have been divided into American tropical plants (Trop AM), Asian tropical plants 

(Trop AS), and African tropical plants (Trop AF), and the biomass burning source has 

been divided into Biomass East (BB East) and Biomass West (BB West). The other 

sources and the soil sink are estimated on the global scale. Note that we actually estimate 

the integrated flux magnitudes of those processes and regions, and the spatial 

distributions of the fluxes are remained as their corresponding references. There are 

hundreds of monthly flux elements in the state vector. Here, for illustration, we focus on 

the inversion evolution of subvectors representing two months of fluxes (specifically for 

November, 2001 and September, 2002).  

    Figures 4.4 and 4.5 show the inversion evolution of CH3Cl surface fluxes for 

November, 2001 and September, 2002, respectively, with the use of subsequent monthly 

observations. Note that the plots do not show fluxes for different months, but how the 

estimates for a single month’s fluxes change with each new month of data. As mentioned 

before, only one year of subsequent observations are used to constrain a single month’s 

fluxes. The vertical axis is actually the adjustment to the reference value (all are unitless). 
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The initial value for each seasonal process is therefore zero with an a priori (blue) error 

bar defined by Equation (4.16), which means we start the inversion from the reference 

state. With each new observation, the adjustment changes and the error decreases. The 

amount of the decrease depends on the species and the emission region or process. Note 

that the changes and the error reductions for a given process are greatest in the first few 

months, because the strongest sensitivities of the observations to the emission pulse occur 

in the same time frame. In the following months, flux values and uncertainties stabilize 

even with the addition of new data. The optimized inversion results for November, 2001 

and September, 2002 fluxes are the final values in the plots. These final values represent 

the adjustments to the reference fluxes that will provide a better fit to the observations. 

As noted earlier, because only 12 months’ data have been used, these final values are 

phased out of the inversion and stored when a new subvector representing November, 

2002 or September, 2003 fluxes enters the inversion process. After all of the months of 

observations have been utilized, we have computed the optimized adjustments over the 

entire period. These adjustments plus the reference values give the final, optimized 

estimates of the surface fluxes. The optimized estimates can be tested using a forward run 

of MATCH to help check the overall inversion results. These tests will be presented after 

the inversion results for each of the chloromethanes. 

    For all gases we also check the calculated error covariance matrix P , and most of its 

off-diagonal elements are at least one order of magnitude less than the diagonal elements. 

The variables for different geographical regions are orthogonal to each other. We 

aggregate some regions to avoid possible large off-diagonal covariances. For example for 
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the inversion for the industrial emissions of CH2Cl2 we aggregate the European and 

Northwest Asian regions.  
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Figure 4.4. The inversion processes of methyl chloride surface fluxes for a single month 

(November, 2001) with the addition of monthly observations from November, 2001 to 

October, 2002 (horizontal axis). The vertical axis corresponds to the non-dimensional 

adjustment from the reference value (unity). The blue bars show the a priori errors for the 

November, 2001 surface fluxes. The final optimized results are taken as the values at the 

last step, at which time the inversion has clearly stabilized in all cases. 
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Figure 4.5. The inversion processes of methyl chloride surface fluxes for September, 

2002 with the addition of monthly observations from September, 2002 to August, 2003 

(horizontal axis). 
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Chapter  5  

  Inversion Results for Methyl Chloride 

    Methyl chloride (CH3Cl) is the most abundant naturally produced contributor to 

stratospheric chlorine. Even with the existence of many anthropogenic chlorinated gases, 

CH3Cl (together with CHCl3) contributes about 20% of the stratospheric chlorine content 

[Solomon et al., 1995] and, as noted earlier, it is expected to increase in relative 

importance in the future as anthropogenic chlorine abundances decrease in response to 

recent emission regulations. The mean mole fraction of CH3Cl in the remote troposphere 

is typically at about 550 ppt [Yokouchi et al., 2000b, 2002; Cox et al., 2003; Simmonds et 

al., 2004]. Measurements also show latitudinal variations in CH3Cl concentrations,  

specifically with higher values in the tropics than the poles [570 v.s. 500 ppt, Yokouchi et 

al., 2000b], presumably caused by large tropical terrestrial sources. Khalil and 

Rasmussen [1999b] reported a seasonal cycle with an amplitude of about 10%, while Cox 

et al. [2003] found a clear but much smaller annual cycle with an amplitude of 25 ppt 

(5%), explicable mainly in terms of seasonal changes in the abundance of the hydroxyl 

(OH) radial, which is the dominant sink of CH3Cl in the troposphere.  
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    Mole fractions for methyl chloride were only 5-10% lower than present day in firn air 

from Antarctica dating back to the early 1900s [Butler et al., 1999], which is consistent 

with the presence of predominantly natural emissions. Recent research has focused on 

identifying and quantifying its natural sources and sinks, including newly identified 

sources from tropical plants that have been reported by Yokouchi et al. [2002]. The 

anthropogenic sources (coal combustion, incineration, and industrial processes) were 

quantified in the Reactive Chlorine Emissions Inventory [McCulloch et al., 1999] and 

sum to 160 Gg yr-1, which is only 5.4% of the total estimated sources. Before 1996, the 

oceans were thought to be the dominant source of methyl chloride, accounting for 20% of 

the total. Yokouchi et al. [2002] later suggested that methyl chloride emissions from 

tropical plants might be the largest known source. They determined that a specific group 

of ferns and trees in Southeast Asia alone produce 910 Gg yr-1, using the average 

emission rate from three species of Dipterocarpaceae and the leaf biomass reported for 

mature tropical lowland rainforest. Considering the large variability of CH3Cl emissions 

among species of a family and among individual plants of a species, this estimation is 

regarded to have very great uncertainty. Moreover, only contributions from 

Dipterocarpaceae in Southeast Asia are listed in this inventory. What about CH3Cl 

emission from Dipterocarpaceae all over the world, as well as other CH3Cl-emitting 

tropical plants? This vegetation source certainly warrants additional investigation which 

is the goal of the inversions presented in this chapter.  

    Reaction with the OH free radical is the dominant pathway for removal of CH3Cl from 

the atmosphere, resulting in a corresponding OH-removal lifetime of 1.5 years (this 
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“process” lifetime is defined as the total atmospheric content divided by the rate of 

removal by that process). Other minor loss processes include reaction with chlorine 

radicals in the marine boundary (13-year lifetime), microbially mediated uptake by soils 

(28-year lifetime), and uptake in polar oceans (70-year lifetime). These in total result in 

an atmospheric lifetime of about 1.3 years. The best estimate of the magnitude of the 

identified CH3Cl sources is 26% less than the best estimate of the magnitude of the better 

quantified known sinks. This suggests that there are still missing and/or under-estimated 

CH3Cl sources. Moreover, due to the complicated natural behavior of the known sources, 

significant uncertainties exist in their magnitudes and variability such as variations 

caused by seasonal and climate changes. Using a 3-D global model of atmospheric CH3Cl, 

Lee-Taylor et al. [2001] were able to reproduce the observations of Khalil and 

Rasmussen [1999b] by adding a massive tropical terrestrial source of 2500 Gg yr-1 and 

reducing emissions from Southeast Asia. Any major as-yet-unidentified source must 

necessarily show a similar global distribution to be consistent with observations.  

    In this chapter, we present the inversion results for methyl chloride surface fluxes 

using the methodology described in Chapter 4. The optimized surface fluxes include 

seasonal, annual, and interannual values for specific emitting and depleting processes and 

regions. The raw inversion results are the 60 monthly surface flux values plus an 

aseasonal emission magnitude, from which the averaged seasonal and annual surface flux 

magnitudes are derived. The seasonal, annual and interannual inversion results are 

presented and discussed in sequence. We derive emission anomalies for 2002/2003 that 

appear to coincide with the 2002/2003 globally wide-spread heat and drought which was 
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partly caused by the 2002/2003 El Niño event. We also test the sensitivity of the 

inversion results to different combinations of the observations.  

5.1. Definition of the state vector and its a priori flux maps 

    As described in the inverse modeling methodology, reference (a priori) flux 

distributions are necessary as the initial guesses for our unknown surface fluxes. In 

addition, the sensitivities of the model output variables (concentrations) with respect to 

input variables (surface flux magnitudes) must be computed by perturbing the reference 

surface fluxes in the Taylor expansion sense [Prinn, 2000]. It is important that the spatial 

distributions of the reference fluxes be as accurate as possible but not their magnitudes or 

time dependence.  

    Considerable effort has been put into estimating anthropogenic and natural emissions 

of reactive chlorine to the atmosphere [e.g., Graedel and Keene, 1995, 1996; Singh, 1995; 

Khalil, 1999; Keene et al., 1999]. The Reactive Chlorine Emissions Inventory (RCEI) 

carried out under the auspices of the International Global Atmospheric Chemistry 

Program’s Global Emissions Inventory Activity (GEIA) [Graedel and Keene, 1999] is 

particularly notable. It provides high resolution (1º × 1º latitude, longitude) annual 

emission fields for major reactive tropospheric Cl species (including CH3Cl, CH2Cl2, and 

CHCl3) integrated across source types (terrestrial biogenic and ocean emissions, biomass 

burning, industrial emissions, fossil-fuel combustion, and incineration, etc.) for the 

reference year 1990. Lee-Taylor et al. [2001] modified and extended these estimates in 

their 3-D modeling of CH3Cl by parameterizing month by month seasonal variations. 
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These emissions represent our best initial guess of CH3Cl fluxes before optimization of 

individual processes to get emission estimates.  

    As suggested by Yokouchi et al. [2002] , methyl chloride emissions from tropical 

plants might be the largest known source, but it is not however included in this inventory. 

We assume in this study that tropical plants have a significant role in CH3Cl production 

and incorporated this process into the inversion to estimate its magnitude and seasonality 

on regional scales. For our reference emissions we attribute the imbalance of the global 

CH3Cl budget between known sources and sinks to this tropical plant process and 

distribute the resultant global magnitude proportionally to modeled net primary 

productivity (NPP) of tropical plant ecosystems [McGuire et al., 2001]. The 

measurements of Yokouchi et al. [2000b] show close correlations between local 

enhancements of CH3Cl and of biogenic compounds emitted by tropical plants, and foliar 

emissions of the latter have been assumed proportional to foliar density, temperature, and 

available light [Guenther et al., 1995]. Therefore it is reasonable to assume that CH3Cl 

fluxes are also proportional to foliar density of the emitting plants. Guenther et al. [1995] 

further assumed that foliar density is proportional to the net primary productivity of 

certain species. The monthly tropical plant NPP database (0.5º × 0.5º latitude, longitude) 

by McGuire et al. [2001] represents the net production of organic matter in tropical 

ecosystems and accounts for the influences by atmospheric CO2, and seasonal and 

climatic changes in temperature, precipitation, and available light. 
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    These flux maps have been interpolated to the MATCH T42 grid system (2.8º × 2.8º) 

while conserving their global magnitudes by using the SCRIP (Spherical Coordinate 

Remapping and Interpolation Package) software. Figures 5.1 and 5.2 show the annually 

averaged spatial distributions (T42) of the surface fluxes from tropical plants, oceans, 

biomass burning, anthropogenic activities, and other processes. As can be seen, most of 

the emissions are concentrated in the Northern Hemisphere. Tropical emissions are 

intensely located around the equator and are divided into three regions (America, Asia, 

and Africa) for our inversions. Emissions from biomass burning are further divided into 

Western (North and South America) and Eastern (Africa, Europe, Asia, and Australia) 

regions. Oceans are a source at lower latitudes and a sink at higher latitudes for methyl 

chloride and correction factors for its reference map are estimated globally. We also 

estimate correction factors for the maps of global emissions from salt marshes and the 

global uptake rates by soils (soil sink). Emissions from freshwater wetlands are very 

small and are kept at their reference values with assumed seasonal changes that are not 

estimated here. Seasonality of the fungal emissions is not considered here (as Lee-Taylor 

et al., [2001]) and its global emissions are solved as an aseasonal flux. The annual 

industry/incineration flux in the model is not estimated here because of its spatial 

correlation with the fungal emissions. The corresponding state vector at time k can be 

expressed as: 
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We use data and do estimates for the period from 2000 to 2004 (total of 60 months). The 

global magnitudes of the reference emissions and their mode of incorporation in the state 

vector are listed in Table 5.1. The a priori errors for the state vector elements are ± 30% 

to ± 50% of their reference values. Table 5.2 summarizes the surface sites whose 

measurements are used in the inversions for CH3Cl. If we have both high frequency in 

situ data and low frequency flask data for the same site, we choose the high frequency 

measurements due to their capability to capture major variations in time (see Chapter 2 

for more details). 
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Table 5.1. Reference annual average strengths of the sources and sink of atmospheric 

methyl chloride (CH3Cl) and their participation in the inversion. 

Source/Sink Type [reference] Seasonality 
(Y/N ?) 

Strength 
(Gg yr-1) 

State 
Vector ? 

Biomass burning [Lobert et al., 1999] Y 918 Y (2 regions) 
Wood-rotting fungi [Watling and Harper, 
1998; Khalil et al., 1999] N 128 Y 

Industry/incineration [McCulloch et al., 1999] N 162 N (reference) 

Oceans, NCEP 10m winds [Khalil et al., 1999, 
etc.] Y 477 Y 

Salt marshes [Rhew et al., 2000] Y 170 Y 

Soil sink [Keene et al., 1999; Khalil and 
Rasmussen, 1999b] Y -256 Y 

Freshwater wetlands [Varner et al., 1999] Y 48 N (reference) 

Tropical plants [Yokouchi et al., 2002]  Y 2089 Y (3 regions) 

Net source (soil sink excluded) Y 3992 - 

Composite (soil sink subtracted) Y 3736 - 

 

Table 5.2. List of the stations whose measurements are used in the inversions for CH3Cl, 

along with their corresponding numbers as in Table 2.1. 

(1)   MHD (2)   THD (3)   RPB (5)   CGO (6)   JUN 

(7)   MTE (8)   ZEP (9)   HAT (10) BRW (11) MLO 

(12) NWR (13) SMO (14) SPO (23) PSA (21) KUM 

(15) ALT (17) LEF (18) HFM   
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Figure 5.1. Annual average distributions of methyl chloride emissions. Emission magnitudes and patterns vary by month. Tropical 

plants (America, Asia, and Africa) and biomass burning (East and West) have been further subdivided for use in the inversion. 
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Figure 5.2. Annual average distributions of additional methyl chloride emissions and the soil sink. Note that industrial and wetland 

sources are assumed to be equal to their references and are not estimated. Seasonality of fungal emissions is not considered in the 

inversion. 
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Figure 5.3. Time series of monthly mean methyl chloride mole fractions from a forward (reference) run of the MATCH model driven 

by the reference (a priori) surface fluxes are compared to the observations (with and without pollution events).  
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5.2. Forward modeling 

    A first step in this modeling study was to assess the ability of the a priori emission 

fields to reproduce methyl chloride observations, using the annually repeating sources 

and sink in forward runs of MATCH. We initialized the atmospheric 3-D distribution of 

CH3Cl using the output from a previous multi-year run, scaled to fit the observed mole 

fractions at the remote sites such as Alert, Mauna Loa, and Cape Grim during January, 

2000. These stations were chosen because they represent well the global background 

interhemispheric gradient due to their distance from strongly emitting sources. The 

reference run was then made from January, 2000 to November, 2005. The “perturbation” 

run accounting for sensitivities to the constant global fungal emissions was also made 

simultaneously using the method described in Chapter 4. Figure 5.3 shows the monthly 

mean modeled versus observed mole fractions of CH3Cl at the indicated stations (with 

and without local pollution events) over the 6-year period of the simulation. As can be 

seen, MATCH at T42 can generally reproduce the seasonal cycles of CH3Cl at most of 

the sites, with especially good fits at Pt. Barrow and Alert, but MATCH does not have the 

resolution to cope with local influences such as the pollution events at Cape Grim, Cape 

Kumukahi, WLEF tower, and Harvard Forest stations. Since industrial emissions (which 

are not estimated) usually dominate these pollution events, we have only used the data 

with pollution excluded in the inversion.  
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5.3. Inversion results 

    Figure 5.4 shows the optimized monthly fluxes (red lines) from January, 2000 to 

December, 2004, compared to the annually repeating reference values (blue lines). The 

inversion also simultaneously solved for the aseasonal fungal emissions as a constant. 

