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Modeling Climate Feedbacks to Energy Demand: The Case of China

Malcolm O. Asadoorian†, Richard S. Eckaus and C. Adam Schlosser

Abstract

This paper is an empirical investigation of the effects of climate on the use of electricity by consumers and

producers in urban and rural areas within China. It takes advantage of an unusual combination of

temporal and regional data sets in order to estimate temperature, as well as price and income elasticities

of electricity demand. The estimated positive temperature/electric power feedback implies a continually

increasing use of energy to produce electric power which, in China, is primarily based on coal. In the

absence of countervailing measures, this will contribute to increased emissions, increased atmospheric

concentrations of greenhouse gases, and increases in greenhouse warming.
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1. INTRODUCTION

This paper investigates the effects of climate on the use of electricity by consumers and

producers, using an unusual data set assembled for urban and rural areas across China. The

primary question is the direction in which the net adjustments to climate change will proceed:

greater or lesser use of electricity and, therefore, greater or lesser use of greenhouse gas emitting

fuels? If the feedbacks are negative, their neglect leads to overestimates of future emissions.

However, if the feedbacks are positive, their neglect leads to underestimates of emissions and

future global warming.

The analysis of the potential effects of climate change has received considerable attention,

although not as much as the consequences of mitigating greenhouse gas emissions levels (Metz

et al., 2001). This is unfortunate for two reasons. First, we have already experienced globally

averaged warming and there will be continued changes in the future (Forest et al., 2000).

Secondly, there may be effects of climate change that increase or decrease the difficulties of

future climate mitigation through positive or negative feedbacks.

We estimate the demand for electricity using climate indicators, as well as structural and the

conventional price and income variables. We do this for Chinese provinces over a six year period

so that we can capture both spatial and temporal climatic differences on urban and rural

consumers and industry. For residential consumers, we employ two-stage regressions. The first

                                                  
† Corresponding author. MIT Joint Program on the Science and Policy of Global Change, 77 Massachusetts Ave.,

E40-407, Cambridge MA 02139-4307; Tel: 1-617-253-6017; Fax: 1-617-253-9845, Email: malcolma@mit.edu.



2

stage estimates the localized effect of climate and other variables on the purchase of electricity-

using residential appliances; the second stage then estimates the localized effect of climate and

other variables on the intensity of both appliance and non-appliance uses of electricity. Non-

residential electricity demands for electricity are estimated separately as a one-stage regression.

The Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC)

identifies energy sectors as being the most vulnerable to climate change (McCarthy et al., 2001).

Despite this, there are relatively few empirical studies dealing with the feedbacks of climate on

energy demand. To date, numerous economic assessments of climate feedbacks on energy

demand have been mainly qualitative case studies, surveys, overviews, or subjective evaluations.

(Crocker & Ferrar, 1976; Linder et al., 1987; Smith & Tirpak, 1989; Nordhaus, 1991; Cline,

1992; McKibbin & Wilcoxen, 2002).

There is, however, a modest set of econometric investigations on related issues. These include

models utilizing a single stage sector-disaggregated energy demand framework originating with

Fisher & Kaysen (1962) and expanded upon more recently by Considine (2000). Dubin &

McFadden (1984) developed a two-stage discrete-continuous methodology, used also by Vaage

(2000). In most of these instances, weather data is utilized, represented by the number of heating-

and cooling-degree days. One exception is Mansur et al. (2005) in which they employ National

Climate Data Center data on average monthly temperature and precipitation. Like Dubin &

McFadden (1984), the first stage of the Mansur et al. (2005) regressions explains fuel choice, as

if energy sources other than electricity are possible in the important consumer applications.

The remainder of the paper is organized as follows. Section 2 details the empirical models and

data. Next, Section 3 reports and analyzes empirical results. Section 4 provides discussion of

estimated elasticities. Lastly, Section 5 provides a summary and conclusions.

2. EMPIRICAL MODELS AND DATA

In formulating our econometric model of electricity demand with the inclusion of climate

variables, the availability of data at relatively low levels of dis-aggregation is essentially the

“horse that pulls the carriage”. We have detailed provincial economic and climate data over

several years for urban and rural areas in China, covering a wide range of climate zones, forming

a substantial panel data set.

The data distinguish urban and rural residential use of electricity. In addition, our data permit

us to control for individual ownership of air conditioners, refrigerators, and television sets. We

use proxy variables as well to capture electricity demand for lighting/illumination1. In estimating

residential electricity demands separately for urban and rural residents, we follow the spirit of the

two-stage approach initially developed by Dubin & McFadden (1984), except that we estimate a

first set of individual demands for air conditioners (ACs), refrigerators and television sets (TVs),

rather than a choice of fuel types. The second stage equation is residential electricity demand

conditional on these first stage choices. More formally:

                                                  
1 Brockett et al. (2002) indicate that the top four electricity-consuming appliances for China are (in descending

order): refrigerators, air conditioners, and lighting/illumination, and televisions.
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Where:

  
W U

it
 = Vector of dependent variables consisting of natural logarithm of the urban stocks of

ACs, refrigerators, and TVs estimated individually and respectively.

  
W R

it
 = Vector of dependent variables consisting of natural logarithm of the rural stocks of

ACs, refrigerators, and TVs estimated individually and respectively.

Y
U

it = Natural logarithm of urban residential electricity demand.

Y
R

it = Natural logarithm of rural residential electricity demand.

X
U

it = Natural logarithm of: urban residential electricity price, urban income per capita, and

mean temperature variable(s); a binary variable for differences associated with

coastal provinces; for the AC equation, the natural logarithm AC price and fan

price are added; for the refrigerator equation, the natural logarithm of refrigerator

price is added; for the TV equation, the natural logarithm of the TV price is added.

X
R

it = Natural logarithm of: rural residential electricity price, rural income per capita, and

mean temperature variable(s); a binary variable for differences associated with

coastal provinces; for the AC equation, the natural logarithm AC price and fan

price are added; for the refrigerator equation, the natural logarithm of refrigerator

price is added; for the TV equation, the natural logarithm of the TV price is added.

Z
U

it = All the same variables included in XU
it, excluding all durable good prices; additional

variables are the predicted new urban stocks of ACs, refrigerators, and TVs from

the estimated equation [1]; also included are the natural logarithm of total urban

residential living space, and the natural logarithm of monthly night time (i.e. non-

daylight) hours stratified by four seasons.

Z
R

it = All the same variables included in XR
it, excluding all durable good prices; additional

variables are the predicted new rural stocks of ACs, refrigerators, and TVs from the

estimated equation [3]; also included are the natural logarithm of total rural

residential living space, and the natural logarithm of monthly night time hours

stratified by four seasons.
U
,

R
,

U
,

R  = Parameter vectors to be estimated.
U

it,
R

it,
U

it,
R

it = Stochastic error terms with the usual properties.

The mean near-surface air temperature varies substantially across both time and space in

China. For example, the lowest mean monthly temperatures are found in the north-most

provinces (e.g. Inner Mongolia) whereas, in contrast, the highest mean monthly temperatures are

found in the south-central provinces (e.g. Guangdong). In order to investigate the possible effects
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of seasonal differences in climate and examine the sensitivity of the estimation to various

formulations, we estimate separately all equations in this study using monthly, seasonal, and

annual mean temperature variables as regressors. More specifically, we individually estimate

three regressions each for equations [1] through [4]; Case A utilizes monthly mean temperatures;

Case B uses second seasonal mean temperatures: summer, fall, winter, and spring; and Case C

uses annual mean temperatures2. The specific grouping of months into the four seasonal

categories may be somewhat arbitrary, which is an additional reason why we also estimate the

equations using individual monthly mean temperature variables.

Detailed data on amount of electricity consumed for lighting/illumination is not directly

available. Therefore, we have constructed proxy variables: the mean monthly night time hours,

stratified by the same four seasons, and the total amount of residential living space. While the

mean number of monthly night time hours are the only variables used that do not change from

year-to-year, there is, of course, variation across provinces with latitude3. Significant collinearity

prohibited the interaction of the four mean monthly night time hours variables with residential

living space. Lastly, since in China, there exist differences in taxes and other economic policies

in coastal versus non-coastal provinces, these differences are controlled for via a binary variable

distinguishing coastal and non-coastal provinces (Zhang & Martinez-Vazquez, 2003).

In contrast to the residential models, detailed data on the electricity-using equipment of non-

residential consumers (e.g. industry sectors) are not readily available. In addition, non-residential

data does not distinguish between urban and rural areas. Thus, non-residential electricity demand

is formally expressed as:

Y
N

it = Z
N

it  + μit [5]

Where:

Y
N

it = Natural logarithm of non-residential electricity demand.

Z
N

it = Natural logarithm of: non-residential electricity price; gross domestic product

separately for the primary, net-secondary, and tertiary industries; total non-

residential floor space; mean temperature(s); and monthly night time hours

stratified by four seasons; in addition, a binary variable for differences associated

with coastal provinces.

 = Parameter vector to be estimated.

μit = Stochastic error terms with the usual properties.

With regard to mean temperature, three versions of equation [5] are estimated for Cases A

through C, as stipulated for the residential regressions. Another problem arises because

secondary industry gross output includes the gross output of electricity; therefore, we remove

gross electricity output from total secondary industry output.

                                                  
2 Initially, we intended to include relative humidity as an additional climate measure, which also possesses a

relatively large degree of variability across time and space in China. However, high collinearity between
temperature and relative humidity variables necessitated dropping one of the measures. Temperature is most
important for linkages within Global System Models (Sokolov et al., 2005).

3 See Ngo-Duc et al. (2005) for more details.
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The necessary spatially explicit climate data are taken from a re-processed version of the

National Centers for Environmental Prediction/National Center for Atmospheric Research

(NCEP/NCAR) reanalysis product, designed specifically for land-climate analysis and

applications. The NCEP/NCAR data set is a 1°x 1° spatial climate data set which “…is based on

the National Centers for Environmental Prediction/National Center for Atmospheric Research

reanalysis project and a number of in situ observations…These observations are obtained from

surface station observations, radiosonde, aircraft and, in recent decades, satellite retrievals”

(Ngo-Duc et al., 2005, p. 1-2). This quality-controlled spatially explicit data was recently

developed for use mostly with global land surface models within an integrated global systems

framework as well as various applications, including climate change (Ngo-Duc et al., 2005). In

its initial form, the data lacked China country or provincial codes. Thus, provinces were coded

utilizing a provincial boundary Geographical Information System (GIS) spatial data layer

available through the Center for International Earth Science Information Network (CIESIN) at

Columbia University (CIESIN, 2004). Following the same approach of Deschenes & Greenstone

(2006), multiple grid cells within provinces were averaged to generate monthly mean

temperatures for each province in a given year for the time period 1995 to 2000.

The time period of years 1995 to 2000, as well as the provinces chosen, were based on data

availability for all economic and climate variables. The province of Chongqing was promoted

from a municipality in year 1997, separate from its former position as part of the Sichuan

province. For this study, Chongqing data from 1997 to 2000 was aggregated with Sichuan for

consistency purposes only. Moreover, the province of Tibet was eliminated due to lack of data.

Lastly, after examining scatter plots as well as systematic testing for outliers (at the five percent

level) using the method developed by Hadi (1992) and further refined in Hadi (1994), we

decided to exclude the provinces of Hainan, Xinjiang, and Qinghai. Using the same method for

the rural residential regressions, the provinces of Beijing, Shanghai, and Tianjin were

additionally excluded as extreme outliers, characterized by the highest incomes per capita and

the lowest electricity demand in rural areas.

Table 1A in the Appendix provides a comprehensive description of all variables for equations

[1] through [5] with the variable names used in estimation, their definition, unit of measure, and

data source(s); Table 2A of the Appendix provides sample statistics.

3. EMPIRICAL RESULTS AND ANALYSIS

A likelihood ratio test as prescribed by Wooldridge (2000) indicated heteroskedasticity across

panels for all equations, likely due to the geographic-scale differences across provinces. In

addition, following Wooldridge (2000), a test of first-order (panel-specific and common)

autocorrelation lead us to reject the null hypothesis of no autocorrelation for each of equations

[1] though [5], finding the existence of common, not panel-specific, first-order autocorrelation.

Consequently, for equations [1] through [5], the classical fixed- or random-effects panel

estimators cannot be employed. Instead, we estimated them using the Prais-Winsten panel-
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corrected standard error (PCSE) estimator4. In these cases, feasible generalized least squares

(FGLS) is an alternative estimation procedure. However, FGLS produces estimates conditional

on the estimates of the disturbance covariance matrix and are conditional upon any

autocorrelation parameters that are estimated (Greene, 2003). In addition, Beck & Katz (1995)

have demonstrated that FGLS variance-covariance estimates are typically positively biased.

Urban residential regression results are provided in Tables 1 and 2; rural residential regression

results are reported in Tables 3 and 4; lastly, the non-residential results are in Table 5.

3.1 Urban Residential Regressions

For the durable demands in Table 1, we consider first the demand for air conditioners. For

Cases A through C, the magnitude and direction of the air conditioner price and income

coefficients are all significant and consistent with a priori expectations. In contrast, although

urban residential electricity prices yield the expected sign for Cases A and B, they do not appear

to be a significant driver of urban air conditioner demand. Moreover, differences for coastal

provinces are not significant. The price of fans is included to test the possible substitutability

between fans and air conditioners as cooling devices. The estimated and largely significant

positive coefficient supports this theory.

Another issue is the relatively large degree of collinearity among the monthly mean

temperature variables (Case A). Thus, it is no surprise that most are individually statistically

insignificant. From the estimation here, it appears that the month of March is predicted to

generate the largest predicted increase in the stock of air conditioners along with the largest

predicted decrease during the month of November. The seasonal Case B generates estimates that

are more consistent with expectations, namely, that the largest predicted increase in air

conditioner stock is during the summer accompanied by the largest predicted decrease during the

fall. It is possible that the predicted significant increase during winter may be indicative of

forward-looking behavior such that some households are making purchases of air conditioners at

lower relative prices during winter in anticipation of summer. Lastly, Case C yields a positive

and highly significant coefficient for annual mean temperature, though it fails to convey the

temporal variability as in Case B.