There are significant deviations from the reference case for some processes. Overall there 

are larger seasonal oscillations than the reference for almost all of the seasonal processes.  

    The optimized values also contain the full interannual variability in the fluxes. Among 

the interannual oscillations, the flux anomalies for the time period of late 2002 to late 

2003 for several processes are worthy of notice. There were anomalous decreases of 

CH3Cl emissions from all three tropical regions. There was anomalously high emission 

from the eastern biomass burning source in the late spring of the year 2003, and also an 

anomalous emission rise from global salt marshes in the summer of 2003. There was also 

an anomalous reduction in the global soil uptake in September of 2003.  

    These anomalies are likely to be attributed to the extreme 2002/2003 globally wide-

spread heat and drought which was partly caused by the 2002/2003 El Niño event (the 

2002/2003 El Niño event lasted from the September of 2002 to the August of 2003). 

Recent studies show a consistent link between El Niño and drought in the tropics [Lyon, 

2004] and mid latitudes [Zeng et al., 2005b]. While the El Niño event during this time 

was moderate compared to the extreme 1997/1998 El Niño, the period 2002/2003 appears 

unusual with global land precipitation very low, leading to a very dry and hot condition 

[Knorr et al., 2007]. 

 85



    Ciais et al. [2005] find reduction in primary productivity apparently caused by the heat 

and drought in 2003. And this reduction in primary productivity is probably the cause of 

the reductions in tropical plant emissions because of the correlation of primary 

productivity and foliar emission as noted before [Guenther et al., 1995]. 

    The extremely dry and hot season might also lead to increased insect damage to 

vegetation and increased susceptibility of the boreal biome to fire [Kobak et al., 1996; 

Ayres and Lombardero, 2000]. Balzter et al. [2005] show that 2002/2003 were the two 

years with the largest fire extent in Central Siberia since 1996 using measurements of 

burned forest area in Central Siberia (approx. 79-119ºE, 51-78ºN). This is the region 

within our Biomass Burning (BB) East map. These enhanced fire events are expected to 

emit more CH3Cl than usual.  

    CH3Cl is produced in coastal salt-marsh regions by vegetation or microflora intimately 

associated with the plants, with greater emissions in the growing season than in the non-

growing season [Rhew et al., 2000]. For these regions, temperature plays a more 

dominant role than the moisture in plant growth, because tidal sea water provides the 

required soil moisture for the plant to grow. Therefore the anomalous hot summers might 

have led to increased plant growth in the summer of 2003, thus increasing the production 

of CH3Cl.  

    CH3Cl is degraded in soils by microbial activity. Lee-Taylor et al. [2001] 

parameterized soil uptake of CH3Cl by assuming: proportionality to a methyl bromide 

(CH3Br) soil sink extrapolation [Lee-Taylor et al., 1998]; observations of Shorter et al. 
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[1995]; and a microbial activity / soil temperature relationship [Cleveland et al., 1993; 

Holland et al., 1995] which assumes that the microbial activity is stronger at higher 

temperatures. This is why the reference global soil uptake rate is greatest in the summer 

of the Northern Hemisphere. However, the inversion indicates an unexpected decrease of 

the soil sink in the summer of 2003. The microbial activity / soil temperature relationship 

neglects the influence of the soil moisture on microbial activity and uptake efficiency. 

Laboratory and field experiments of Shorter et al. [1995] did show the general 

relationship of decreasing CH3Br uptake activity with decreasing moisture and organic 

matter content. The period 2002/2003 appeared unusual with global land precipitation 

very low for only a moderate El Niño event. Therefore the anomalously low global soil 

uptake might have been caused by extremely widespread drought conditions in 2003, 

because extreme dryness might cause the microorganisms consuming CH3Cl to be 

inactive. 

    The possible future climate change in the Northern Hemisphere, toward an 

increasingly dry and hot summer climate, may lead to increased susceptibility of the 

reduction in emissions from the tropical biosphere and in uptake by soils, and a rise of the 

emissions by salt marshes and biomass burning sources. 

    Figure 5.5 shows the corresponding uncertainties of the optimized estimates by 

superimposing the optimized (a posteriori) uncertainties (red bars) on top of the reference 

(a priori) uncertainties (blue bars). Note that the inversion always acts to reduce the initial 

uncertainty by amounts depending on the value of the observations in constraining each 
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emission process or region. Uncertainties for Trop AM and Oceans shrink the most, those 

for Trop AS, Trop AF, and BB East have some reductions, while the uncertainties for BB 

West, Salt Marshes, and Soil Sink have the least reductions.   
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Figure 5.4. Inversion results for the seasonal processes for emissions of methyl chloride. Blue lines show the reference magnitudes, 

which are annually repeating. Red lines show the optimized estimates, which contain interannual variability. The total value is the sum 

of the eight seasonal processes plus the aseasonal fungal emission estimate and the reference industrial and wetland emissions.  
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Figure 5.5. The corresponding uncertainties (1σ  error bars) of the inversion results in Figure 5.4, with the optimized error bars (red) 

superimposed upon the reference error bars (blue).  
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Figure 5.6. 5-year averaged seasonal results of methyl chloride. Blue lines show the reference magnitudes. Red lines show the 

optimized estimates. 
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Figure 5.7. The corresponding uncertainties (1σ  error bars) of the inversion results in Figure 5.6, with the optimized error bars (red) 

superimposed upon the reference error bars (blue). 
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5.3.1. Average seasonal results 

    To show a single representative seasonal cycle of the seasonal processes, we take the 

arithmetic average of the five year results (i.e., the five Januarys are averaged to indicate 

a representative January, etc.). The corresponding associated uncertainties are estimated 

as:   

N

N

1

2
,∑σ

=σ
nt

t                                                         (5.3) 

where  represents a particular month (e.g., January) and t 1=n  to N = 5, for the five 

years of the inversion.  

    Figure 5.6 shows the averaged seasonal results (red lines) compared to the reference 

ones (blue lines), and Figure 5.7 shows their corresponding uncertainties as one standard 

deviations bars with the optimal ones (red bars) superimposed on top of the reference 

uncertainties (blue bars). For the tropical plant emissions, the seasonal variations 

generally retain their shapes for the three regions, with the most significant deviations 

from the reference values for the tropical American region. There are two tropical 

American emission peaks. One is in March (early spring) when the available sunlight is 

the strongest during the year at the equator, and the other is in August (summer) when the 

northern tropical temperature is the highest during the year. While tropical plants in the 

Africa have their strongest emissions in the spring, their summer emissions are least, 
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probably because in Africa it is a very dry season in summer and therefore the plant 

growth activities (NPP) are inhibited.  

    Biomass burning emissions are concentrated in tropical regions, especially India and 

Southeast Asia. To study the seasonal behavior of the biomass burning source, we first 

examine the partitioning of the seasonal cycles of the Eastern and Western biomass 

burning sources (Figure 5.6) into the Northern and Southern Hemispheres in Figure 5.8. 

Note that the spring (April and May) peak of the Eastern biomass burning source (BB 

East) comes from the Northern Hemisphere, and the October and November (Southern 

spring) emission peak comes from the Southern Hemispheric biomass burning region. 

The Western biomass burning emission peak in November (Southern spring) comes from 

Southern America. For both Hemispheres the biomass burning emissions are strongest 

during the spring term associated with dry conditions and therefore the amount of 

biomass burned is the largest [Hao and Liu, 1994]. The inversion enhanced the BB 

Eastern emission peak in the Northern Hemisphere in spring, and decreased the BB 

Eastern emission peak in the Southern Hemisphere in spring. The inversion also 

increased the BB Western emission peak in the Southern Hemisphere in spring.  

    Global ocean emissions generally retain the same seasonal variability as the reference 

values, but with an overall reduction. The highest emission rates occur during the 

summer, resulting from the combined effects of the monthly mean wind speeds and sea 

surface temperatures [Lee-Taylor et al., 2001]. For the global salt marshes, its emission 
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peak shifts to be a little earlier (from August to July). Finally, the global soil sink peak 

shifts from August to September. 
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Figure 5.8. Partitioning of the seasonal cycles of the Eastern and Western biomass 

burning sources into the Northern and Southern Hemispheres. Note the dominance of the 

Eastern Northern Hemispheric emissions of methyl chloride. Also the emission peaks of 

the Northern and Southern Hemispheres occur in their respective springs consistent with 

dry conditions conducive to burning.  
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5.3.2. Average annual results 

    The inversion results are finally aggregated to illustrate the global budget of CH3Cl. 

Figure 5.9 and Table 5.3 contain the CH3Cl fluxes averaged over the entire period 

between 2000-2004. The total emissions in Table 5.3 are the sum of the estimated sources, 

the constant industrial source, and the annual average wetland emission magnitude (with 

soil sink excluded). We have aggregated individual processes into tropical plants and 

biomass burning emissions; their individual fluxes are listed in Table 5.4. The averages 

for the seasonal processes are derived by averaging the results shown in Figure 5.4. The 

inversion has directly solved the aseasonal process emissions as annually averaged 

differences from the reference. Figure 5.9 and Table 5.3 also include the optimized errors, 

which are always less than the reference errors due to their reduction by the observations 

in the Kalman filter. For the seasonal processes, Equation (5.3) has been extended to all 

months to determine the annual average errors. In Figure 5.9 the aseasonal uncertainty is 

taken from the last step of the Kalman filter. Note that the final error for the fungal 

emission estimate is much smaller than for the seasonal flux estimates. This is because 

the inversion solves the global fungal emission as a time-invariant variable over the entire 

period, thus allowing error reduction at every time step. Also, we have assumed a perfect 

model which leads to the system random errors to be zero. To better estimate the realistic 

uncertainty of the fungal emission estimate, we have multiplied the initial uncertainty of 

the fungal emission estimate by the averaged percentage standard deviation reduction 

computed for the eight seasonal processes/regions to obtain the final error estimate, as 
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shown in Table 5.3. The seasonal processes, in contrast, have been solved as monthly 

fluxes which already add greater uncertainty to their five-year averages.  

    The CH3Cl inversion results indicate large CH3Cl emissions of 2240 ± 370 Gg yr-1 

from tropical plants, which account for 53.4% of the total emissions. The second largest 

emissions come from biomass burning accounting for 23.4%. The other source strengths 

are relatively small, and their percentages are 7.6% for the oceans, 6.2% for the fungi, 

4.3% for the salt marshes, 3.9% for the industry/incineration, and 1.1% for the wetlands. 

The total global emissions are ~ 4200 Gg yr-1. Relative to their a priori magnitudes, the 

inversion nearly doubles global fungal emissions, slightly increases emissions from 

tropical plants, biomass burning and salt marshes, and reduces the global ocean source 

and soil sink. 
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Figure 5.9. Annual average methyl chloride surface flux magnitudes. Shown are the 

reference (blue bars) and optimized (red bars) values with their 1σ  error bars (yellow). 

The errors on the references are the assumed a priori inversion uncertainties. 

  

    We also tested the sensitivity of the inversion results to different combinations of the 

observations used in the Kalman filter. Inversion with the AGAGE observations only has 

the least effect in modifying the a priori surface flux magnitudes, and the error reductions 

are the least. This is because there are only two AGAGE stations with CH3Cl data (Mace 

Head and Cape Grim) during most of the inversion period (see Figure 5.3). Inversion 

using the data from only the NOAA flask sites has the second least error reductions, 
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because we have added great errors to these low frequency measurements, thus much 

lowering their influence in determining the optimal surface fluxes (see Section 2.2).   

5.4. Inversion check 

    The forward model has been run with the final optimal emission estimates, and the 

predicted mole fractions have been compared with the measurements. Figure 5.10 shows 

the residuals between the optimized and observed monthly mean mole fractions, 

compared to the residuals between the reference and observed monthly mean mole 

fractions at each observing site. The optimization lowers the residuals at some but not all 

the sites.   

5.5. Summary and conclusions 

    We solved for seasonal, annual, and interannual surface fluxes of methyl chloride 

during 2000-2004 using the measurements from the AGAGE, NOAA-GMD, SOGE, and 

NIES sampling networks, a 3-D global chemical transport model, and the Kalman filter. 

The state vector in the Kalman filter includes scaling factors which multiply the a priori 

values of the unknown variables at monthly resolution. Then the optimal emission 

estimates were input into the model to check the inversion results.  

    Large CH3Cl emissions of ~ 2240 Gg yr-1 are estimated for tropical plants. Relative to 

their a priori magnitudes, the inversion nearly doubles global fungal emissions, slightly 

increases emissions from tropical plants, biomass burning and salt marshes, and reduces 

the global ocean source and soil sink. The inversion implies greater seasonal oscillations 
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of the natural sources and sink of CH3Cl compared to the a priori values. The inversion 

also exhibits strong effects of the 2002/2003 globally wide-spread heat episodes and 

droughts on the global emissions from tropical plants, eastern region biomass burning, 

global salt marshes, and on the global soil sink. The 2002/2003 El Niño event was a 

moderate one compared to the 1997/1998 event, while the global land precipitation 

appeared unusually low. There is evidence showing that the global land dryness leads to a 

strong NPP decrease and this is expected to lead to the subsequent decrease in emissions 

from tropical plants. The anomalously dry and hot climate may also lead to increased 

insect damage to vegetation and increased susceptibility of the biomass to large-scale 

burning, resulting in a decrease in global soil consumption and an increase in global 

biomass burning emissions of CH3Cl. Possible future climate change involving 

increasingly dry and hot summers may lead to increased occurrence of decreased NPP 

(and hence decreased tropical CH3Cl emissions), increased biomass burning, increased 

salt marsh plant growth, and decreased soil organic matter and microbial activity (and 

hence the corresponding effects on CH3Cl surface fluxes). 
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Table 5.3. Five-year averaged optimal surface flux values and errors for aseasonal and seasonal processes (units of Gg yr-1). 