For refrigerator and television demand, it appears that income is the largest driver of demand,

as expected. In addition, most of the estimated coefficients of the durable good prices have the

correct signs and are significant. However, the estimated sign, direction, and significance of

urban residential electricity prices coefficients are counter-intuitive for refrigerators. Within the

context of the first stage estimation, we would expect that, in general, mean temperature has

more of an impact on demand for air conditioning than refrigerators or televisions since it is a

device to directly respond to increases in temperature. Thus, although some of the mean

temperature coefficient estimates are significant, they certainly lack any plausible explanation.

                                                  
4 In using the conventional panel estimators, random effects results are inconsistent and fixed-effect results utilizing

annual mean temperature did not significantly differ from those reported here.
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Table 1. First Stage Urban Residential Regression Results.

Dependent Variable:

Equation # :

LN(UAC_

STOCK)
1A

LN(UAC_

STOCK)
1B

LN(UAC_

STOCK)
1C

LN(UREFRIG_

STOCK)
1A

LN(UREFRIG_

STOCK)
1B

LN(UREFRIG_

STOCK)
1C

LN(UTV_

STOCK)
1A

LN(UTV_

STOCK)
1B

LN(UTV_

STOCK)
1C

INTERCEPT 25.669
(1.99)*

–20.261
(2.02)*

2.607
(0.14)

5.450
(3.14)*

5.330
(2.96)*

5.999
(3.50)*

9.142
(13.02)*

10.195
(11.45)*

9.574
(10.17)*

LN(URES_
ELECPRICE)

–0.311
(0.86)

–0.309
(1.00)

0.638
(1.49)

0.036
(1.07)

0.051
(1.90)

0.065
(2.10)*

–0.035
(1.90)

–0.036
(1.67)

–0.040
(1.53)

LN(UINCPC) 0.546
(5.79)*

0.872
(8.04)*

0.795
(5.33)*

0.434
(6.34)*

0.428
(6.27)*

0.416
(6.54)*

0.363
(18.05)*

0.350
(12.95)*

0.356
(12.18)*

LN(AC_PRICE) –9.816
(3.07)*

–8.167
(3.07)*

–3.201
(2.70)*

– – – – – –

LN(FAN_PRICE) 7.562

(2.24)*

6.473

(1.98)*

1.079

(1.24)

– – – – – –

LN(REFRIG_

PRICE)

– – – –0.279

(1.38)

–0.350

(1.74)

–0.395

(2.10)*

– – –

LN(TV_PRICE) – – – – – – –0.720

(6.86)*

–0.785

(6.02)*

–0.770

(5.23)*
COAST –0.047

(1.52)

–0.150

(0.65)

0.209

(0.59)

0.030

(2.46)*

0.025

(2.15)*

0.026

(2.33)*

0.013

(2.06)*

0.012

(1.18)

0.004

(0.04)
LN(JAN_TEMP) –0.019

(0.59)

– – –0.003

(1.01)

– – 0.000

(0.04)

– –

LN(FEB_TEMP) 0.088

(1.56)

– – 0.008

(1.76)

– – 0.004

(1.29)

– –

LN(MAR_TEMP) 0.068

(2.57)*

– – 0.005

(1.49)

– – 0.004

(2.13)*

– –

LN(APR_TEMP) –0.085
(1.79)

– – –0.007
(0.16)

– – 0.000
(0.27)

– –

LN(MAY_TEMP) –0.090
(1.37)

– – –0.006
(1.04)

– – –0.009
(2.47)

– –

LN(JUN_TEMP) 0.089
(1.90)

– – –0.005
(0.74)

– – 0.006
(1.84)

– –

LN(JUL_TEMP) 0.096
(1.90)

– – 0.003
(0.57)

– – 0.005
(1.24)

– –

LN(AUG_TEMP) 0.100
(1.55)

– – 0.013
(2.04)*

– – –0.001
(0.27)

– –

LN(SEP_TEMP) 0.036
(1.00)

– – 0.004
(1.06)

– – –0.006
(2.58)*

– –

LN(OCT_TEMP) –0.053

(1.02)

– – –0.010

(1.76)

– – –0.001

(0.33)

– –

LN(NOV_TEMP) –0.102

(2.16)*

– – –0.006

(1.10)

– – –0.008

(2.90)*

– –

LN(DEC_TEMP) 0.047

(1.52)

– – 0.004

(0.76)

– – 0.003

(1.60)

– –

LN(WINTER_

TEMP)

– 1.324

(2.91)*

– – 0.087

(2.29)*

– – 0.036

(2.22)*

–

LN(SPRING_TEMP) – –2.557

(1.01)

– – 0.109

(0.67)

– – 0.126

(1.30)

–

LN(SUMMER_

TEMP)

– 16.555

(4.23)*

– – 0.398

(1.79)

– – –0.076

(0.67)

–

LN(FALL_TEMP) – –3.767

(2.23)*

– – –0.335

(1.81)

– – –0.291

(2.50)*

–

LN(ANNUAL_
TEMP)

– – 3.937
(5.16)*

– – 0.203
(2.74)*

– – –0.091
(1.52)

R2 0.615 0.616 0.341 0.986 0.989 0.992 0.991 0.996 0.996

Notes: * = Significance at the 5% level. Absolute t-statistics in parentheses. Number of observations of each = 153. Estimator for each = PCSE.

The second stage urban residential electricity demand results in Table 2 are the most

interesting. Both estimated income and electricity price coefficients (i.e. constant elasticities) are

significant and consistent with a priori expectations for Cases A through C. Moreover, the

predicted stock of air conditioners yields a positive and highly significant coefficient, as

expected. The estimated negative coefficients on predicted refrigerator and television stocks

seem to imply economies of scale such that, increases to the existing stock are characterized by

“newer, larger, and energy efficient” units which consume less electricity per unit. Another

possible explanation is that some saturation threshold for refrigerators and televisions has been

reached.

Table 2. Second Stage Urban Residential Regression Results.



8

Dependent Variable:

Equation # :

LN(URES_ELECD)

2A

LN(URES_ELECD)

2B

LN(URES_ELECD)

2C

INTERCEPT –10.676 (0.81) 26.695 (1.43) –1.394 (0.15)

LN(URES_ELECPRICE) –0.204 (2.43)* –0.132 (2.79)* –0.190 (2.44)*

LN(UINCPC) 0.716  (2.20)* 0.564 (2.90)* 0.797 (3.60)*

LN(WINTER_NIGHT) –1.649 (2.05)* –2.004 (2.87)* –2.424 (3.88)*

LN(SPRING_NIGHT) –3.446  (0.90) –4.099 (0.83) –1.654 (0.66)

LN(SUMMER_NIGHT) –2.665 (1.18) –4.410 (1.76) 0.248 (0.17)