Flux type Reference 

In situ + 
NOAA 
flask (5 
sites) 

All without 
SPO in situ 

in situ 
without 

SPO 

Only 
AGAGE 
(2 sites) 

Only 
NOAA 

flask (13 
sites) 

in situ 
without 
NIES 

in situ 
without 
SOGE 

Fungal 128 ± 153 216 ± 109 157 ± 111 261 ± 112 186 ± 114 190 ± 133 91 ± 121 261 ± 112 273 ± 112 

Tropical 2089 ± 511 2337 ± 366 2191 ± 372 2235 ± 371 2078 ± 378 2126 ± 436 2360 ± 406 2235 ± 372 2208 ± 372

Bio. Burn. 918 ± 247 932 ± 182 985 ± 184 979 ± 188 1029 ± 192 912 ± 226 921 ± 201 979 ± 188 989 ± 189 

Oceans 477 ± 143 341 ± 85 455 ± 92 319 ± 92 465 ± 106 475 ± 134 480 ± 106 319 ± 92 319 ± 93 

Salt marsh 170 ± 85 169 ± 66 166 ± 67 180 ± 67 175 ± 68 171 ± 69 171 ± 68 180 ± 67 181 ± 67 

Soil sink -256 ± 131 -250 ± 87 -240 ± 88 -220 ± 96 -215 ± 97 -258 ± 108 -260 ± 89 -220 ± 96 -217 ± 97 

Total Emi. 3992 4205 4164 4184 4143 4084 4233 4184 4180 

 

Table 5.4. Five-year averaged individual optimal values and their errors for emissions from tropical plants and biomass burning in 

Table 5.3. All values are in Gg yr-1.  

Flux type Reference 

In situ + 
NOAA 
flask (5 
sites) 

All without 
SPO in situ 

in situ 
without 

SPO 

Only 
AGAGE 
(2 sites) 

Only 
NOAA 

flask (13 
sites) 

in situ 
without 
NIES 

in situ 
without 
SOGE 

Trop AM 862 ± 259 1033 ± 189 903 ± 193 976 ± 192 837 ± 198 887 ± 239 1000 ± 221 976 ± 192 962 ± 192 

Trop AS 686 ± 346 680 ± 236 723 ± 239 662 ± 240 708 ± 244 689 ± 285 753 ± 262 662 ± 240 656 ± 240 

Trop AF 541 ± 273 624 ± 207 565 ± 209 597 ± 208 533 ± 211 550 ± 227 607 ± 218 597 ± 209 590 ± 209 

BB East 743 ± 227 709 ± 167 797 ± 169 754 ± 172 842 ± 175 731 ± 211 723 ± 187 754 ± 172 767 ± 173 

BB West 175 ± 97 223 ± 73 188 ± 74 225 ± 77 187 ± 79 181 ± 81 198 ± 73 225 ± 77 222 ± 77 
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Figure 5.10. Residuals between the optimized and observed monthly mean mole fractions of methyl chloride (red lines), compared to 

the residuals between the reference and observed monthly mean mole fractions (blue lines) at each observing site. 
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Chapter  6  

  Inverse Results for Chloroform   

    Chloroform (CHCl3) is one of several chlorine-containing gases in the atmosphere that 

are, individually, small contributors to the global chlorine budget, but become significant 

if taken together. The globally averaged mole fraction of chloroform at the earth’s surface 

was previously reported to be about 18.5 ppt contributing about 60 ppt of chlorine to the 

lower troposphere and about 40 ppt of chlorine to the total troposphere [Khalil and 

Rasmussen, 1999a]. Later measurements from the AGAGE network during 1994-1998 

show a much lower global average baseline concentration of 8.9 ± 0.1 ppt with no 

appreciable trend [O’Doherty et al., 2001]. The Northern Hemispheric (NH) mixing 

ratios of CHCl3 are about twice as high as its southern hemisphere (SH) values [Elkins et 

al., 1998; Khalil and Rasmussen, 1999a; O’Doherty et al., 2001]. These observations also 

show that CHCl3 has a very pronounced seasonal cycle with a summer minimum and 

winter maximum, presumably resulting from enhanced destruction by OH in the summer. 

The amplitude of the cycle is dependent on the sampling location. 
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    The chloroform flux into the atmosphere was estimated to be approximately constant at 

some 630 Gg yr-1 by Keene et al. [1999]. About 90% of chloroform emissions are of 

natural origin: the largest single source appears to be in offshore seawater (contributing 

about 360 Gg yr-1), presumed to be natural, but from an undefined biological process 

[Khalil et al., 1999]. Soil processes are the next most important source and the formation 

of chloroform has been shown to depend on oxidation of humic material in the presence 

of chloroperoxidase enzymes and chloride ions [Hoekstra et al., 1998a, b]. Rice fields 

and termite bearing soils have been identified as CHCl3 sources [Khalil et al., 1990, 

1998]. The world’s soils contribute about 200 Gg yr-1 [Khalil et al., 1999]. The industrial 

sources total 66 Gg yr-1 [Aucott et al., 1999] and are predominantly the result of using 

strong oxidizing agents on organic material in the presence of chloride ions, which is a 

direct parallel with the natural processes occurring in soils. The wool pulp and paper 

industry, together with drinking and other water treatments, account for about 55 Gg yr-1 

and the chemical and pharmaceutical industries account for the remainder. Khalil and 

Rasmussen [1999a] estimated that the global emissions are around 470 Gg yr-1 to balance 

the calculated losses due to OH and stratospheric destruction using the observed 

concentrations, which is much less than the composite global emission estimate of 630 

Gg yr-1 [Keene et al., 1999]. Using a 2-D 12-box model and the AGAGE observations, 

O’Doherty et al. [2001] optimally estimated that 64 ± 5% of the emissions originate from 

the NH, supporting a larger role for land based soil sources (largely NH) and/or a 

diminished role for oceanic sources (largely SH). This disagreement with the previously 
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reported high oceanic emission estimates shows that our understanding of the sources of 

chloroform is still incomplete.  

    Chloroform has a short, but uncertain, tropospheric lifetime of about 0.5 year, and as 

such, less than 2% of the CHCl3 emitted at the earth’s surface reaches the lower 

stratosphere to deplete stratospheric ozone [Kindler et al., 1995]. CHCl3 also has a low 

global warming potential [Solomon et al., 1995]. For these reasons, and its largely natural 

origin, CHCl3 has not been included in either the Montreal or Kyoto Protocols. The 

principal removal process from the environment is atmospheric oxidation by the OH free 

radical. Chloroform is also removed by anaerobic and aerobic soil microorganisms and, 

although not important to the global balance, this can have a significant effect on local 

concentrations in soils that cannot equilibrate quickly with the atmosphere. The best 

estimated magnitude of the composite identified CHCl3 sources is 37% greater than the 

better quantified known OH sink [Cox et al., 2003], suggesting the current strengths of 

one or more CHCl3 sources are overestimated.  

    In this chapter we present and discuss the inversion results for the natural surface 

fluxes of chloroform (CHCl3) in a similar format to Chapter 5.  

6.1. Definition of the state vector and its a priori flux maps 

    Years of evidence show significant natural origins of some or most of the chloroform 

found in the atmosphere, as well as industrial sources. There are however very few 

chloroform flux measurements carried out to date. The Reactive Chlorine Emissions 
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Inventory (RCEI) under the auspices of the International Global Atmospheric Chemistry 

Program’s Global Emissions Inventory Activity (GEIA) [Graedel and Keene, 1999] 

provides high resolution (1º × 1º latitude, longitude) annual emission fields for biomass 

burning and anthropogenic industrial sources for the reference year of 1990. We have 

converted these maps to MATCH T42 grids (Figure 6.1) and imposed seasonality on the 

biomass burning source by assuming proportionality to the seasonality of methyl chloride 

(CH3Cl) biomass fuel emissions [Lee-Taylor et al., 2001]. This is a reasonable analogy 

because both CHCl3 and CH3Cl emissions are approximately correlated with CO and CO2 

emissions [Lobert et al., 1999] and therefore they are correlated with each other also. We 

assume constant industrial emissions for CHCl3.  

    Although the oceans and soils are the largest sources of chloroform, their relative roles 

in the global budget of CHCl3 are poorly known. O’Doherty et al. [2001] and Khalil et al. 

[1999] have contrary conclusions on whether the oceans or the soils are the dominant 

source of CHCl3. Although Khalil et al. [1999] provide some information on the 

semihemispheric distributions of the oceanic and soil sources, the inferred global 

chloroform source is larger than the global sink. We adjust these semihemispheric 

oceanic and soil sources by a single factor (~ 69%) [Cox et al., 2003] to roughly balance 

the calculated losses using the observed concentrations [Khalil and Rasmussen, 1999a] 

and take them as our reference values. For the oceanic emissions we distribute them 

evenly to the MATCH T42 grids within each semihemisphere (Figure 6.1). For the 

microbially-related soil emissions we assume a spatial analogy with the microbial soil 

sink of methyl chloride within each semihemisphere, because both processes have a 
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common dominating factor – temperature, and the soils consuming high CH3Cl (which 

means the microbial activity is strong) would emit high CHCl3 whose process also 

depends on microbial enzyme activity. Moreover, CH3Cl taken up by the soils could 

provide more of the required chloride ions to produce CHCl3. There assumptions are 

subject to verification by soil flux measurements.  

    It is likely that the natural production processes in soils would be species dependent 

and seasonal. For example, chloroform release from termite mounds showed a seasonal 

dependence with significantly lower emissions during the winter [Laturnus et al., 2002]. 

It is also reasonable to assume that enzymatic activities that facilitate the formation of 

reactive chlorine species are stronger during the warmer seasons. Therefore, we impose a 

seasonality on the soil source of chloroform by assuming proportionality to the 

seasonality of the soil sink of methyl chloride (CH3Cl) [Lee-Taylor et al., 2001], with the 

latter assuming a positive microbial activity / soil temperature relationship. Since there is 

little information on the seasonal variability of the oceanic emissions of CHCl3, we 

assume constant intra-annual emission rates in our reference model but allow seasonality 

in the subsequent inversions.  

    Figure 6.1 shows the annual average distributions of the CHCl3 emissions from the 

four source types. The biomass burning emissions are concentrated in tropical regions, 

especially in India, Southeast Asia, Central Africa, and South America. The industrial 

emissions are mainly from the Northern Hemisphere, especially from India, Southeast 

Asia, Europe, and Northeastern America.  
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    The dominant CHCl3 removal process in the troposphere is reaction with the hydroxyl 

(OH) radical, accounting for more than 98% of the total destruction rate [Keene et al., 

1999]. This process is simulated using the 3-D OH fields in the MATCH model. The 

same OH fields also account for most of the destruction in the stratosphere.  

    Given the spatial resolution of the available best estimates and the availability of the 

observations, we also estimate the oceanic and soil emissions on a semihemispheric scale 

at a monthly resolution. Within each semihemispheric region, the spatial distributions 

(but not magnitudes) of the source types remain at their reference distributions. We 

estimate global monthly biomass burning source strengths despite its small contribution 

to the global source strength [Lobert et al., 1999] because we expect significant month to 

month variations. The global industrial emissions are kept at their reference values, 

because of their expected relatively small time variations and their spatial correlation 

with the soil distributions. Therefore, the state vector at time k can be expressed as: 
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for the period from 2000 to 2004 (i.e., k=1 to 60 months). The terms “HNH” and “LNH” 

denote higher (30º - 90º) and lower (0º - 30º) latitude Northern Hemisphere, and “HSH” 

and “LSH” denote higher (30º - 90º) and lower (0º - 30º) latitude Southern Hemisphere. 

The global magnitudes of the reference emissions and their involvement in the state 

vector are listed in Table 6.1. The a priori errors for the state vector elements are 

ubiquitously ± 100% of their reference values, which encompass the uncertainty ranges 

in most of the literature. Table 6.2 lists the surface sites whose measurements are used in 

the inversions for CHCl3. 
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Table 6.1. Reference annual average strengths of the sources of atmospheric chloroform 

(CHCl3) and their participation in the inversion. 

Source/Sink Type [reference] Seasonality 
(Y/N ?) 

Strength 
(Gg yr-1) State Vector ? 

Biomass burning [Lobert et al., 1999] Y 2 Y 

Industry [Aucott et al., 1999] N 64 N (reference) 

Oceans [Khalil et al., 1999, adjusted] Y 252 Y (4 regions) 

Soils [Khalil et al., 1999, adjusted] Y 141 Y (4 regions) 

Composite Y 459 - 

 

Table 6.2. List of the stations whose measurements are used in the inversions for CHCl3, 

along with their corresponding numbers as in Table 2.1. 

(1)   MHD (2)   THD (3)   RPB (5)   CGO (6)   JUN 

(7)   MTE (8)   ZEP (9)   HAT (16) BRW (20) MLO 

(19) NWR (22) SMO (24) SPO (23) PSA (21) KUM 

(15) ALT (17) LEF (18) HFM   
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Figure 6.1. Annual average distributions of chloroform emissions. Emission magnitudes and patterns vary by month. Global oceanic 

and soil emissions have been further divided into semihemispheric regions in the inversion. 
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Figure 6.2. Time series of monthly mean chloroform mole fractions from the reference model using the a priori surface fluxes versus 

the observations. 
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6.2. Forward modeling 

    A first step in this modeling study was to assess the ability of the a priori emission 

fields to reproduce chloroform observations, by using these annually repeating reference 

sources in the forward runs of MATCH. We initialized the atmospheric 3-D distribution 

of CHCl3 using the output from a previous multi-year run, scaled to fit the observed mole 

fractions at remote sites such as Alert, Mauna Loa, and Cape Grim during January, 2000. 

These stations were chosen because they represent well the global background 

interhemispheric gradient due to their long distance from strongly emitting sources. The 

reference run was then made from January, 2000 till November, 2005. Figure 6.2 shows 

the monthly mean modeled versus observed mole fractions of CHCl3 at the indicated 

stations over the 6-year period of simulation. The model overall substantially 

overestimated the concentrations of CHCl3, which indicated that the reference emission 

magnitudes derived from Khalil and Rasmussen’s [1999a] observations still 

overestimated one or more sources.    

6.3. Inversion results 

    Figure 6.3 shows the optimized monthly fluxes (red lines) from January, 2000 to 

December, 2004, compared to the annually repeating reference values (blue lines). 

Overall there is not much update of the global biomass burning source strengths. The 

update of a particular emission-related element of the state vector is dependant on the 

sensitivity of the observations to that element. The small contribution of the biomass 
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burning emissions to the global CHCl3 budget makes the sensitivity to this process very 

small. Therefore, it is not surprising that the global biomass burning source did not see 

much improvement. There are significant deviations from the reference cases for the 

semihemispheric oceanic sources and soil sources. Note that we used constant annual 

oceanic emission rates in our reference model, while the inversion results show obvious 

seasonal variations during the five years within each semihemisphere. 

    Figure 6.4 shows the corresponding uncertainties of the optimized estimates by 

superimposing the optimized uncertainties (red bars) on top of the reference uncertainties 

(blue bars). Note that the inversion always acts to reduce the initial uncertainties by 

amounts depending on the value of the observations in constraining each emission 

process or region. There are only small error reductions for the global biomass burning 

sources. 

    The optimized values also show interannual variability in the fluxes. The inversion 

shows summer high and winter low oceanic emissions in both the HNH and HSH. Given 

the relationship between saturation anomaly and sea surface temperature (SST), higher 

SST in the summer should cause larger emissions. Note the anomalously high oceanic 

flux in the HNH for the two summers of 2002/2003, which might have been caused by 

the high sea surface temperature anomalies during the 2002/2003 El Niño event [Knorr et 

al., 2007]. The low emission anomalies from the HNH and LNH soils in the summer of 

2003 and from the LSH and HSH soils in the winters (SH) of 2002 and 2003 might have 

also been caused by the extreme droughts in these two consecutive years, since extreme 
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dryness might have caused the microbial activity to be unusually weak and organic 

matter to be decreased. 
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Figure 6.3. Inversion results for the seasonal processes of chloroform. Blue lines show the reference magnitudes, which are annually 

repeating. Red lines show the optimized estimates, which contain interannual variability.  
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Figure 6.4. The corresponding uncertainties (1σ  error bars) of the inversion results in Figure 6.3, with the optimized error bars (red) 

superimposed upon the reference error bars (blue).  
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Figure 6.5. 5-year averaged seasonal emissions for chloroform. Blue lines show the reference magnitudes. Red lines show the 

optimized estimates. 
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Figure 6.6. The corresponding uncertainties (1σ  error bars) of the inversion results in Figure 6.5, with the optimized error bars (red) 

superimposed upon the reference error bars (blue). 
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6.3.1. Average seasonal results 

    To show a single representative seasonal cycle of the natural processes, we take the 

arithmetic average of the five year results (e.g., the five Januarys are averaged to indicate 

a representative January). The corresponding associated uncertainties are estimated using:   

N

N

1

2
,∑σ

=σ
nt

t                                                         (6.3) 

where  represents a particular month (e.g., January) and t 1=n  to N = 5, for the five 

years of the inversion.  

    Figure 6.5 shows the averaged seasonal results (red lines) compared to the reference 

ones (blue lines), and Figure 6.6 shows their corresponding 1σ  uncertainties with the 

optimal ones (red bars) superimposed on top of the reference uncertainties (blue bars). As 

noted earlier, there is no significant deviation from the reference case for the global 

biomass burning source.  

    The derived oceanic emissions show well-established seasonal variations in the HNH 

and HSH. Both regions show a summer maximum and a winter minimum in the oceanic 

emissions. Despite the importance of the oceanic flux of chloroform, not much 

information on the processes that are involved in chloroform formation is available. 

Presumably these processes are biological. If we assume that the NOAA-GMD proxy 

relationship between CH3Cl saturation anomaly and sea surface temperature (SST) 
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[Khalil et al., 1999] is also applicable to chloroform, higher sea surface temperature in 

the summer should imply higher saturation and transfer velocities across the air-sea 

interface, and the opposite for the lower SST in the winter [Khalil et al., 1999]. There is a 

less clear seasonality of the tropical oceanic emissions, presumably resulting from the 

smaller summer-winter contrast in the sea surface temperature of the tropical oceans. 

There is however a tendency for highest emissions in February-April in both tropical 

semihemispheres.  

    Forest, grasslands, and peat moorland soils are a possible terrestrial sources of 

chloroform [Laturnus et al., 2002]. Measurements of the high ratios of the top soil air to 

ambient air CHCl3 concentrations (Csoil/Cambient) and the maximum CHCl3 concentrations 

observed in the top organic rich soil layer [Hoekstra et al., 1998b; Haselmann et al., 

2000a] indicated a biogenic formation of chloroform in the upper layers of the soil. This 

also leads to the question of whether seasonal variations exist. Our inversion shows 

distinct seasonal variations of the soil sources for chloroform in the four semihemispheres, 

generally with summer maximum and winter minimum. These results resemble the 

findings of the year-round study in a spruce forest conducted by Haselmann et al. [2002], 

which showed highest production in warm and humid periods and lower activity in dry 

and/or cold periods. The mechanism for chloroform release from soils has been 

demonstrated to be chlorination of soil acids, mainly humic materials, by hypochlorous 

acid (HOCl). This is generated from the chloride ion that is ubiquitous in soil, and 

hydrogen peroxide (H2O2), in the presence of chloroperoxidase (CPO) enzyme. 

Chloroperoxidase activity has been observed in many soil extracts [Asplund et al., 1993; 
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Laturnus et al., 1995] and has been shown in the laboratory to catalyze the chlorination 

by hydrogen peroxide (H2O2) and chloride ion of simple organic compounds to produce 

chloroform [Walter and Ballschmiter, 1992]. The source of chloroperoxidase enzyme is 

likely to be fungal [Hoekstra et al., 1998b; Hjelm, 1996]. Rice paddy soils and termite 

bearing soils have also been identified as CHCl3 sources [Khalil et al., 1990, 1998]. The 

chloroform release from termite mounds also showed a seasonal dependence with 

significantly lower emissions during the winter [Khalil et al., 1990]. No attempt has been 

made in this work to determine the detailed seasonal behavior of different types of 

terrestrial soil sources of chloroform. The inversions give a general idea of the annual 

cycles of the aggregated terrestrial sources on a semihemispheric scale, for the limited 

measurements taken from a small number of observation sites and from the very few 

CHCl3 in situ flux experiments carried out to date.  

6.3.2. Average annual results 

    The inversion results enable quantification of the global average annual budget of 

chloroform (CHCl3). Figure 6.7 and Table 6.3 contain the CHCl3 fluxes averaged over 

the entire period between 2000-2004. We have further aggregated individual regions into 

global oceanic and soil emissions (Table 6.4); their individual fluxes are listed in Table 

6.3. The averages for the seasonal processes have been derived by averaging the results 

shown in Figure 6.3. Figure 6.7 and Table 6.3 also include the optimized errors for which 

Equation (6.3) has been extended to all months to determine the annual average errors. 

The optimization errors are always less than the reference errors due to the reductions in 
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the Kalman filter driven by the observations. The seasonal processes, which have been 

solved as monthly fluxes, have greater uncertainty in their five-year averages. 

    As noted before there is no significant update for the global biomass burning source. 

Our inversion results show greater reductions for the tropical oceanic emissions relative 

to the a priori ones than they show for the extratropical regions. The inversion still 

indicates the greater importance of the tropical relative to higher latitude oceanic 

emissions, probably related to the higher sea surface temperature in the tropical regions. 

The oceanic fluxes are expected to decrease poleward along with the SSTs, and we 

suspect that the polar oceans are actually a sink of chloroform, thus also contributing to 

smaller net oceanic fluxes in the extratropical regions. The global annual oceanic 

emission totals 168 ± 106 Gg yr-1, and the percentages in the 4 regions are 7%, 37%, 42%, 

and 14% respectively, from north to south. The bias of the oceanic emissions toward the 

Southern Hemisphere probably results simply from the larger oceanic area in the 

Southern Hemisphere. The deduced soil sources in the four regions deviate slightly from 

their a priori values, and the (north to south) percentages are 41%, 28%, 24%, and 7%, 

respectively, again approximately proportional to the terrestrial (land) area in the four 

semihemispheres.  

    The estimated total oceanic emissions (45%) are still greater than the soil emissions 

(37%). The partitioning of the total sources into the Northern and Southern Hemispheres 

are 62% and 38% respectively, which is very close to the estimate of O’Doherty et al. 

[2001] who deduced 64 ± 5% of the emissions originating from the Northern Hemisphere. 
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Figure 6.7. Annual average chloroform surface flux magnitudes. Shown are the reference 

(blue bars) and optimized (red bars) values with their 1σ  error bars (yellow). The errors 

on the references are derived from the assumed a priori inversion uncertainties.  

 

6.4. Inversion check 

    To check the inversion we ran the forward model with the final optimal emission 

estimates, and compared the predicted mole fractions with the measurements. Figure 6.8 

shows the residuals between the optimized and observed monthly mean mole fractions, 

compared to the residuals between the reference and observed monthly mean mole 
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fractions at each observing site. The optimized mole fractions tend to be much closer to 

the observations at most of the sites compared to the reference. Also note that the fit to 

measurements at WLEF tower and Harvard Forest stations received least improvement. 

This is because these two flask sites are located in an inland region which is subject to 

greater mismatch errors compared to other sites (due to their greater trace gas variability 

caused from local influences). Also data for these flask sites received larger errors (less 

weight) due to low sampling frequencies.  

6.5. Summary and conclusions 

    We solved for seasonal, annual, and interannual surface fluxes of chloroform during 

2000-2004 using the adapted Kalman filter as described in Chapter 4. The main 

conclusions are summarized below.  

    Biomass burning is still indicated as a minor source of chloroform. The oceanic 

emissions are greater than the soil emissions. Seasonal cycles have been derived for both 

the oceanic and terrestrial sources, with summer maxima and winter minima emissions, 

presumably because both processes are microbially activated and the microbial activities 

favor warmer environments. 

    The interannual variability of the derived oceanic and soil fluxes reflects the impact of 

the 2002/2003 globally wide-spread warming and droughts. The anomalously high 

emissions from the HNH oceans in the two summers of 2002 and 2003 are likely caused 

by high sea surface temperature anomalies, and the low emission anomalies from the 
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HNH and LNH soils in the summer of 2003 and from the LSH and HSH soils in the 

winters (SH) of 2002 and 2003 are likely caused by the extreme droughts in these two 

consecutive years.  

 

Table 6.3. Five-year averaged optimal surface flux values and their 1  errors for 

seasonal processes/regions (units of Gg yr

σ
-1). 

Flux type Khalil et al., 1999 Reference Optimization 

    

Biomass burning - 1.98 ± 2.03 1.97 ± 1.83 

    

90ºN-30ºN 20.2 13.6 ± 13.6 11.5 ± 9.7 

30ºN-0º 150.4 105.1 ± 105.1 62.8 ± 68.4 

0º-30ºS 150.4 105.3 ± 105.3 70.5 ± 77.8 

30ºS-90ºS 40.4 27.5 ± 27.5 23.1 ± 20.3 

Oceans 

Subtotal 361.3 251.6 ± 151.9 167.9 ± 106.0 

     

90ºN-30ºN 67.3 47.9 ± 57.3 55.6 ± 34.0 

30ºN-0º 67.3 45.6 ± 45.9 38.2 ± 34.1 

0º-30ºS 56.1 37.7 ± 37.9 33.1 ± 28.4 

30ºS-90ºS 11.2 9.4 ± 9.6 8.8 ± 7.1 

Soils 

Subtotal 202.0 140.7 ± 83.2 135.7 ± 56.4 
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Table 6.4. Five-year averaged optimal surface flux values and their errors for seasonal 

processes (aggregated regions). All values are in Gg yr-1. 

Flux type Keene et al., 1999 Reference This work 

Industry 65 64.5 64.5 

Biomass burning 2 1.98 ± 2.03 1.97 ± 1.83 

Oceans 361 252 ± 152 168 ± 106 

Soils 202 141 ± 83 136 ± 56 

Total 630 459 ± 173 370 ± 120 
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Figure 6.8. Residuals between the optimized and observed monthly mean mole fractions of chloroform (red lines), compared to the 

residuals between the reference and observed monthly mean mole fractions (blue lines) at each observing site. 
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Chapter  7  

  Inversion Results for Dichloromethane 

    The global average mole fraction of dichloromethane, or methylene chloride (CH2Cl2), 

was estimated at about 25 ppt. The corresponding tropospheric chlorine burden was 

approximately 0.25 Tg Cl (in CH2Cl2). Mixing ratios of CH2Cl2 in the Northern and 

Southern Hemispheres were about 40 and 17 ppt, respectively [Khalil, 1999; Khalil et al., 

1999]. This large interhemispheric difference reflects the significant contribution of 

anthropogenic emissions to ambient concentrations in the Northern Hemisphere. In more 

recent studies, six years (1998-2004) of in situ observations of CH2Cl2 from the AGAGE 

station at Cape Grim, Tasmania show the average background level there was 8.74 ± 0.03 

ppt, with a small but significant growth of 0.05 ± 0.01 ppt yr-1, while the AGAGE station 

at Mace Head, Ireland shows an average mole fraction of 30.8 ± 0.2 ppt with a downward 

trend of 0.3 ± 0.1 ppt yr-1 [Simmonds et al., 2006]. All CH2Cl2 observations show strong 

annual cycles as expected from the fact that reaction with the OH radical is the primary 

CH2Cl2 sink. 
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    CH2Cl2 is a mainly anthropogenic trace gas and more than 70% of its emissions 

originate from industrial sources [Keene et al., 1999]. CH2Cl2 is a highly volatile solvent 

which finds application in a wide variety of industrial and commercial processes. It is 

used in paint removers, degreasing and cleaning fluids, and even as an extraction solvent 

in the decaffeination of coffee. However, concerns about its health effects have led to a 

search for alternatives to it in many of these applications. Global industrial emissions 

from audited sales data were estimated at about 580 Gg yr-1 in 1990, and have declined 

steadily since then at a rate of about 12 Gg yr-2 [McCulloch et al., 1999, updated]. Natural 

sources are not well characterized. Oceans and biomass burning have been identified and 

estimated to contribute about 25% and 5% respectively to global emissions [Keene et al., 

1999]. The best estimated magnitude of the composite identified CH2Cl2 sources is 38% 

greater than the better quantified known OH sink [Cox et al., 2003], suggesting that the 

current strengths of one or more of the CH2Cl2 sources are overestimated. 

    As noted earlier, CH2Cl2 is removed from the atmosphere primarily by reaction with 

OH yielding atmospheric partial OH-removal lifetime of about 150 days. Compared to 

longer-lived chlorocarbons, this significantly lowers its chances of reaching the 

stratosphere where it would be damaging ozone. Because of its low impact on 

stratospheric ozone it is not regulated by the Montreal Protocol. However, it is classified 

as a hazardous air pollutant and toxic volatile organic compound in regional air quality 

inventories [Simmonds et al., 2006]. Because of its short lifetime, CH2Cl2 concentrations 

are largely influenced by local/regional emissions. Simmonds et al. [2006] used the 

observations at Mace Head to deduce the European emissions of CH2Cl2 and found that 
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they were much lower than the industry estimates based on industry sales data 

[McCulloch et al., 1999, updated]. The differences could be attributed to errors in either 

or both estimating procedures, and more work is needed to resolve these issues. 

    In this chapter we present and discuss the inversion results for the CH2Cl2 industrial 

emissions and the seasonally varying CH2Cl2 emissions from the oceanic and biomass 

burning sources, using a similar approach to that used in Chapters 5 and 6.  

7.1. Definition of the state vector and its a priori flux maps 

    The sources of dichloromethane are both anthropogenic and natural. The Reactive 

Chlorine Emissions Inventory (RCEI) under the auspices of the International Global 

Atmospheric Chemistry Program’s Global Emissions Inventory Activity (GEIA) 

[Graedel and Keene, 1999] provides high resolution (1º × 1º latitude, longitude) annual 

emission fields for the biomass burning and anthropogenic industrial sources for the 

reference year of 1990. We have converted these maps to MATCH T42 grids (Figure 7.1) 

and imposed seasonality on the biomass burning source by assuming proportionality to 

the seasonality of methyl chloride (CH3Cl) biomass fuel emissions [Lee-Taylor et al., 

2001]. This is a reasonable assumption because both CH2Cl2 and CH3Cl emissions are 

correlated with CO and CO2 emissions [Lobert et al., 1999] and are therefore also 

correlated with each other. Since the interannual variations of the mole fractions in the 

NH and SH were only about ± 1% and ± 0.6% per year respectively [Simmonds et al., 

2006], the industrial sources presumably remained at fairly stable levels for the five-year 

period (2000-2004) investigated here. Therefore in this work we estimate five-year 
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average magnitudes for the industrial sources, so that the corresponding state vector 

elements in the Kalman filter are time-invariant constant variables. We have further 

divided the global industrial source into eight regions: Europe (IND Europe), Northwest 

Asia (IND NW Asia), South Asia (IND So Asia), Southeast Asia (IND SE Asia), Africa 

(IND Africa), Australia (IND Australia), North America (IND N. Amer), and South 

America (IND S. Amer), as shown in Figure 7.2.  