LN(FALL_NIGHT) 3.549 (1.76) 6.522 (2.91)* 4.533 (2.12)*

LN(ULIVINGSPACE) 0.717 (6.73)* 0.557 (12.04)* 0.485 (4.70)*

LN(UAC_STOCK) 0.039 (2.34)* 0.078 (3.02)* 0.096 (4.98)*

LN(UREFRIG_STOCK) –0.835 (2.71)* –0.561 (2.03)* –0.712 (2.75)*

LN(UTV_STOCK) –1.305 (2.44)* –1.112 (3.29)* –1.242 (2.77)*

COAST 0.316 (2.01)* 0.408 (1.98)* 0.556 (9.60)*

LN(JAN_TEMP) 0.207 (3.35)* – –

LN(FEB_TEMP) –0.632 (2.03)* – –

LN(MAR_TEMP) 0.420 (0.81) – –

LN(APR_TEMP) –1.385 (1.90) – –

LN(MAY_TEMP) –0.419 (0.48) – –

LN(JUN_TEMP) 1.873 (1.98)* – –

LN(JUL_TEMP) –0.743 (0.65) – –

LN(AUG_TEMP) 0.918 (0.69) – –

LN(SEP_TEMP) –1.617 (1.86) – –

LN(OCT_TEMP) 0.647 (0.60) – –

LN(NOV_TEMP) –0.064 (0.11) – –

LN(DEC_TEMP) 0.447 (1.67) – –

LN(WINTER_TEMP) – 0.215 (1.87) –

LN(SPRING_TEMP) – –0.323 (0.67) –

LN(SUMMER_TEMP) – 2.054 (2.43)* –

LN(FALL_TEMP) – –1.928 (3.55)* –

LN(ANNUAL_TEMP) – – 0.590 (2.03)*

R2 0.802 0.810 0.899

Notes: * = Significance at the 5% level. Absolute t-statistics in parentheses. Number of observations of each = 150. Estimator = PCSE.

Recall that the seasonal night time hours variables are intended to be proxies that capture

electricity demand for lighting/illumination. The estimated negative coefficient on winter night

time hours is counter-intuitive and may be capturing provincial differences. Rather, it is the

positive and significant coefficient on the other proxy, namely residential living space, which

supports and appears to capture more accurately, electricity demand for lighting/illumination.

This is likely due to the fact that the night time hours are highly negatively correlated with mean

temperatures for all Cases, most notably for Case A.

Although the log-linear formulation of our equations provides constant elasticities with

respect to temperature (as well as prices and income), the stratification of mean temperature by

season allow us to see how these temperature elasticities vary over time. As expected, from

Case B, we see clearly that the most significant positive temperature elasticity occurs during

summer, followed by a significant negative drop-off in the subsequent fall season.

With the relatively large degree of variation of temperature across both time and space, the

usefulness of the constant elasticity for annual mean temperature (Case C) is not necessarily

adequate. However, given the frequent use of annual mean temperature analysis in the context of

climate research (Houghton et al., 2001), a constant elasticity for annual mean temperature is

clearly the most applicable. For example, most climate change analyses include an annual mean

temperature change prediction (Sokolov et al., 2005). We compare and contrast our predicted

elasticities with the previous literature in Section 4.



9

3.2 Rural Residential Regressions

Relatively speaking, the estimation results for rural residents are less satisfying than the urban

ones. This may be due to the differences in economic policies with regard to economic

development of the urban versus rural areas (Jiang & O’Neill, 2004). As Pan (2002) indicates,

the incomplete and/or inadequate data available for most of China’s rural areas is largely due to

the fact that “the focus of economic development in China has been on the urban part and

industrial sectors with respect to investment and government policies, such as education,

infrastructures, healthcare, and restrictions on mobility. This biased approach is well reflected in

energy use in China” (p. 1).

In Table 3, we consider first the demand for air conditioners. For Cases A through C, the

magnitude and direction of the air conditioner price and income coefficients are all consistent

with a priori expectations, though most are individually insignificant. However, unlike rural

refrigerators and televisions, the first year data is available for rural air conditioner stocks is

2000, within our sample data time series of 1995 through 2000. This is likely due to the

relatively small ownership of air conditioners among rural residents prior to year 2000. More

recent editions of the China Statistical Yearbook (i.e. years 2002 through 2004) report rural air

conditioner ownership for years 2001 through 2003. Our initial intention was to estimate rural air

conditioner demand for years 2000 through 2003. However, the Ngo-Duc et al. (2005) climate

data is not available beyond year 2000. Thus, we used rural air conditioner stocks for years 2000

through 2003 to compute an average annual growth rate. This fixed average rate was applied to

generate a rural air conditioner stock series for years 1995 through 1999. The lack of data (as

seen by the relatively small number of observations used in estimation) is likely to be the

primary reason why income is not a significant driver of rural air conditioner demand and why

most estimated coefficients are individually insignificant.

Relatively speaking, this lack of data does not plague the refrigerator and television demand

estimation, as indicated by the results. For these, in general, we find that income and durable

prices are mostly significant with the expected signs. Moreover, we also find that winter and

summer seasons imply the largest predicted increases for refrigerator demand, as expected.

Annual mean temperatures are predicted to significantly decrease demand for televisions.

Once again, the second stage estimates of electricity demand as presented in Table 4 for rural

residents are most interesting. In contrast to the urban regressions, rural electricity prices are

significant with much greater magnitudes for the Cases B and C, thereby implying that they

“matter more” to rural residents than urban ones. Related to this are the estimated income

elasticities for the rural residents as compared to their urban counterparts. From Table 1, we see

that the relative magnitudes of the urban electricity price and income elasticities across Cases A

through C are generally consistent. In contrast, the magnitude of the rural electricity price

elasticity relative to the income elasticity varies across Cases A through C. In Case A, we

estimate relatively small and insignificant income and price elasticities. However, the reverse is

true for Case B, characterized by a significant increase in the absolute magnitude of these

elasticities; the estimated income elasticity in Case C is also insignificant as in Case A, though

the price elasticity is significant for the former. The only difference between the Cases, of

course, is the level of aggregation with respect to the mean temperature variables.
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Table 3. First Stage Rural Residential Regression Results.

Dependent

Variable:

# Obs.:

Equation # :

LN(RAC

_STOCK)
59

3A

LN(RAC_

STOCK)
60

3B

LN(RAC_

STOCK)
61

3C

LN(RREFRIG_

STOCK)
125

3A

LN(RREFRIG_

STOCK)
129

3B

LN(RREFRIG_

STOCK)
132

3C

LN(RTV_

STOCK)
125

3A

LN(RTV_

STOCK)
129

3B

LN(RTV_

STOCK)
132

3C

INTERCEPT 17.560

(0.28)

32.814

(0.69)

81.805

(1.69)

–17.030

(1.26)

6.851

(0.45)

17.177

(1.10)

36.565

(4.94)*

44.802

(5.25)*

45.478

(5.20)*
LN(RRES_

ELECPRICE)

0.489

(0.77)

0.635

(1.35)

0.615

(1.22)

0.252

(1.47)

0.431

(0.98)

0.578

(1.24)

0.023

(0.33)

0.122

(1.71)

0.139

(1.43)
LN(RINCPC) 0.615

(1.87)

0.752

(1.26)

0.556

(1.07)

0.952

(7.00)*

0.794

(4.72)*

0.593

(4.90)*

0.790

(4.78)*

0.556

(2.87)*

0.516

(2.96)*
LN(AC_PRICE) –0.963

(0.15)

–3.439

(0.61)

–10.599

(2.04)*

– – – – – –

LN(REFRIG_
PRICE)