    Although evidence has been presented that the oceans are another natural source of 

dichloromethane, the nature and their roles in the global budget of CH2Cl2 are poorly 

known [Moore, 2004]. There are very few flux measurements for the natural oceanic 

source of dichloromethane, and the magnitude of the flux is therefore extremely uncertain 

at present [Khalil et al., 1999; Moore, 2004]. For the forward modeling we used two 

kinds of oceanic emission distribution fields as described below. For the first one, Khalil 

et al. [1999] provide semihemispheric oceanic emission rates of CH2Cl2, which have 

been distributed evenly to the MATCH T42 grids within each region. We call this the 

“uniform” oceanic emissions case. For the second distribution field, we note that there is 

evidence showing that the net CH2Cl2 source in the lower latitudes and the net uptake of 

CH2Cl2 in the higher latitudes [Moore, 2004], are similar to those for methyl chloride 

(CH3Cl). Therefore, we use the CH3Cl monthly emission fields as our proxy for the 

regional distribution and seasonal variability of the oceanic emissions of CH2Cl2, and call 

this the “non-uniform” oceanic emissions case. The global magnitudes of both kinds of 

oceanic emission fields are set to be equal to the estimate of Khalil et al., 1999 scaled by 

a single factor (as described below). We then compared the two forward runs (with the 
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two different cases of oceanic emissions) with the observations, and chose the non-

uniform case, which was closer to the observations, as our reference. 

    The dominant removal process for CH2Cl2 in the troposphere is reaction with the 

hydroxyl (OH) radical, accounting for more than 98% of its total destruction rate [Keene 

et al., 1999]. This process is simulated by the 3-D OH fields in the MATCH model. The 

OH fields also account for most of the CH2Cl2 destruction in the stratosphere. Since, like 

CHCl3, the best estimated magnitude of the composite identified CH2Cl2 sources is much 

greater than the better quantified known OH sink [Cox et al., 2003], we further adjust the 

global industrial and oceanic emissions (the two dominant sources) by a single factor (~ 

70%) [Cox et al., 2003] to roughly balance the calculated losses before optimization and 

take them as our reference values. 

    Given the spatial resolution of the available best estimates and the available 

observations, we estimate the biomass burning and oceanic emissions on a 

semihemispheric scale at a monthly resolution. Within each semihemispheric region, the 

spatial distributions of the source types remain as their reference values. The state vector 

at time k is expressed as:  
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with the observations and the inversions covering the period from 2000 to 2004 (60 

months total). The terms “HNH” and “LNH” denote higher (30º - 90º) and lower (0º - 30º) 

latitude Northern Hemisphere, and “HSH” and “LSH” denote higher (30º - 90º) and 

lower (0º - 30º) latitude Southern Hemisphere. The global magnitudes of the reference 

emissions and their roles in the state vector are listed in Table 7.1. The a priori errors for 

the industrial elements are ± 100% of their reference values except Southeast Asia which 

has ± 200% initial uncertainty. For the seasonal elements the a priori errors are 

ubiquitously ± 50% of their reference values, which encompass the uncertainty ranges in 

most of the literature. The surface sites whose observations are used in the inversions for 

CH2Cl2 are summarized in Table 7.2. 
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Table 7.1. Reference annual average strengths of the sources of atmospheric 

dichloromethane (CH2Cl2) and their participation in the inversion. 

Source/Sink Type [reference] Seasonality 
(Y/N ?) 

Strength 
(Gg yr-1) State Vector ? 

Industry [McCulloch et al., 1999, adjusted] N 408 Y (8 regions) 

Biomass burning [Lobert et al., 1999] Y 59 Y (4 regions) 

Oceans [Khalil et al., 1999, adjusted] Y 138 Y (4 regions) 

Composite Y 604 - 

 

Table 7.2. List of the stations whose measurements are used in the inversions for CH2Cl2, 

along with their corresponding numbers as in Table 2.1. 

(1)   MHD (2)   THD (3)   RPB (5)   CGO (6)   JUN 

(7)   MTE (8)   ZEP (9)   HAT (16) BRW (20) MLO 

(19) NWR (22) SMO (24) SPO (23) PSA (21) KUM 

(15) ALT (17) LEF (18) HFM   
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Figure 7.1. Annual average distributions of the reference dichloromethane emissions. Natural emission magnitudes and patterns vary 

by month. Global industrial emissions have been divided into eight regions as shown in Figure 7.2, and global biomass burning and 

oceanic emissions have been further divided into semihemispheric regions in the inversion (see text). 
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Figure 7.2. We show the partitioning of the global industrial source into the eight chosen 

regions. Also shown are the MATCH T42 grids. The regional magnitudes are estimated 

in the Kalman filter as five-year average values, and the spatial distribution within each 

region remains at its a priori distribution. 
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Figure 7.3. Time series of monthly mean dichloromethane mole fractions from the reference model run using the a priori surface 

fluxes are compared to the observations (with and without pollution for the high frequency in situ observations).  
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7.2. Forward modeling 

    To assess the ability of the a priori emission fields to reproduce dichloromethane 

observations, we used the annually repeating reference sources in forward runs of 

MATCH. We initialized the atmospheric 3-D distribution of CH2Cl2 using the output 

from a previous multi-year run, scaled to fit the observed mole fractions at remote sites 

such as Alert, Mauna Loa, and Cape Grim during January, 2000. These stations were 

chosen because they represent well the global background interhemispheric gradient due 

to their distance from strongly emitting sources. The reference run was then made from 

January, 2000 to November, 2005. The “perturbation” runs needed to compute 

sensitivities of model mole fractions to the eight regional industrial sources were also 

made simultaneously using the method described in Chapter 4. Figure 7.3 shows the 

monthly mean modeled versus observed mole fractions of CH2Cl2 at the indicated 

stations over the 6-year period of the simulation. As noted before, we have carried out 

two forward runs, one with uniform oceanic emissions (thinner blue lines), and the other 

with the oceanic emissions proportional to the methyl chloride oceanic emissions (thicker 

blue lines). The largest differences between the two runs occur at Cape Grim, South Pole, 

and Palmer stations, with the non-uniform oceans case showing a closer fit to the 

observations. This indicates that the non-uniform oceans case possesses more realistic 

oceanic surface flux rates and this case is therefore used as our reference.  
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7.3. Inversion results  

7.3.1. Industrial emissions 

    For the presumed constant industrial sources, convergence towards a solution occurs 

over all time steps, as shown in Figure 7.4. It turns out that there is not enough data to 

separately resolve the European region and the Northwest Asia region, so we have 

aggregated these two regions into one element in the state vector, with the relative ratio 

of their emissions being kept at the reference value. Note that for the regions such as 

Europe and Northwest Asia, Southeast Asia, and North America with larger a priori 

emission magnitudes, the initial errors (blue bars) are very high (± 100% to ± 200%), and 

decrease more rapidly. The optimized value is the final value in each plot, corresponding 

to the use of the final observations in November, 2005. Because the aseasonal emissions 

are only fully optimized at the final step of the time series, earlier seasonal emissions 

(whose estimates also depend on the aseasonal values) at the beginning of the filter will 

not be fully optimized. In order to fully optimize all seasonal monthly values, we run the 

Kalman filter a second time fixing the aseasonal values to their optimized values from the 

first run of the Kalman filter.  
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Figure 7.4. Convergence of the estimates of the magnitudes (and their 1  errors) for the 

regional industrial sources in the Kalman filter. Unlike the seasonal inversions, which 

solve for monthly fluxes, a single optimized flux estimate is made for each aseasonal 

source over the entire 6-year time period. The optimized value is the last value, after all 

observations have been used.   

σ

 

    Figure 7.5 shows the comparison of the a posteriori optimal estimates and the a priori 

reference estimates and their relative regional importance to the global total industrial 

emission. The global optimal estimate of the industrial source is 430 ± 12 Gg yr-1. Our 

derived European emissions of 42 ± 2 Gg yr-1 are much lower than the estimate of 130 

Gg yr-1 from industry sales data [McCulloch et al., 1999], and marginally lower than the 
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estimates of Simmonds et al. [2006] using model inversions (55 Gg yr-1) and the CO ratio 

method (50 Gg yr-1) using CO inventory [Reimann et al., 2005]. Our derived Southeast 

Asian emission of 195 ± 4 Gg yr-1 is nearly double its reference value, and the North 

American emission of 95 ± 4 Gg yr-1 is slightly less than its reference. Emissions from 

other regions are all small but also show differences from their reference values. 
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Figure 7.5. A priori (left chart) and a posteriori (right chart) regional contributions to the 

global industrial emission of dichloromethane. 

  

7.3.2. Natural emissions 

    Figure 7.6 shows the optimized monthly fluxes (red lines) from January, 2000 to 

December, 2004, compared to the annually repeating reference values (blue lines). There 

are significant deviations from the reference cases for both the biomass burning and 

 142



oceanic sources. Overall there are larger seasonal variations than the references for 

almost all of the processes/regions.  

    The optimized values also capture the full interannual variability in the fluxes. There 

were relatively higher emissions from biomass burning in the LNH and LSH in the two-

year frame 2002/2003. Like the CH3Cl emissions, these anomalies could be attributed to 

the extreme 2002/2003 globally wide-spread heat and drought conditions (which were 

partly caused by the 2002/2003 El Niño event that lasted from September 2002 to August 

2003 [Knorr et al., 2007]). Recent studies show a consistent link between El Niño and 

drought in the tropics [Lyon, 2004] and mid latitudes [Zeng et al., 2005b]. While the El 

Niño event during this time was moderate compared to the extreme 1997/1998 El Niño, 

the period 2002/2003 appears unusual with global land precipitation very low, leading to 

very dry and hot conditions [Knorr et al., 2007]. These dry and hot conditions might lead 

to increased insect damage to vegetation and increased susceptibility of the boreal biome 

to fire [Kobak et al., 1996; Ayres and Lombardero, 2000]. The enhanced fire events are 

expected to emit more CH2Cl2 than usual in agreement with our inversion.  

    As for the oceanic fluxes, the inversion retains the phasing of the seasonal variations 

(summer maxima and winter minima) of the reference HNH oceanic fluxes, but with 

larger and interannually varying amplitudes. The HSH oceans, which are shown in their 

reference as a net sink of CH2Cl2 during the year, are generally indicated by the inversion 

as a net source of CH2Cl2 during summer and a net sink during winter, but with other 
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complicated variations. There are larger seasonal and interannual variations in the 

tropical oceanic fluxes compared to their a priori values.  

    Figure 7.7 shows the decrease of uncertainties resulting from the inversions by 

superimposing the optimized uncertainties (red bars) on top of the reference uncertainties 

(blue bars). As noted for the other chloromethanes, the inversion acts to reduce the initial 

uncertainties by amounts depending on the value of the observations in constraining each 

emission process or region. Uncertainties for the oceans shrink the most; those for 

biomass burning sources have smaller reductions.   
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Figure 7.6. Inversion results for the seasonal processes of dichloromethane. Blue lines show the reference magnitudes, which are 

annually repeating. Red lines show the optimized estimates, which contain interannual variability. The total value is the sum of the 

eight seasonal processes plus the aseasonal industrial emission estimates (Figure 7.4).  
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Figure 7.7. The corresponding uncertainties (1σ  error bars) of the inversion results in Figure 7.6, with the optimized error bars (red) 

superimposed upon the reference error bars (blue).  
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Figure 7.8.  5-year averaged seasonal results for dichloromethane emissions. Blue lines show the reference magnitudes. Red lines 

show the optimized estimates. 
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Figure 7.9. The corresponding uncertainties (1σ  error bars) of the inversion results in Figure 7.8, with the optimized error bars (red) 

superimposed upon the reference error bars (blue). 
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7.3.3. Average seasonal results 

    As before, we compute the average seasonal cycles for the seasonal emission processes, 

by taking the arithmetic average of the five year results. The corresponding associated 

uncertainties are estimated using:   

N

N

1

2
,∑σ

=σ
nt

t                                                         (7.3) 

where  represents a particular month (e.g., January) and t 1=n  to N = 5, for the five 

years of the inversion.  

    Figure 7.8 shows the averaged seasonal results (red lines) compared to the reference 

ones (blue lines), and Figure 7.9 shows their corresponding 1σ  uncertainties with the 

optimal ones (red bars) superimposed on top of the reference ones (blue bars). Biomass 

burning emissions are concentrated in tropical regions, especially in India, Southeast Asia, 

Central Africa, and South America. To study the seasonal behavior of the biomass 

burning source, we show the seasonal cycles of the biomass burning sources in the four 

semihemispheres in Figure 7.10. Note that emissions from biomass burning in Central 

Africa, India, and Southeast Asia (LNH BB) peak in April and May (Northern Spring), 

and emissions from South America and South Africa (LSH BB) peak in October and 

November (Southern spring). Similar to CH3Cl, the biomass burning emissions for both 

tropical regions are strongest during the spring dry season that has the largest amount of 
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biomass burned [Hao and Liu, 1994]. Our inversion generally retains the seasonal cycles 

of the reference emissions, but enhances the peaks for HNH BB, LNH BB, and LSH BB. 
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Figure 7.10. Seasonal cycles of the semihemispheric biomass burning sources of 

dichloromethane. Note the dominance of the tropical emissions. Biomass burning 

emissions from the HSH are very small and use the right-hand axis as their scale. Also 

the emission peaks for the tropical Northern and Southern Hemispheres occur in their 

respective (dry season) springs.  

 

    The derived oceanic emissions show well-established seasonal variations in the HNH, 

LNH and HSH (Figure 7.8). These three regions show summer maxima and winter 

minima in their oceanic emissions. Weakly soluble gases like CH2Cl2 may show 
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supersaturation in ocean surface waters in summer on account of warmer water 

temperatures and thus diminished solubility. Also, the tropical regions are expected to 

have larger emissions than higher latitude regions, consistent with their higher water 

temperatures. This effect is amplified for CH2Cl2 by the summertime decrease in its 

concentration in the atmosphere due to OH destruction. On the basis of measurements of 

oceanic supersaturation of CH2Cl2 from Khalil and Rasmussen [1998] and Singh et al. 

[1983], Khalil et al. [1999] estimated a CH2Cl2 flux of 160 Gg yr-1 from the ocean to the 

atmosphere. As noted before, it is significant that the previous budget of CH2Cl2 had an 

excess of sources over sinks (230 Gg yr-1, [Cox et al., 2003]) that was even larger than 

the previous estimated ocean emission. Our inversion indicates a global oceanic emission 

total of only 124 ± 38 Gg yr-1. Despite the importance of the oceanic flux of 

dichloromethane, not much information on the processes that are involved in 

dichloromethane production is available. Measurements of dichloromethane in the North 

Atlantic and Labrador Sea show that its distribution closely matches that of CFC 11 

[Moore, 2004], which is known to have an entirely land-based source. Although CH2Cl2 

has a short lifetime in the atmosphere, it appears to persist for years to decades in the 

intermediate and deep ocean. The work of Moore [2004] points strongly to a transfer of 

CH2Cl2 to the deep ocean during winter, followed by horizontal transport, upwelling to 

the ocean surface and re-emission to the atmosphere in the summer. Measurement of 

oceanic saturation levels throughout the year would be needed to establish whether the 

ocean is indeed a net source or is simply re-emitting in summer the CH2Cl2 that was 

taken up in the previous winter.   
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7.3.4. Average annual results 

    The inversion results have been aggregated to compute the global budget of 

dichloromethane. Figure 7.11 and Table 7.3 contain the CH2Cl2 regional fluxes averaged 

over the entire 5-year period between 2000-2004. We have further aggregated the 

semihemispheric seasonal processes into global biomass burning and global oceanic 

emissions as listed in Table 7.4; their individual fluxes are listed in Table 7.3. The 

average regional industrial sources are solved directly in the filter as single constant 

values. The averages for the seasonal processes are derived by averaging the results 

shown in Figure 7.6. Figure 7.11 and Table 7.3 also include the optimized errors. For the 

seasonal processes, Equation (7.3) has been applied to all months to determine their 

annual average errors. The errors for the optimized industrial sources are much less than 

the reference errors due to the reductions by all of the observations used in the Kalman 

filter. The seasonal processes, which are solved as monthly fluxes, have greater 

uncertainty in their five-year averages than the aseasonal processes, due to the fewer 

observations used to deduce them. 

    The global biomass burning emission magnitude is 75 ± 18 Gg yr-1. Our inversion 

results show increases for the Northern tropical oceanic emissions and decreases for the 

Southern tropical oceanic emissions relative to the a priori ones. The inversion still 

indicates the greater importance of the tropical oceanic emissions, probably related to the 

higher sea surface temperatures and resultant supersaturations in the tropical regions. The 

oceanic fluxes are expected to decrease poleward, and we suspect that the polar oceans 
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are actually net sinks of dichloromethane, thus contributing to the smaller net oceanic 

fluxes in the extratropical regions. The global annual oceanic emission totals 124 ± 38 Gg 

yr-1, and the percentages of the emissions in the 4 regions are 3%, 70%, 25%, and 2%, 

from north to south respectively. 

    The derived total global source for CH2Cl2 is 629 ± 44 Gg yr-1. The relative importance 

of the industrial, oceanic and biomass burning sources are 68%, 20% and 12%, 

respectively.  
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Figure 7.11. Annual multi-year average dichloromethane surface flux magnitudes. 

Shown are the reference (blue bars) and optimized (red bars) values with their 1  error 

bars (yellow). The errors on the references are derived from aggregating the assumed a 

priori inversion uncertainties.  

σ
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Table 7.3. Five-year averaged optimal surface flux values and their errors for the 

industrial and natural processes/regions (units of Gg yr-1). 

Flux type Keene et al., 1999 Reference Optimization 

    

Europe 184 129 ± 129 42 ± 2 

NW Asia 27 19 ± 19 6 ± 0.3 

So Asia 46 32 ± 32 52 ± 9 

SE Asia 118 83 ± 166 195 ± 4 

Africa 20 14 ± 14 19 ± 5 

Australia 5 3 ± 3 7 ± 1 

N. Amer 168 118 ± 118 95 ± 4 

S. Amer 13 9 ± 9 14 ± 3 

Industry 

Subtotal 581 408 ± 244 430 ± 12 

    

90ºN-30ºN 9.1 9.1 ± 4.9 11.2 ± 4.0 

30ºN-0º 29 29 ± 16 38 ± 13 

0º-30ºS 20 20 ± 13 25 ± 11 

30ºS-90ºS 0.7 0.7 ± 0.4 0.7 ± 0.3 

Biomass 
burning 

Subtotal 59 59 ± 21 75 ± 18 

     

90ºN-30ºN 23 1.8 ± 3.6 3.5 ± 3.0 

30ºN-0º 51 75 ± 38 88 ± 29 

0º-30ºS 52 76 ± 38 31 ± 24 

30ºS-90ºS 70 -15 ± 8 2 ± 5 

Oceans 

Subtotal 196 138 ± 54 124 ± 38 

     

 Total 836 604 ± 251 629 ± 44 
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Table 7.4. Five-year averaged optimal surface flux values and their errors for the 

industrial and natural processes (aggregated regions). All values are in Gg yr-1. 

Flux type Keene et al., 1999 Reference This work 

Industry 581 408 ± 244 430 ± 12 

Biomass burning 59 59 ± 21 75 ± 18 

Oceans 196 138 ± 54 124 ± 38 

Total 836 604 ± 251 629 ± 44 
 

 

7.4. Inversion check 

    Once again, we check the inversions by running the forward model with the final 

optimal estimates, and comparing the predicted mole fractions with the measurements. 

Figure 7.12 shows the residuals between the optimized and observed monthly mean mole 

fractions, compared to the residuals between the reference and observed monthly mean 

mole fractions at each observing site. The mole fractions computed using the optimal 

emissions tend to be much closer to the observations at most of the sites than the 

reference. Also note the fits to measurements at WLEF tower and Harvard Forest stations 

showed least improvement, because these two flask sites are located in inland regions, 

and are thus subject to greater mismatch errors compared to other sites due to their 

greater trace gas variability driven by nearby local sources.  
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Figure 7.12. Residuals between the optimized and observed monthly mean mole fractions of dichloromethane (red lines), compared to 

the residuals between the reference and observed monthly mean mole fractions (blue lines) at each observing site. 
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7.5. Summary and conclusions 

    We solved for annual industrial, and seasonal and interannual biomass burning and 

oceanic monthly fluxes of dichloromethane during 2000-2004 using MATCH, 

observations, and the discrete Kalman filter as described in Chapter 4. The main 

conclusions are given here.  

    For the industrial emissions, our derived European emissions are much lower than the 

estimates from the industry sales data, but are only marginally lower than the estimates 

from the back-attribution technique and the CO ratio method using the CO emission 

inventories. Our inversion results show very significant emissions from the Southeast 

Asian region, while the North American emissions are slightly smaller than the a priori. 

Emissions from other regions are relatively small. 

    For the biomass burning source, emissions are concentrated in the tropical regions. Our 

inversion generally retains the phases of the seasonal cycles of the reference emissions, 

with emissions in Central Africa, India, and Southeast Asia (LNH BB) peaking in April 

and May (Northern spring), and emissions in South America and South Africa (LSH BB) 

peaking in October and November (Southern spring). For both tropical regions, the 

biomass burning emissions are strongest during the spring which is associated with warm 

and dry conditions leading to the largest amount of biomass burned. Relatively high 

emissions from biomass burning in the LNH and LSH in the two-year time frame of 
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2002/2003 might have been caused by the global wide-spread heat and drought 

conditions in that time period. 

    The derived oceanic emissions show well-established seasonal variations in the HNH, 

LNH and HSH with summer maxima and winter minima. The inversion, like the 

reference, indicates a greater importance of the tropical oceanic emissions relative to 

higher latitudes, probably related to the higher sea surface temperature and thus CH2Cl2 

supersaturation in the tropical regions. The actual mechanisms of the processes that are 

involved in dichloromethane production warrant investigation, and measurement of 

oceanic saturation levels throughout the year would be needed to establish whether the 

ocean is indeed a net source or is simply re-emitting in summer the CH2Cl2 that was 

taken up in the winter. 
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Chapter  8  

  Inversion Results for Carbon Tetrachloride 

    Unlike the other three chloromethanes, carbon tetrachloride (CCl4) is controlled by the 

Montreal Protocol and its various amendments due to its much longer lifetime (26 years) 

and much larger ozone depletion potential (0.73 relative to unit 1 of CFC-11) [WMO 

2002]. CCl4 is also a greenhouse gas with a global warming potential of 1380 per kg 

(compared to unit 1 per kg for CO2) on a 100-year time frame [WMO 2002]. CCl4 is 

thought to originate almost exclusively from anthropogenic emissions [Simmonds et al., 

1998a], although analysis of polar firn air indicates there may be a small natural source 

[Butler et al., 1999]. Tropospheric concentrations of CCl4 increased steadily from the 

mid-1970s, reaching a peak mixing ratio of ~ 105 ppt in 1990 and then began decreasing 

since then at a constant rate of 0.7 to 0.8 ppt yr-1 [Simmonds et al., 1998a; Prinn et al., 

2000]. The current global average tropospheric concentration of CCl4 is ~ 90 to 92 ppt. 

The interhemispheric difference has also been fairly constant at about 2% (NH > SH) 

since 1993 which indicates that significant emissions of carbon tetrachloride still remain 

today [WMO 2002].  

 159



    The principle identified uses of carbon tetrachloride are as a general purpose solvent 

and also, since 1931, as a feedstock for the production of CFC-11 (CCl3F) and CFC-12 

(CCl2F2). Releases to the atmosphere from this CFC production arise only from fugitive 

losses [WMO 2002]. Historically it has been more difficult to estimate the industrial 

production of CCl4 and its emissions to the atmosphere than for the CFCs. CCl4 fugitive 

emission estimates have been derived indirectly from the more accurately known 

production records of CFC-11 and CFC-12. Large discrepancies existed in UNEP 

consumption data for past years owing to confusion over reporting procedures, and 

although these have been addressed, there may still be significant omissions and 

unrecorded sources. The principal sink for CCl4 is stratospheric photodissociation, which 

is known to produce phosgene [Kindler et al., 1995]. Using an assumed partial 

atmospheric lifetime of ~ 42 years, combined with atmospheric measurements during the 

last several decades, Simmonds et al. [1998a] used a 2-D model inverse method and 

estimated that the global CCl4 emissions averaged around 94 Gg yr-1 from 1979-1988 and 

49 Gg yr-1 from 1991-1995. Based on stratospheric observations, and assuming that 

nearly all of the CCl4 emitted eventually entered the stratosphere [Volk et al., 1997], it 

has been estimated that 35 years is a more accurate estimate of the CCl4 atmospheric 

lifetime [WMO 1998]. Recently, the oceans have been quantified as a global sink of CCl4 

with a partial lifetime of 94 years [Yvon-Lewis and Butler, 2002]. The ocean sink, 

combined with a stratospheric partial lifetime of 35 years gives a total atmospheric 

lifetime of 26 years [WMO 2002]. These estimates of additional sinks (or lower total 

lifetime) suggest that the above global emissions of CCl4 may be underestimated. More 
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recently soils have been proposed to be a global sink of CCl4 which is even stronger than 

the oceanic sink [Happell and Roche, 2003]. This additional identified sink lowers the 

global lifetime of CCl4 down to 20 years. However, the measured interhemispheric 

gradient of CCl4 seems to be inconsistent with an overall lifetime of 20 years, and 

therefore the lifetime of 26 years given in WMO 2002 is still recommended by WMO 

2006.      

8.1. Definition of the state vector and its a priori flux maps 

    As noted in the introduction, there have been estimates of CCl4 industrial emissions 

from the industrial sales data and from the 2-D model inverse modeling approach. Figure 

8.1 shows the yearly global industrial emission estimates from the industrial sale data 

[McCulloch] and recent updating of the estimates from the 2-D model inverse modeling 

approach [Cunnold et al., 1997; Simmonds et al., 1998a; updated by D. Cunnold]. Also 

shown are the corresponding linearly fitted lines. Note that there are two regimes in the 2-

D model emission estimates, and the linearly fitted yearly global emissions for 1996-

2004 are used as our references. For the a priori spatial distributions of CCl4 industrial 

sources, global emissions were first subdivided regionally, followed by a country-by-

country subdivision based on GDP. Population density was then used as a spatial proxy 

for emissions within countries. The 1996-2004 average global distribution of industrial 

emissions is shown in Figure 8.2 (left-hand graph). As can be seen, the a priori industrial 

emissions of CCl4 are concentrated in Europe, North America, South Asia, and Southeast 

Asia. For the optimization, we have further divided the global industrial source into eight 
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regions: Europe (IND Europe), Northwest Asia (IND NW Asia), South Asia (IND So 

Asia), Southeast Asia (IND SE Asia), Africa (IND Africa), Australia (IND Australia), 

North America (IND N. Amer), and South America (IND S. Amer), as shown in Figure 

8.3. CCl4 production should be decreasing due to the Montreal Protocol and its 

amendments which is qualitatively consistent with the globally decreasing CCl4 mole 

fractions after 1992. For this and other reasons, the regional emissions of CCl4 are 

expected to vary both intra-annually and interannually. For the optimization, we therefore 

estimate the eight regional industrial sources at a 3-month time resolution for 1996-2004. 

We also estimate the global oceanic sink at a 3-month resolution. For convenience and 

consistency with the seasonal oceanic sink estimation in the Kalman filter, we set the 3-

month time periods to be DJF, MAM, JJA, and SON (note that there is no assumption 

here that there are seasonal variations in the industrial emissions of carbon tetrachloride). 
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Figure 8.1. Yearly global industrial emission estimates from the industrial sales data 

[McCulloch] (green lines) and from the 2-D model inverse modeling approach [Cunnold 

et al., 1997; Simmonds et al., 1998a; updated by D. Cunnold] (blue lines). Also shown 

are the corresponding linearly fitted lines. There are two regimes in the 2-D model 

emission estimates, and the linearly fitted yearly global emissions for 1996-2004 are used 

as our references. 

 

    Oceanic loss for CCl4 is significant, as noted earlier, and has a partial lifetime of 94 

years. Once dissolved in the water, CCl4 may be removed by chemical reaction, 

absorption to particles, and biological consumption. The rate constant for its removal can 

be expressed as a function of wind speed, temperature, and salinity [Yvon-Lewis and 
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Butler, 2002]. Using knowledge of the spatial and temporal distribution of sea surface 

temperature, salinity, and wind speed over the oceans, and assuming a global mean 

mixing ratio of 103 ppt, Yvon-Lewis and Butler [2002] have computed monthly oceanic 

uptake rates of CCl4 distributed over a 2º × 2º grid of the world’s oceans, plus a spatially 

and temporally constant biological degradation rate. We have converted these maps to the 

MATCH T42 grids, and scaled them by a constant global factor to reflect an oceanic 

lifetime of 94 years (The annual average spatial distribution is shown in Figure 8.2, right-

hand graph). The distribution indicates that the degradation rate of CCl4 is the greatest at 

mid-latitudes in the Northern Hemisphere, resulting from collocated high temperatures 

and high wind speeds at these latitudes. As noted, these uptake rates are based on a global 

average mole fraction of 103 ppt. Since the global mole fraction of CCl4 is decreasing, 

the global oceanic sink must be decreasing as well. For the optimization we estimate the 

global oceanic sink at the above seasonal time resolution (DJF, MAM, JJA, and SON) for 

1996-2004.  
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Figure 8.2. Annual average distributions of carbon tetrachloride industrial emissions and 

oceanic uptake rates. Oceanic sink magnitudes and patterns vary by month. Global 

industrial emissions have been divided into eight regions, and the magnitude of the 

oceanic sink is estimated on a global scale as a multiplier on the above sink pattern. 
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Figure 8.3. Partitioning of the global industrial CCl4 source into the eight regions is 

shown along with the T42 MATCH grids. The regional source magnitudes are estimated 

in the Kalman filter as 3-month average values, and the spatial distribution within each 

region remains at its a priori distribution. 
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    Stratospheric photodissociation is the most important sink for CCl4 (reaction between 

CCl4 and OH is negligible). The chemical destruction rate constants (J values in s-1) for 

photodissociation of CCl4 have been calculated from a more detailed 3-D model for the 

stratosphere [Golombek and Prinn, 1986, 1989, 1993, updated by A. Golombek]. We 

have interpolated their monthly average photodissociation rate fields (that vary with 

latitude and altitude) to the MATCH grids. These values are then modified by a constant 

global factor to produce a recommended stratospheric lifetime of ~ 35 years for CCl4. 