– – – 0.631
(0.42)

–2.406
(1.32)

–2.949
(1.64)

– – –

LN(TV_PRICE) – – – – – – –4.592
(4.47)*

–5.819
(4.61)*

–5.954
(4.97)*

COAST 1.856
(7.33)*

1.904
(4.19)*

2.317
(3.90)*

0.627
(4.19)*

0.868
(5.28)*

0.992
(5.96)*

0.436
(4.11)*

0.583
(5.08)*

0.591
(4.72)*

LN(JAN_
TEMP)

0.403
(0.35)

– – 0.068
(0.41)

– – 0.025
(0.31)

– –

LN(FEB_
TEMP)

1.053
(0.38)

– – 0.420
(0.84)

– – –0.368
(1.39)

– –

LN(MAR_
TEMP)

4.577
(1.67)

– – 0.449
(0.57)

– – 0.336
(0.84)

– –

LN(APR_

TEMP)

–2.634

(0.49)

– – –0.322

(0.23)

– – –0.048

(0.06)

– –

LN(MAY_

TEMP)

–2.808

(0.43)

– – –5.814

(3.22)*

– – –2.191

(1.92)

– –

LN(JUN_

TEMP)

0.096

(0.01)

– – 3.172

(1.49)

– – 1.570

(1.45)

– –

LN(JUL_TEMP) 9.567

(1.69)

– – 4.188

(1.70)

– – 2.306

(1.95)

– –

LN(AUG_

TEMP)

–8.744

(1.68)

– – –0.074

(0.03)

– – –2.768

(2.02)*

– –

LN(SEP_

TEMP)

–0.964

(0.18)

– – –0.470

(0.34)

– – –0.961

(1.14)

– –

LN(OCT_

TEMP)

–5.415

(0.87)

– – –0.728

(0.45)

– – 0.505

(0.73)

– –

LN(NOV_
TEMP)

–1.288
(0.31)

– – –2.608
(3.61)*

– – –0.929
(1.95)

– –

LN(DEC_
TEMP)

0.868
(0.49)

– – 1.333
(2.96)*

– – 0.501
(2.29)*

– –

LN(WINTER_
TEMP)

– 0.455
(0.83)

– – 0.390
(2.42)*

– – 0.023
(0.33)

–

LN(SPRING_
TEMP)

– 5.905
(1.59)

– – –1.212
(1.26)

– – –0.309
(0.52)

–

LN(SUMMER_
TEMP)

– –4.874
(1.01)

– – 3.073
(2.68)*

– – –0.153
(0.24)

–

LN(FALL_
TEMP)

– –4.986
(1.55)

– – –1.708
(1.54)

– – –1.135
(1.54)

–

LN(ANNUAL_

TEMP)

– – 0.444

(0.55)

– – 0.539

(2.95)*

– – –1.457

(5.60)*
R2 0.694 0.650 0.644 0.769 0.667 0.606 0.697 0.736 0.698

Notes: * = Significance at the 5% level. Absolute t-statistics in parentheses. LN(FAN_PRICE) automatically dropped due to collinearity. Estimator = PCSE.

For the rural regressions, we find that in Case A, those monthly mean temperature variables

that are also significant for their urban counterpart, are larger in relative magnitude. Specifically,

the magnitudes of the estimated coefficients are larger for the months of January and February.

There does appear to be some inconsistency for months such as November, whereby the

estimated coefficient is positive and significant for the rural regression and negative, though

insignificant, for the urban one. Most notably, the estimated coefficients on the mean monthly

night time hours variables for all rural regressions are generally consistent with the urban ones,

except for the significant negative fall season elasticities in rural Cases B and C, as compared to

the positive and significant urban counterparts. Related to this perhaps, is that in rural Cases B

and C, none of the mean temperature coefficients are significant.
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Table 4. Second Stage Rural Residential Regression Results.

Dep. Var :

# Obs.:

Equation # :

LN(RRES_ELECD)

59

4A

LN(RRES_ELECD)

60

4B

LN(RRES_ELECD)

61

4C

INTERCEPT 86.775 (1.04) 307.777 (3.11)* 261.465 (2.42)*

LN(RRES_ELECPRICE) –0.203 (0.36) –0.645 (2.21)* –0.275 (2.48)*

LN(RINCPC) 0.141 (0.29) 0.255 (2.80)* 0.038 (0.14)

LN(WINTER_NIGHT) –2.463 (2.11)* –4.537 (2.84)* –3.060 (2.07)*

LN(SPRING_NIGHT) 3.271 (0.94) –9.136 (1.53) –8.310 (1.16)

LN(SUMMER_NIGHT) 1.618 (0.32) –2.042 (0.41) –0.278 (0.10)

LN(FALL_NIGHT) –16.042 (1.98)* –34.564 (4.94)* –33.718 (3.23)*

LN(RLIVINGSPACE) 0.533 (4.55)* 0.235 (1.51) 0.271 (2.25)*

LN(RAC_STOCK) 0.085 (3.01)* 0.234 (6.49)* 0.119 (2.54)*

LN(RREFRIG_STOCK) 0.000 (0.01) 0.204 (1.67) 0.100 (1.09)

LN(RTV_STOCK) –0.014 (0.09) –0.433 (2.46)* –0.129 (0.85)

COAST 0.574 (5.94)* 0.803 (8.80)* 0.789 (9.14)*

LN(JAN_TEMP) 0.766 (2.33)* – –

LN(FEB_TEMP) –2.058 (2.23)* – –

LN(MAR_TEMP) –0.074 (0.08) – –

LN(APR_TEMP) –2.081 (1.43) – –

LN(MAY_TEMP) 1.011 (1.05) – –

LN(JUN_TEMP) 3.024 (1.58) – –

LN(JUL_TEMP) –2.344 (1.23) – –

LN(AUG_TEMP) –3.416 (1.18) – –

LN(SEP_TEMP) –2.016 (1.19) – –

LN(OCT_TEMP) 1.269 (0.93) – –

LN(NOV_TEMP) 3.237 (2.43)* – –

LN(DEC_TEMP) –0.143 (0.21) – –

LN(WINTER_TEMP) – –0.082 (0.45) –

LN(SPRING_TEMP) – –1.688 (1.08) –

LN(SUMMER_TEMP) – 1.030 (0.40) –

LN(FALL_TEMP) – 0.904 (0.68) –

LN(ANNUAL_TEMP) – – 0.758 (0.97)

R2 0.800 0.761 0.777

Notes: * = Significance at the 5% level. Absolute t-statistics in parentheses. Estimator = PCSE.

Given the aforementioned relatively high negative collinearity between the mean

temperatures and mean monthly night time hours variables, it appears that during our sample

period, rural electricity demand responded more to seasonal night hours variation than mean

temperatures with the largest significant predicted decreases occurring during the fall. This may

be attributed, possibly, to rural residents partaking in more outdoor-based activities as opposed to

more indoor ones, thereby decreasing the predicted electricity demand for lighting/illumination.

The most important is the traditional annual cultural event known as the Mid-Autumn Festival in

China. This event is not only for celebrating the harvest, but also a period in the fall season for

family reunions and fellowship. It may also be that rural incomes were not high enough to

generate significant appliance demand.

Focusing more on rural Cases B and C, in short, it appears that rural electricity demand is

driven mostly by variation in electricity prices and seasonal night time hours, as opposed to

income and seasonal mean temperature for the urban counterparts.

3.4 Non-Residential Regressions

Table 5 provides regression results for the non-residential electricity demand regressions.

Again, the estimated coefficients (i.e. constant elasticities) for non-residential electricity prices

are consistent with a priori expectations. The major difference between the residential and non-

residential models is the manner in which income is measured. Unfortunately, it was not possible
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Table 5. Single Stage Non-Residential Regression Results

Dep. Var :

# Obs.:

Equation # :

LN(NONRES_ELECD)

82

5A

LN(NONRES_ELECD)

83

5B

LN(NONRES_ELECD)

83

5C

INTERCEPT 45.486 (5.42)* 41.421 (5.04)* 40.692 (5.19)*

LN(NONRES_ELECPRICE) –0.224 (3.98)* –0.199 (4.69)* –0.202 (3.90)*

LN(GDP_PRIMARY) 0.136 (4.89)* 0.148 (4.54)* 0.145 (3.82)*

LN(GDP_NETSECONDARY) 0.502 (7.81)* 0.445 (8.38)* 0.376 (6.01)*

LN(GDP_TERTIARY) 0.312 (2.55)* 0.317 (3.86)* 0.275 (3.65)*

LN(WINTER_NIGHT) –0.270 (0.67) –0.499 (1.55) –0.185 (0.61)

LN(SPRING_NIGHT) –11.316 (5.46)* –10.187 (10.57)* –8.715 (5.38)*

LN(SUMMER_NIGHT) 5.249 (3.55)* 5.195 (6.35)* 4.751 (5.28)*

LN(FALL_NIGHT) –0.807 (0.63) –1.957 (1.78) –2.817 (2.30)*

LN(FLOORSPACE) 0.161 (2.82)* 0.145 (1.64) 0.163 (1.74)

COAST 0.213 (3.20)* 0.248 (3.27)* 0.249 (2.81)*

LN(JAN_TEMP) –0.054 (0.45) – –

LN(FEB_TEMP) 0.696 (1.72) – –

LN(MAR_TEMP) 0.238 (0.31) – –

LN(APR_TEMP) –0.331 (0.48) – –

LN(MAY_TEMP) –1.999 (1.42) – –

LN(JUN_TEMP) 2.478 (1.48) – –

LN(JUL_TEMP) 2.862 (1.86) – –

LN(AUG_TEMP) –3.061 (2.17)* – –

LN(SEP_TEMP) –0.953 (0.86) – –

LN(OCT_TEMP) –0.349 (0.66) – –

LN(NOV_TEMP) –0.757 (1.16) – –

LN(DEC_TEMP) 0.345 (1.22) – –

LN(WINTER_TEMP) – 0.243 (3.40)* –

LN(SPRING_TEMP) – –0.212 (0.67) –

LN(SUMMER_TEMP) – –0.040 (0.07) –

LN(FALL_TEMP) – –0.441 (0.64) –

LN(ANNUAL_TEMP) – – 0.090 (0.48)

R2 0.935 0.955 0.959

Notes: * = Significance at the 5% level. Absolute t-statistics in parentheses. Estimator = PCSE.

to decompose the gross value of industrial output into individual sectors. The total gross value of

industrial output (i.e. industrial gross domestic product) is disaggregated into primary, net-

secondary, and tertiary industries in the China Statistical Yearbook. The magnitudes of the

estimated coefficients on the primary, net-secondary, and tertiary gross domestic product

variables are consistent with, and correspond to, the relative electricity-intensity of these sectors

with the following (descending) rank order: secondary, tertiary, primary industry (State

Statistical Bureau of the People’s Republic of China, 2004).

In general, the mean temperature does not have a significant impact on non-residential

electricity demand, as expected. For Case A, we predict only a significant decrease during the

month of August. When compared to Case B, we find only a significant increase during the

winter. Based on the aforementioned collinearity between the monthly mean temperature and

mean night time hours variables, the monthly Case A should be taken with a “grain of salt”. For

Case B, it is likely that the predicted increase in non-residential electricity demand is attributed

to increased demand for lighting/illumination given that winter realizes the lowest mean

temperatures accompanied by the highest number of night time hours.

4. ELASTICITY ANALYSIS

Previous literature regarding the estimation of electricity demand has many price and income

elasticity estimates. Since this study is focused exclusively on China, it is most appropriate to

compare and contrast the elasticity estimates produced here to publications with a similar scope.
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This study is unique because it stratifies electricity demand into urban and rural residential as

well as non-residential sectors.

Annual aggregate income elasticities of electricity demand/consumption are readily available

via the year 2004 China Statistical Yearbook. Notwithstanding the aggregation differences, a

simple averaging of these elasticities coinciding with the time period of our study for years 1995

to 2000, yields an income elasticity of +0.75. Von Hirschhausen & Andres (2000) adopt an

aggregate income elasticity of +0.70, attributing this trend “…to the decreasing energy-output

ratio of the Chinese economy in the post-Mao reform period since 1979, when the energy use per

unit of GDP fell by over 50%” (p. 234). Moreover, von Hirschhausen & Andres (2000) as well

as Pesaran & Smith (1995) identify an acceptable range of short-run aggregate energy price

elasticites for China (as well as other transitional economies) as ranging between –0.10 and

–0.30.

Table 6 summarizes the income, price, and annual mean temperature elasticities from our

study as well as those included in the previous literature. Empirical specifications in the previous

literature do not include temperature variables as we have here. Thus, as an exercise in

sensitivity analysis, we also re-estimate residential and non-residential electricity demands,

excluding mean temperatures.

In general, both price and income elasticities estimated for urban residents in this study are

consistent with those in the cited literature, irrespective of the inclusion of mean temperature

variables. For rural residents, although income elasticities differ substantially from previous

estimates, they are statistically insignificant; the price elasticities are more consistent.

Table 6. Elasticity Analysis.

Model p
c

p I
d

I T

Urban residential electricity with

Climate variables (Eq. 2C)
–0.190 –0.100 to –0.200 +0.797 +0.700 to +0.750 +0.590

Urban residential electricity without

Climate variablesa –0.189 –0.100 to –0.200 +0.786 +0.700 to +0.750 –

Rural residential electricity with

Climate variables (Eq. 4C)
–0.275 –0.100 to –0.200 +0.038 +0.700 to +0.750 +0.758

Rural residential electricity without

Climate variablesa –0.210 –0.100 to –0.200 +0.014 +0.700 to +0.750 –

Non-residential electricity with Climate

variable (Eq. 5C)b –0.202 –0.100 to –0.200 – +0.700 to +0.750 +0.090

Non-residential electricity without

Climate variablesa, b –0.127 –0.100 to –0.200 – +0.700 to +0.750 –

p = Price elasticity of electricity demand

I = Income elasticity of electricity demand

T = Temperature elasticity of electricity demand
a Models re-estimated without climate variables, specifically excluding mean temperatures as well as coastal

binary variables to prevent them from capturing climate differences.
b Recall, non-residential regressions do not utilize same income measure as residential and, hence, is not a

legitimate basis for comparison.
c Based on short-run aggregate estimates (which correspond more closely to our time series of 1995-2000) from

Pesaran & Smith (1995) as well as von Hirschhausen & Andres (2000).
d Based on average of 1995-2000 aggregate elasticities in 2004 China Statistical Yearbook Table 7-8 as well as

those adopted by von Hirschhausen & Andres (2000).
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In addition, non-residential price elasticities are consistent with the previous literature. However,

since the income measures utilized here for the non-residential regressions differs substantially

from the previous literature, no direct comparison is appropriate.