Due to the very rapid increasing of the J values in the vertical direction in the stratosphere 

of MATCH, the stratospheric sink is actually overestimated without any adjustment 

factor. To do the adjustment, we first run the forward model for 4 years from 1992 to 

1995, then check the implied stratospheric lifetime, decrease the J values, run the model 

again, and re-check the inferred lifetime, until we get the appropriate 35-year lifetime. 

We again check the inferred stratospheric lifetime for the whole reference run from 1996 

to 2005 and make any needed adjustment to ensure the time-averaged stratospheric 

lifetime to be ~ 35 years. We do not explicitly model stratospheric CCl4 destruction by 

O1(D) because it is much weaker than photodissociation. Global soils are also proposed 

as a sink of CCl4 that would lower the global lifetime to 20 years. However, because of 

the spatial correlation with the industrial emissions distribution, and the inconsistency of 

an overall lifetime of 20 years with the measured interhemispheric gradient, we do not 

estimate the soil sink directly in this work (if there is a small soil sink it will simply lower 

the inferred industrial emissions by that small amount).  
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    Consequently, the state vector for the CCl4 emissions and sink is expressed as: 
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The inversion calculations last from Dec., 1995 to Nov., 2004 (36 seasons total).  

    Note that the subvector  represents the oldest 3-monthly fluxes at current time 

step k, and will be removed from the state vector after having used 12 months’ 

observations. However, unlike the other three short-lived chloromethanes, CCl

s
3k−X

4 has a 

very long lifetime (~ 26 years), which means the effect of the old fluxes between season 

1 and k-3 will not diminish as quickly as for the three short-lived chloromethanes. 

Therefore we use an additional term, ~y , to be added to the right-hand side of Equation 

(4.4), to represent the cumulative effect of the old fluxes which are no longer included in 

adj
−3k
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the state vector [as Chen and Prinn, 2006]. Also note that since the global horizontal 

mixing time in MATCH is ~ 1 year, the effect of the old fluxes should be restricted to the 

global average concentrations of CCl4.  

    The global magnitudes of the reference fluxes and their roles in the state vector are 

listed in Table 8.1. The a priori errors for the state vector elements are ± 50% (for large 

magnitudes) to ± 100% of their reference values, which encompass the uncertainty ranges 

in most of the literature. Table 8.2 summarizes the surface sites whose observations are 

used in the inversions for CCl4. 

 

Table 8.1. Reference annual average strengths of the sources and sinks of atmospheric 

carbon tetrachloride (CCl4) and their participation in the inversion. 

Source/Sink Type [reference] Seasonality 
(Y/N ?) 

Strength 
(Gg yr-1) State Vector ? 

Industry [Cunnold et al., 1997, updated 
and linearized] 

Interannually 
varying 

73 (1996-
2004 ave.) Y (8 regions) 

Oceans [Yvon-Lewis and Butler, 2002, 
scaled] Y -26 Y (global) 

Soils [Happell and Roche, 2003] Y -27 N  

Composite Y 47 - 
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Table 8.2. List of the stations whose measurements are used in the inversions for CCl4, 

along with their corresponding numbers as in Table 2.1.  

(1)   MHD (2)   THD (3)   RPB (4)   SMO (5)   CGO (10) BRW 

(11) MLO (12) NWR (14) SPO (15) ALT (21) KUM  

 

    Note that each element, e.g., , is a 3-month average for that region. We use 

the same emission pulse method as for CH

Europe IND
kx

3Cl, CHCl3, and CH2Cl2 to calculate the 

sensitivities of station mole fractions to the state vector elements. Figure 8.4 (a) and (b) 

show an example of the calculated sensitivities of individual observing sites to a DJF, 

2000 emission pulse from the European region. It is a uniform pulse with an intensity of 

10 Gg yr-1 lasting for three months. Note that the sensitivities are greatest in the first 3-4 

months and then decrease because of atmospheric mixing. The responses at different sites 

have different patterns depending on their relative proximity to the source region on the 

global time-varying wind fields. The Mace Head and Alert stations are located near 

Europe, and therefore they respond rapidly with large response peaks. The other three 

stations are further away from the source region and therefore their responses are delayed 

with relatively steady slow increases then decreases in their mole fractions. Also note that 

the responses at different sites tend to converge to a single value after one year which is 

consistent with each emission pulse being mixed equally throughout the troposphere by 

this time. 
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Figure 8.4. MATCH-modeled sensitivities of carbon tetrachloride mole fractions (ppt) to 

a DJF, 2000 emission pulse from European industry (Gg yr-1), plotted at high frequency 

(a) and as monthly means (b) at selected atmospheric measuring stations.  
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8.2. Forward modeling 

    As we did for the other gases, we first assess the ability of the a priori emission and 

sink fields to reproduce the carbon tetrachloride observations in the forward runs of 

MATCH. We initialized the atmospheric 3-D distribution of CCl4 using the output from a 

previous multi-year run, scaled to fit the observed mole fractions at remote sites such as 

Alert, Mauna Loa, and Cape Grim during December, 1995. These stations were chosen 

because they represent better the global background interhemispheric gradient due to 

their long distances from strongly emitting sources. The reference run was then made 

from December, 1995 till August, 2005. Figure 8.5 shows the monthly mean modeled 

versus observed mole fractions of CCl4 at the indicated stations over the 9-year period of 

the simulation. Note the significant differences in the calculated and observed rates of 

decrease at most stations. We also note that the reference model simulations have larger 

seasonal cycles than the observations, which are distinct for the NH sites, such as 

Trinidad Head, CA and Mace Head, Ireland. These seasonal cycles are likely to be 

attributed to the seasonal variations of the downward flux of CCl4 from the stratosphere 

to the troposphere. Stratosphere-troposphere exchange (STE) is a maximum during 

springtime, and is stronger in the NH than in the SH. Note that stratospheric CCl4 mole 

fractions are less than tropospheric mole fractions due to stratospheric photodissociation. 

Therefore, the net effect is that the mole fractions of CCl4 at the surface level would 

decrease because of this downward mixing during springtime. Comparing the model and 

the observations, we know that this downward mixing is overestimated in the MATCH 

model, which has also been confirmed by Jöckel et al. [2002] in the evaluation of STE in 
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the MATCH model using observations of 14CO. This overestimated downward mixing of 

CCl4 affects our 3-month inversion results leading to their aggregation to 12-month 

values as discussed below.  

8.3. Inversion results  

8.3.1. Industrial emissions 

    Figure 8.6 shows the optimized 3-month average industrial emissions (red lines) from 

DJF, 1996 to SON, 2004, compared to the linearly decreasing reference values (blue 

lines). There are significant deviations from the reference case. Overall there are much 

larger variations in the optimally-estimated emissions than the references (and differ from 

expectations about the industry). These are likely the responses of the optimized 

emissions to compensate for the effect of the overestimated downward mixing of CCl4. 

For example, if we look at the North American region, there are increasing emissions 

during springtime to compensate the overestimated decreasing of CCl4 mole fractions. 

Because of this, we have aggregated the 3-monthly emissions to annual averages, shown 

in black lines. 

    Figure 8.7 shows the reference and optimized yearly regional industrial source 

strengths between 1996-2004, with their error bars. Substantial decreases in the errors 

occur for Europe, SE Asia, and N. America, but the decreases elsewhere are small, 

indicating that the observing network is not sampling air from these other regions very 

effectively.  
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Figure 8.5. The time series of the monthly mean carbon tetrachloride mole fractions computed in the reference model using the a 

priori (reference) surface fluxes are compared to the observations. 

 173



96 97 98 99 00 01 02 03 04 05
0

5

10

15

G
g 

yr
-1

Europe

96 97 98 99 00 01 02 03 04 05
0.5

1

1.5

2

2.5
NW Asia

96 97 98 99 00 01 02 03 04 05
2

3

4

5

6

7

8
So Asia

96 97 98 99 00 01 02 03 04 05
0

20

40

60

80

G
g 

yr
-1

SE Asia

96 97 98 99 00 01 02 03 04 05
1

1.5

2

2.5

3
Africa

96 97 98 99 00 01 02 03 04 05
1

1.5

2

2.5

3

3.5

4
Australia

96 97 98 99 00 01 02 03 04 05
5

10

15

20

25

30

G
g 

yr
-1

N. Amer

96 97 98 99 00 01 02 03 04 05
0.2

0.4

0.6

0.8

1
S. Amer

96 97 98 99 00 01 02 03 04 05
20

40

60

80

100

120
Total industry

 
Figure 8.6. Inversion results for the 3-month average regional industrial emissions of carbon tetrachloride. Blue lines show the 

reference magnitudes, which are linearly decreasing. Red lines show the optimized estimates, along with the aggregated annual 

averages (black lines). The total industry emissions are the sum of the eight regional emissions. 
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Figure 8.7. Yearly-averaged optimal results of regional industrial emissions of carbon 

tetrachloride. Blue bars show the reference magnitudes, and red bars show the optimized 

estimates, each with their respective errors (yellow bars). 
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    Figure 8.8 shows the comparison of the a posteriori optimal estimates and the a priori 

reference estimates and their relative regional importance to the global total industrial 

emission. The global optimal estimate of the industrial source is 79.8 ± 8.2 Gg yr-1. Our 

derived European emissions of 8.5 ± 3.8 Gg yr-1 are lower than the estimate of 11.8 Gg 

yr-1 from industry sales data. Our derived Southeast Asian emissions of 39.1 ± 5.7 Gg yr-1 

are higher than their reference, and the North American emissions of 19.6 ± 3.2 Gg yr-1 

are slightly less than their reference. Emissions from other regions are relatively small, 

and the changes from their reference values (and their error reductions) are also small. 
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Figure 8.8. A priori (left chart) and a posteriori (right chart) regional contributions to the 

global industrial emission of carbon tetrachloride. 
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    Figure 8.9 shows the derived yearly global industrial emissions, compared to the 

estimates from industrial sales data and our reference emissions. Our results actually 

indicate a slight increasing trend in the global CCl4 emissions compared to a slight 

decrease in the reference emissions. 
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Figure 8.9. Optimal yearly global industrial sources (red lines), compared to yearly 

global industrial emission estimates from the industrial sales data [McCulloch] (green 

lines) and from the 2-D model inverse modeling approach [Cunnold et al., 1997; 

Simmonds et al., 1998a; updated by D. Cunnold] (blue lines). Also shown are the 

corresponding linearly fitted lines.  
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8.3.2. Oceanic uptake 

    In the Kalman filter the global oceanic CCl4 uptake rates are solved as seasonal fluxes. 

Figure 8.10 shows the inversion results compared to the reference ones. To understand 

the seasonal behavior of the global oceanic sink, we first study the seasonal variations in 

different semihemispheres (Figure 8.11). In general, the oceanic sink is greatest in 

summer in the four semihemispheres. The oceanic sink in the HSH has the largest 

seasonal variability, probably resulting first from the higher winter-summer variations in 

both of the extratropics (HNH and HSH), and second from the larger oceanic area in the 

HSH. The dominant seasonal variability in the HSH ocean largely determines the 

seasonal variability of the global ocean sink. The oceanic sink is stronger in the tropical 

regions (LNH and LSH) because of the coincidence of higher temperatures and larger 

oceanic areas there. The optimized global oceanic sink retains the phasing but not the 

magnitude of the seasonal variations of the a priori sink. The optimized values show 

significant interannual variability in the global oceanic uptake rate which is also 

decreasing with time after 2002. Note that the oceanic uptake rate is calculated as the rate 

constant multiplied by atmospheric mole fraction. Although the uptake rate constant (and 

the partial lifetime) is independent of the atmospheric burden [Yvon-Lewis and Butler, 

2002], the globally decreasing CCl4 mole fractions lead to a decreasing mass of CCl4 

dissolving in the oceans and being destroyed by subsequent chemical reactions and 

biological consumption over time. 
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Figure 8.10. Inversion results for the global oceanic sink of carbon tetrachloride. Blue 

line shows the reference magnitudes, which are annually repeating. Red line shows the 

optimized estimates, which contain interannual variability.  
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Figure 8.11. Seasonal cycles of the semihemispheric oceanic sinks (negative) of carbon 

tetrachloride. Note the dominance of the tropical sinks. Oceanic uptake in the HSH has 

the largest seasonal variation.  

 

8.3.3. Average annual results 

    The inversion results have been aggregated to compute the global budget of CCl4. 

Figure 8.12 and Table 8.3 contain the CCl4 fluxes averaged over the entire period 

between 1996-2004. Also shown are the optimized errors, which are always less than the 

reference errors due to the incorporation of the observations into the Kalman filter. As 

noted before, the average annual emissions from the European and North American 
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regions are less then their a priori values which were based on their GDP, presumably 

because emissions from these regions have been regulated. Emissions from Southeast 

Asia are much larger than their reference values based on GDP. Global annual uptake by 

the oceans is less than its a priori magnitude. 
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Figure 8.12. Annual average carbon tetrachloride surface flux magnitudes. Shown are the 

reference (blue bars) and optimized (red bars) values with their 1σ  error bars (yellow). 

The errors on the references are derived from the assumed a priori inversion uncertainties.  
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Table 8.3. Five-year averaged optimal surface flux values and errors for the industrial 

sources and oceanic sink (units of Gg yr-1). 

 

Flux type Reference Optimization 

   

Europe 11.8 ± 11.8 8.5 ± 3.8 

NW Asia 2.0 ± 2.0 1.6 ± 1.6 

So Asia 3.0 ± 3.0 5.7 ± 2.5 

SE Asia 25.9 ± 13.0 39.1 ± 5.7 

Africa 1.1 ± 1.1 2.1 ± 1.0 

Australia 1.3 ± 1.3 2.4 ± 0.7 

N. Amer 27.7 ± 13.9 19.6 ± 3.2 

S. Amer 0.4 ± 0.4 0.7 ± 0.4 

Industry 

Subtotal 73.2 ± 22.7 79.8 ± 8.2 

   

Oceans -25.9 ± 12.9 -24.7 ± 7.6 

   

Total 47.4 ± 26.1 55.1 ± 11.2 
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8.4. Inversion check 

    To test the inversion, we run the forward model with the final optimal emission and 

sink estimates, and compare the predicted mole fractions with the measurements. Figure 

8.13 shows the residuals between the optimized and observed monthly mean mole 

fractions, compared to the residuals between the reference and observed monthly mean 

mole fractions at each observing site. The optimal mole fractions tend to be much closer 

to the observations at most of the sites than the reference as expected from the application 

of the Kalman filter to the observational time series.   

8.5. Summary and conclusions 

    We have solved for the annual, 3-month-averaged, and interannual surface fluxes of 

CCl4 using the Kalman filter as described in Chapter 4. The main conclusions are 

summarized below.  

    Overall, for the industrial emissions there are larger temporal variations than in the 

reference emissions (which are simply linearly decreasing), and we have argued that 

these seasonal variations are due to the overestimated downward mixing of CCl4. 

Because of this we have aggregated the 3-monthly emissions to 12-month averages. The 

three regions of Europe, Northwest Asia, and North America show smaller optimized 

emissions relative to their a priori values which were based on their GDP. This is 

presumably because emissions from these regions are being regulated. Our derived 

Southeast Asian emissions are much larger than their reference values. Emissions from 
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other regions are relatively small and do not vary too much from their reference values. 