Most interestingly, however, is examining how the price and income elasticities react to the

inclusion or exclusion of mean temperature variables for all models. From Table 6, it is apparent

that both the price and income elasticities are consistently higher in absolute magnitude with the

inclusion of mean temperature variables in the regressions. It is our conclusion that conventional

estimates of these price and income elastiticies confound the effect of climate and other variables

with price and income. We believe that conventional econometric estimates of electricity

demand that exclude climate variables underestimate the absolute magnitudes of income and

price elasticities. Differences in the estimated price and income elasticities, including versus

excluding, mean temperature variables are not individually significant. However, we employ

Engle (1982) Lagrange multiplier (LM) and F-test approaches to test the significance of

including temperature variables for each of the urban and rural residential as well as non-

residential regressions. We treat the cases of excluding mean temperature variables as restricted

models and reject each of these at the five percent level, thereby concluding that mean

temperature variables do “matter” for the regressions as a whole.

5. SUMMARY AND CONCLUSIONS

This paper investigates the effects of climate on the use of electricity by consumers and

producers in urban and rural areas within China, taking advantage of an unusual combination of

data sets in order to estimate price, income and, most importantly, temperature elasticities of

electricity demand.

Within integrated system models of global climate change, it is necessary to include an

economic model to generate projections of anthropogenic emissions and utilize these emissions

projections in a climate framework to subsequently produce climate projections, most notably of

mean temperature change (Sokolov et al., 2005). However, relatively little attention has been

given to modeling feedbacks from a climate model to an economic model in this context

(McCarthy et al., 2001; Metz et al., 2001). Besides its “stand-alone” value, our goal is to fill this

void by producing econometric estimates for temperature elasticities of electricity demand.

The positive temperature/electric power feedback implies a continually increasing use of

energy to produce electric power as global warming occurs. As long as energy is, to some

degree, based on fossil fuels, it implies continually increasing greenhouse gas emissions. In the

absence of countervailing measures, that entails increasing atmospheric concentrations of

greenhouse gases and greater greenhouse warming leading to higher temperatures, more

electricity use, and so forth. Despite the fact that results of this study are relatively limited in

terms of geographic scope, the positive temperature/electric power elasticities is another

indication of the need to find means of reducing the buildup of greenhouse gases in the

atmosphere.
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APPENDIX

Table 1A. Description of Variables.

Variable Name Definition

Unit of

Measure Data Source(s)

ECONOMIC VARIABLES:

?RES_ELECPRICE Residential
Electricity Price

Yuan/KWh China Energy Databook v.6 for 1997 residential
electricity price data; China Statistical Yearbook years

1996-2001 for consumer price index for electricity and
other fuels used with 1997 data in order to generate
Province-specific electricity prices for all remaining
years between 1995 and 2000.
? = U for “Urban” and R for “Rural”.

NONRES_ELECPRICE Non-Residential
Electricity
Price

Yuan/KWh China Energy Databook v.6 for 1997 small and large
industry electricity price data; China Statistical
Yearbook years 1996-2001 for consumer price index for
electricity and other fuels used with 1997 data in order

to generate Province-specific electricity prices for all
remaining years between 1995 and 2000.

?RES_ELECD Residential Urban
Electricity
Demand

TWh China Energy Databook v.6.
? = U for “Urban” and R for “Rural”.

NONRES_ELECD Non-Residential
Urban Electricity
Demand

TWh China Energy Databook v.6. Constructed by taking =
Final Urban Electricity Demand – Residential Urban
Electricity Demand.

?INCPC Income Per Capita
for Urban Areas

Yuan China Statistical Yearbook years 1996-2001.
? = U for “Urban” and R for “Rural”.

GDP_PRIMARY Gross Value of
Output for
Primary Industry

Ten
thousand
Yuan

China Statistical Yearbook years 1996-2001.

GDP_NETSECONDARY Gross Value of
Net Output for
Primary Industry

Ten
thousand
Yuan

China Statistical Yearbook years 1996-2001. Total
generated electricity volume for secondary industry
obtained from: www.chinadataonline.com was

converted to value terms using NONRES_ELECPRICE;
the resulting total gross value of electricity output was
subtracted from the total gross value of secondary
industry output.

GDP_TERTIARY Gross Value of
Output for
Tertiary Industry

Ten
thousand
Yuan

China Statistical Yearbook years 1996-2001.

AC_PRICE Average Price of

Air
Conditioner

Yuan “Report I952: The Chinese Room Air Conditioner

Market and Opportunities to Improve Energy
Efficiency” available at: www.aceee.org. Used a single
average 1995 price of 3600 Yuan for 2000-Watt
window unit in conjunction with Consumer Price Index
for Durable Goods to determine the Province-specific
prices for all remaining years between 1995 and 2000.

?AC_STOCK Stock of Air
Conditioners
(ACs)

Number of
units owned
(year-end)

per
100 urban
households.

China Statistical Yearbook years 1996-2004. ? = U for
“Urban” and R for “Rural”. For rural residents, data
only available for years 2000-2003. Given the time

series utilized is 1995-2000, the average annual growth
rate in stock from 2000-2003 was computed and used to
generate the rural stock series for years 1995-1999.

FAN_PRICE Average Price of
Cooling Fan

Yuan From “Market Report of Selected Electrical Home
Appliances” available at: www.chinavista.com.Used a
single average value of 150 Yuan for year 1996 in
conjunction with in conjunction with Consumer Price
Index for Durable Goods to determine the Province-

specific prices for all remaining years between 1995 and
2000.
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Variable Name Definition

Unit of

Measure Data Source(s)

REFRIG_PRICE Average Price of
Refrigerator

Yuan From “Market Report of Selected Electrical Home
Appliances” available at: www.chinavista.com. Used a

single average 1996 price of 2770 Yuan (across major
brands) in conjunction with Consumer Price Index for
Durable Goods to determine the Province-specific prices
for all remaining years between 1995 and 2000.

?REFRIG_STOCK Stock of
Refrigerators

Number of
units owned
(year-end)
per

100 urban
households.

China Statistical Yearbook years 1996-2001.
? = U for “Urban” and R for “Rural”.

TV_PRICE Average Price of
 Television

Yuan From “Business in China: Home Appliance Makers
Face Hard Year” available at: www.china.com. Used a
single average 2003 price of 800 Yuan for a 21 inch
color television unit in conjunction with Consumer Price
Index for Durable Goods to determine the Province-
specific prices for all remaining years between 1995 and

2000.
?TV_STOCK Stock of Color

Televisions (TVs)
Number of
units owned
(year-end)
per
100 urban
households.

China Statistical Yearbook years 1996-2001.
? = U for “Urban” and R for “Rural”.

?LIVINGSPACE Total living space
of residential

buildings (year-
end)

Ten
thousand

square
meters

China Statistical Yearbook years 1996-2001. ? = U for
“Urban” and R for “Rural”.

FLOORSPACE Total floor space
of non-residential
buildings (year-
end)

Ten
thousand
square
meters

China Statistical Yearbook years 1996-2001.

COAST =1 for coastal
Provinces, 0 non-

coastal Provinces

Binary None.

WINTER_NIGHT Mean number of
monthly night time
(i.e. non-daylight)
hours in winter

Numeric NCC spatial data set. Initial data was for monthly
daylight hours, which were converted to night time
hours. Winter season consists of the months of:
December, January, and February.

SPRING_NIGHT Mean number of
monthly night time
(i.e. non-daylight)

hours in spring

Numeric NCC spatial data set. Initial data was for monthly
daylight hours, which were converted to night time
hours. Spring season consists of the months of: March,

April, and May.
SUMMER_NIGHT Mean number of

monthly night time
(i.e. non-daylight)
hours in summer

Numeric NCC spatial data set. Initial data was for monthly
daylight hours, which were converted to night time
hours. Summer season consists of the months of: June,
July, and August.

FALL_NIGHT Mean number of
monthly night time
(i.e. non-daylight)

hours in fall

Numeric NCC spatial data set. Initial data was for monthly
daylight hours, which were converted to night time
hours. Fall season consists of the months of: September,

October, and November.

CLIMATE VARIABLES:

ANNUAL_TEMP Mean annual

temperature

Fahrenheit NCC spatial data set. Monthly variables for each

province and for each year were averaged; Initial data in
unit Kelvin was converted to Farenheit.

JAN_TEMP Mean January
Temperature

Fahrenheit NCC spatial data set. Monthly variables for each
province and for each year were averaged; Initial data in
unit Kelvin was converted to Fahrenheit.
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Variable Name Definition

Unit of

Measure Data Source(s)

FEB_TEMP Mean February

Temperature

Fahrenheit NCC spatial data set. Monthly variables for each

province and for each year were averaged; Initial data in
unit Kelvin was converted to Fahrenheit.

MAR_TEMP Mean March
Temperature

Fahrenheit NCC spatial data set. Monthly variables for each
province and for each year were averaged; Initial data in

unit Kelvin was converted to Fahrenheit.
APR_TEMP Mean April

Temperature
Fahrenheit NCC spatial data set. Monthly variables for each

province and for each year were averaged; Initial data in
unit Kelvin was converted to Fahrenheit.

MAY_TEMP Mean May
Temperature

Fahrenheit NCC spatial data set. Monthly variables for each
province and for each year were averaged; Initial data in
unit Kelvin was converted to Fahrenheit.

JUN_TEMP Mean June

Temperature

Fahrenheit NCC spatial data set. Monthly variables for each

province and for each year were averaged; Initial data in
unit Kelvin was converted to Fahrenheit.

JUL_TEMP Mean July
temperature

Fahrenheit NCC spatial data set. Monthly variables for each
province and for each year were averaged; Initial data in
unit Kelvin was converted to Fahrenheit.

AUG_TEMP Mean August
Temperature

Fahrenheit NCC spatial data set. Monthly variables for each
province and for each year were averaged; Initial data in
unit Kelvin was converted to Fahrenheit.

SEP_TEMP Mean September
Temperature

Fahrenheit NCC spatial data set. Monthly variables for each
province and for each year were averaged; Initial data in
unit Kelvin was converted to Fahrenheit.

OCT_TEMP Mean October
Temperature

Fahrenheit NCC spatial data set. Monthly variables for each
province and for each year were averaged; Initial data in
unit Kelvin was converted to Fahrenheit.

NOV_TEMP Mean November
Temperature

Fahrenheit NCC spatial data set. Monthly variables for each
province and for each year were averaged; Initial data in

unit Kelvin was converted to Fahrenheit.
DEC_TEMP Mean December

Temperature
Fahrenheit NCC spatial data set. Monthly variables for each

province and for each year were averaged; Initial data in
unit Kelvin was converted to Fahrenheit.

WINTER_TEMP Mean Winter
Temperature

Fahrenheit NCC spatial data set. Monthly variables for each
province and for each year were averaged; Initial data in
unit Kelvin was converted to Fahrenheit. Winter season
consists of the months of: December, January, and
February.

SPRING_TEMP Mean Spring
Temperature

Fahrenheit NCC spatial data set. Monthly variables for each
province and for each year were averaged; Initial data in
unit Kelvin was converted to Fahrenheit. Spring season
consists of the months of: March, April, and May.

SUMMER_TEMP Mean Summer
Temperature

Fahrenheit NCC spatial data set. Monthly variables for each
province and for each year were averaged; Initial data in
unit Kelvin was converted to Fahrenheit. Summer
season consists of the months of: June, July, and

August.
FALL_TEMP Mean Fall

Temperature
Fahrenheit NCC spatial data set. Monthly variables for each

province and for each year were averaged; Initial data in
unit Kelvin was converted to Fahrenheit. Fall season
consists of the months of: September, October, and
November.
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Table 2A. Sample Statistics

Variable Mean Standard Deviation

URES_ELECD 2.036 2.250

RRES_ELECD 1.203 3.004

NONRES_ELECD 28.847 1.786

URES_ELECPRICE 0.308 1.230

RRES_ELECPRICE 0.246 1.330

NONRES_ELECPRICE 0.279 1.394

UINCPC 5110.232 1.323

RINCPC 1889.372 1.557

UAC_STOCK 6.360 6.626

RAC_STOCK 0.444 5.512

UTV_STOCK 102.822 1.140

RTV_STOCK 29.195 2.026

UREFRIG_STOCK 73.700 1.220

RREFRIG_STOCK 5.430 3.714

AC_PRICE 3331.621 172.073

TV_PRICE 862.378 46.279

REFRIG_PRICE 2663.616 135.849

RLIVINGSPACE 7203.005 4.900

ULIVINGSPACE 3681.222 2.635

FLOORSPACE 3415.230 2.512

WINTER_NIGHT 395.403 39.464

SPRING_NIGHT 349.916 6.227

SUMMER_NIGHT 299.561 17.737

FALL_NIGHT 367.999 8.389

GDP_PRIMARY 332.953 2.657

GDP_NETSECONDARY 739.519 2.869

GDP_TERTIARY 672.499 2.482

JAN_TEMP 28.783 16.214

FEB_TEMP 34.011 13.782

MAR_TEMP 42.766 11.702

APR_TEMP 54.132 9.404

MAY_TEMP 63.749 7.913

JUN_TEMP 70.609 7.389

JUL_TEMP 75.117 7.431

AUG_TEMP 73.772 7.855

SEP_TEMP 66.635 8.888

OCT_TEMP 56.740 11.196

NOV_TEMP 43.304 13.878

DEC_TEMP 33.248 15.693

WINTER_TEMP 32.014 15.135

SPRING_TEMP 53.549 9.472

SUMMER_TEMP 73.166 7.465

FALL_TEMP 55.560 11.109

ANNUAL_TEMP 52.457 1.235
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