Our results actually indicate a slight increasing trend in the global CCl4 industrial 

emissions. 

    The seasonal variability of the global oceanic sink is dominated by the seasonal 

variability of the HSH oceans, which is greatest in summer and weakest in winter. The 

optimized values also show significant interannual variability in the global oceanic 

uptake rate which is decreasing with time. The globally decreasing CCl4 mole fractions 

have led to a decreasing mass of CCl4 being dissolved each year in the oceans and being 

destroyed there by chemical reactions and biological consumption. 

 184



95 96 97 98 99 00 01 02 03 04 05 06
-2

0

2

4

6

C
C

l 4 (p
pt

)
mhd

95 96 97 98 99 00 01 02 03 04 05 06
-2

0

2

4

6
thd

95 96 97 98 99 00 01 02 03 04 05 06
-2

0

2

4

6
rpb

95 96 97 98 99 00 01 02 03 04 05 06
-2

0

2

4

6

C
C

l 4 (p
pt

)

smo

95 96 97 98 99 00 01 02 03 04 05 06
-2

0

2

4

6
cgo

95 96 97 98 99 00 01 02 03 04 05 06
-2

0

2

4

6
brw

95 96 97 98 99 00 01 02 03 04 05 06
-2

0

2

4

6

C
C

l 4 (p
pt

)

mlo

95 96 97 98 99 00 01 02 03 04 05 06
-2

0

2

4

6
nwr

95 96 97 98 99 00 01 02 03 04 05 06
-2

0

2

4

6
spo

95 96 97 98 99 00 01 02 03 04 05 06
-2

0

2

4

6

C
C

l 4 (p
pt

)

alt (flask)

95 96 97 98 99 00 01 02 03 04 05 06
-2

0

2

4

6
kum (flask)

ref - obs
opt - obs

 
Figure 8.13. Residuals between the optimized and observed monthly mean mole fractions of carbon tetrachloride (red lines), 

compared to the residuals between the reference and observed monthly mean mole fractions (blue lines) at each observing site. 
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Chapter  9   

  Conclusions 

    The goal of the thesis was to estimate global chloromethane surface flux magnitudes 

using a 3-D inverse modeling approach. This work is to our knowledge the very first 3-D 

inverse modeling for the global emissions of chloroform, dichloromethane, and carbon 

tetrachloride. For methyl chloride and also the other three gases, some new, previously 

unused elements have been incorporated into the work: (1) interannually varying driving 

meteorology from reanalysis of observations, (2) optimization of interannual monthly (or 

3-monthly) surface fluxes using the adapted Kalman filter, and (3) high frequency 

observations. In this final chapter, we briefly summarize the main results and findings 

from the preceding chapters. Some general conclusions are then drawn from these results.  
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9.1. Summary of the inversion results 

    We have used the discrete Kalman filter to estimate the seasonal, annual, and 

interannual surface fluxes associated with the major sources and sinks of the four 

chloromethanes at monthly resolution (for CH3Cl, CH2Cl2, and CHCl3) or 3-monthly 

resolution (for CCl4), on regional or global scales. This inversion technique combines 

observations of the chloromethane concentrations (as monthly average mole fractions) 

taken at the surface stations of the AGAGE and other global networks, with a 

representation of the MATCH atmospheric transport and chemistry model using the 

Jacobian (sensitivity) matrix computed in MATCH by finite differences. This time 

dependent Jacobian matrix maps time-invariant, monthly, or 3-monthly flux pulses on 

regional/global scales onto the resulting changes in the monthly average chloromethane 

concentration at every observing station. The quality of the solutions to the inversion 

problems was based on the accuracy of the inversion flux results as computed in the 

Kalman filter, the consistency of the optimized model with the observations taking 

account of the measurement statistics, the initial conditions, and the a priori information 

about the unknown surface fluxes.   

9.1.1. Methyl chloride inverse modeling 

    Atmospheric methyl chloride (CH3Cl) is the major continuous natural source of 

chlorine in the stratosphere. The tropospheric lifetime for CH3Cl is sufficiently long, 1.3 

years, so that a significant quantity of emitted CH3Cl can be transported upwards through 

the tropopause. In the stratosphere, as in the troposphere, CH3Cl is removed primarily by 
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reaction with the OH free radical. There are many kinds of natural sources and sinks of 

CH3Cl, and they are affected by seasonal and longer-term climatic changes in 

complicated ways. We solved for eight seasonal (time-varying) and one aseasonal 

(constant) CH3Cl flux processes/regions between 2000-2004, and examined the 

optimized fluxes in terms of multi-year averages, seasonal, and monthly interannual 

variability. The main findings are: 

• The CH3Cl inversion results indicate large CH3Cl emissions of ~ 2240 Gg yr-1 

from tropical plants. Relative to their a priori (literature) magnitudes, the 

inversion nearly doubles global fungal emissions, slightly increases emissions 

from tropical plants, biomass burning and salt marshes, and reduces the global 

oceanic source and soil sink. The inversion also implies greater seasonal 

oscillations of the natural sources and soil sink of CH3Cl compared to their a 

priori values.  

• The inversion also implies strong effects of the 2002/2003 globally wide-spread 

warming and drought on the emissions from tropical plants, eastern hemisphere 

biomass burning, and global salt marshes, and also on the global soil sink. The 

2002/2003 El Niño event was a moderate one in which the global land 

precipitation appeared unusually low. There is independent evidence showing that 

a global land dryness might lead to a strong NPP decrease and therefore a 

subsequent decrease in emissions by tropical plants and a decrease in global soil 

microbially-aided consumption. The anomalously dry and hot climate might also 
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lead to increased insect damage to vegetation and increased susceptibility of 

vegetation to burning, thus resulting in increased global emissions of CH3Cl from 

biomass burning. Future climate change involving an increasingly dry and hot 

summer climate may lead to increased susceptibility to decreased NPP (and hence 

decreased tropical plant emissions), increased CH3Cl emissions from biomass 

burning, increased salt marsh plant emissions, and decreased soil organic matter 

content and thus microbially-aided CH3Cl uptake by soils.   

9.1.2. Chloroform inverse modeling 

    Atmospheric chloroform (CHCl3) is largely of natural origin, with emissions from 

biomass burning, oceans, and soils, and minor emissions from industrial activity. The 

atmospheric lifetime of CHCl3 is relatively short (0.41 years), resulting from its efficient 

destruction by OH radicals. We estimated monthly global emissions from the biomass 

burning source for 2000-2004, because of the presumed small magnitudes and 

insignificance in the total budget of CHCl3, and we estimated monthly oceanic and soil 

emissions on semihemispheric scales between 2000-2004. The industrial emissions are 

kept as their references. The main findings are: 

• Biomass burning is still indicated as a minor source of chloroform and its 

estimated seasonal variations do not change from its a priori values.  

• The relative importance of the oceanic and terrestrial sources tends to be equal. 

Seasonal cycles have been derived for both the oceanic and terrestrial sources, 
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with summer maximum and winter minimum emissions, because both processes 

are microbially driven and the relevant microbial activities increase in warmer 

environments. 

• Like CH3Cl, the interannual variability of the derived CHCl3 oceanic and soil 

fluxes reflects the impact of the 2002/2003 globally wide-spread warming and 

drought. The anomalously high emissions from the HNH oceans in the summers 

of 2002 and 2003 might have been caused by the high sea surface temperature 

anomalies there, and the low emission anomalies from the HNH and LNH soils in 

the summer of 2003 and from the LSH and HSH soils in the winters (SH) of 2002 

and 2003 might have been caused by the extreme droughts in these two 

consecutive years.   

9.1.3. Dichloromethane inverse modeling 

    Atmospheric dichloromethane (CH2Cl2) is largely of anthropogenic origin, with 

smaller emissions from biomass burning and oceans. The atmospheric lifetime of CH2Cl2, 

like CHCl3, is relatively short (0.38 years), resulting from its efficient destruction by OH 

radicals. We estimated the average industrial emissions of CH2Cl2 during the five-year 

period (2000-2004) from eight continental regions. For the natural sources, we estimated 

monthly emissions from biomass burning and the oceans on semihemispheric scales 

between 2000-2004. The main findings are: 
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• For the industrial emissions, our derived European emissions are much lower than 

the a priori estimates from the industry sales data, but are only marginally lower 

than the published estimates from the back-attribution technique and the CO ratio 

method using CO emission inventories. Our inversion results show very 

significant emissions from the Southeast Asian region, while the North American 

emissions slightly decrease from their a priori values. Emissions from other 

regions are relatively small. 

• For the biomass burning source, emissions are concentrated in the tropical regions. 

Our inversion generally retains the seasonal cycles of the reference emissions, 

with emissions in Central Africa, India, and Southeast Asia peaking in April and 

May (Northern Spring), and emissions in South America and South Africa 

peaking in October and November (Southern spring). For both tropical regions, 

the biomass burning emissions are strongest during the spring term, associated 

with the warm and dry season conditions at that time leading to the largest amount 

of biomass burned. Relatively high emissions from biomass burning in the LNH 

and LSH in the two-year time frame of 2002/2003 might have been caused by the 

extreme 2002/2003 global wide-spread warming and drought conditions. 

• The derived oceanic emissions show well-established seasonal variations in the 

HNH, LNH and HSH with summer maxima and winter minima. The inversion, as 

in the reference, still indicates the greater importance of tropical oceanic 

emissions relative to high latitude emissions, probably related to the higher sea 

 192



surface temperatures and supersaturation in tropical regions. The physical, 

chemical or biological details of the processes that are involved in 

dichloromethane production warrant further investigation. Measurements of 

oceanic saturation levels throughout the year would be needed to establish 

whether the ocean is indeed a net source or is simply re-emitting in summer the 

CH2Cl2 that was taken up in winter.  

9.1.4. Carbon tetrachloride inverse modeling 

    Atmospheric carbon tetrachloride (CCl4) is controlled by the Montreal Protocol and its 

various amendments due to its much longer lifetime (26 years) and much larger ozone 

depletion potential. CCl4 is thought to originate almost exclusively from anthropogenic 

processes, although there may be some small natural sources. The principal sink of CCl4 

is stratospheric photodissociation resulting in a partial atmospheric lifetime of ~ 35 years; 

the oceans have been identified as the second largest sink with a partial lifetime of ~ 94 

years. We estimated eight regional industrial sources and the global oceanic sink at a 3-

month time resolution between 1996-2004. The main findings are: 

• For the industrial emissions, there are overall larger oscillations in the inversions 

than in the references (which were simply linearly decreasing), probably because 

of the overestimated downward mixing of CCl4 in MATCH. Therefore we have 

aggregated the 3-monthly emissions to 12-month averages. For Europe, 

Northwest Asia, and North America we estimate smaller emissions relative to 

their a priori values (which were based simply on GDP). This is presumably 
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because emissions from these regions are regulated under the Montreal Protocol. 

Our derived Southeast Asian emissions are much larger than its reference values. 

Emissions from other regions are relatively small. Our inversion results indicate a 

slight increasing trend in the global CCl4 emissions relative to the reference. 

• The seasonal variability of the global oceanic sink is dominated by the seasonal 

variability of the HSH oceans, where uptake is the greatest in summer and 

weakest in winter. The optimized values indicate significant interannual 

variability in the global oceanic uptake rate which shows a decreasing trend with 

time. This is consistent with the globally decreasing CCl4 mole fractions leading 

to a decreasing mass of CCl4 dissolved in the oceans and thus destroyed by 

chemical reactions and biological consumption.  

9.2. Further comments on the inverse modeling approach 

    Our inversion approach using the discrete Kalman filter has been based on assumptions 

made about the observations, the model, the construction of the state vector, and the 

nature of the inversion technique itself. Thus the accuracy of the inversion results and the 

extent of the reduction of the a priori uncertainties depend on these assumptions.   
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9.2.1. Effects of measuring frequency and spatial coverage of the 

observations in constraining the surface fluxes 

    The inverse modeling approach is of course strongly dependent on the observed data. 

Throughout the thesis we used both high frequency real time in situ and low frequency 

flask observations from different observing laboratories. The differences in their 

calibration standards have been accounted for based on inter-comparisons of the 

chloromethane concentrations at common sites. In situ data have been collected within a 

window of 1-3 hours on either side of the time of collection of the flask data. 

Observational errors accounting for instrumental precision, model grid and site mismatch, 

and limited sampling frequency have been included in the inversions.  

    Since the squares of the observational errors determine inversely in the Kalman filter 

how useful the observations are in updating the state vector, high and low frequency 

observations receive different weights in the inverse modeling. The much lower 

weekly/bi-weekly frequency flask data (~ 4 per month) have errors about 15 to 16 times 

larger than the high frequency observations (~ 1000 per month), and therefore have much 

less influence in determining the optimal surface fluxes. However, this disadvantage can 

be offset at some of the flask sites that are very sensitive to specific regional fluxes given 

their strategic geographical locations, such as Palmer station (for the HSH region), 

Mauna Loa for CHCl3 and CH2Cl2 (for the tropical oceanic or plant emissions), Niwot 

Ridge for CHCl3 and CH2Cl2, and Harvard Forest station (for emissions from the USA). 
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These comments refer to the currently available flask measuring locations, which are 

chosen based on accessibility and budget constraints, as well as scientific desirability. 

    The limitations in the spatial coverage of the in situ and flask observations play an 

important role in the limiting the accurate deduction of surface fluxes from specific 

regions. In Chapter 7, in the estimation of the industrial emissions of CH2Cl2, we were 

forced to aggregate the European region and NW Asia, because no observations are 

available in the NW Asian area. Most of the sites are located in the Northern Hemisphere, 

typically in the middle or high latitudes, and very few observations are available for the 

Southern Hemisphere. Typically there is only one site (American Samoa) for the LSH. 

How well can American Samoa alone represent the entire Southern Hemisphere tropics? 

Can it distinguish between the land and oceanic area? The answer to both questions is 

probably, no. Furthermore, there are no data for the whole of South America and Africa. 

If we had stations in these regions (NW Asia, South America, and Africa), for example if 

we had one measuring site in the coastal region of each, not only would the fluxes from 

these regions be better deduced, but also the fluxes from neighboring regions be better 

constrained.  

    The above comments are still based on fairly coarse (2.8º × 2.8º) spatial scale inverse 

modeling. In the future we would hope to solve for emissions from smaller regions and/or 

countries. This is especially true for the industrial emissions of CCl4, for which the 

production and consumption data within each country are required to be reported to 

UNEP. This also requires more spatially dense global measuring networks. An inversion 
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technique such as the Kalman filter can in principle be adapted to determine an optimal 

network given any limitations on the number of sites.      

9.2.2. Effects of the prescribed spatial structures within large regions 

    Improved bottom-up studies that produce more realistic high resolution spatial 

distributions of the chloromethane surface fluxes are also essential to improving their 

simulations. In Chapter 7, in the simulation of dichloromethane mole fractions, we 

showed that non-uniform oceanic emissions reproduced the actual observations much 

more successfully. Because our inversions assumed fixed (but non-uniform) spatial 

distributions within each region that were obtained from these bottom-up estimates, the 

inclusion of more realistic spatial distributions into the top-down approach should result 

in more accurate flux estimates. Moreover, although the inverse modeling approach can 

quantitatively estimate the flux magnitudes, field and laboratory experiments are still 

necessary to study the mechanisms of the fluxes, especially for the biogeochemical 

processes that control the natural sources and sinks of the chloromethanes.  
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