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Methane Fluxes Between Terrestrial Ecosystems and the Atmosphere
at Northern High Latitudes During the Past Century:
A retrospective analysis with a process-based biogeochemistry model

Qianlai Zhuang', Jerry M. Mélillo’, David W. Kicklighter’, Ronald G. Prinn',
A. David McGuire*, Paul A. Steudler’, Benjamin S. Felzer” and Shaomin HU'

Abstract

We develop and use a new version of the Terrestrial Ecosystem Model (TEM) to study how rates
of methane (CH,) emissions and consumption in high-latitude soils of the Northern Hemisphere
have changed over the past century in response to observed changes in the region’s climate. We
estimate that the net emissions of CH, (emissions minus consumption) from these soils have
increased by an average 0.08 Tg CH, yr~ during the 20" century. Our estimate of the annual
net emission rate at the end of the century for the region is 51 Tg CH,yr . Russia, Canada, and
Alaska are the major CH, regional sources to the atmosphere; responsible for 64%, 11%, and
7% of these net emissions, respectively. Our simulations indicate that large inter-annual
variability in net CH, emissions occurred over the last century. If CH, emissions from the soils
of the pan-Arctic region respond to future climate changes as our simulations suggest they have
responded to observed climate changes over the 20" century, a large increase in high latitude
CH, emissionsislikely and could lead to a major positive feedback to the climate system.
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1. INTRODUCTION

Soils have the capacity to both produce and consume methane (CH,), a powerful greenhouse
gas. A special group of soil microorganisms, the methanogens, is responsible for CH, production,
while another group, the methanotrophs, is responsible for CH, consumption. Recent estimates put
CH, emissions from the world' s soils at between 150 and 250 Tg CH, yr*[IPCC, 2001], with a
guarter to athird of the total emitted from the wet soils of high latitudes [Walter et al., 20014].
Estimates of CH, consumption by soil microbes are in the range of 10-30 Tg CH, yr+; an order of
magnitude lower than the emission estimates [IPCC, 2001]. Most of the CH, consumption occurs
in the well-drained soils of temperate and tropical areas[Ridgwell et al., 1999].

Terrestrial ecosystems above 45°N have experienced earlier and more dramatic environmental
changes from global warming compared with lower-latitude ecosystems, especially in the last
decades of the 20™ century [IPCC, 2001]. These changes include higher mean annual air
temperatures, increases in precipitation, and melting of permafrost [Romanovsky et al., 2000; Vitt
et al., 2000]. Changes of CH, emissions and consumption due to warming and alterations of
hydrology in the region have been measured [e.g., Friborg et al., 1997; Whalen and Reeburgh,
1992; West and Schmidt, 1998]. For example, earlier emissionsin response to the early spring
thawing in sub-arctic mire ecosystems, and larger emissions due to the increase of active layer
thickness in permafrost zones, have been observed [Whalen and Reeburgh, 1992; Moore et al .,
1990; Dise, 1993].

Many of the regional and global estimates of CH, fluxes between the land and the atmosphere
have been based on limited site measurements and simple extrapolation procedures [e.g., Whalen
and Reeburgh, 1990b; Whalen et al., 1991]. Recently, several large-spatial-scale models [e.g.
Cao et al., 1996; Liu, 1996; Potter et al., 1996; Prinn et al., 1999; Ridgwell et al., 1999; Walter
and Heimann, 2000, Walter et al., 2001a,b] have been developed to estimate current and future
methane exchanges between the land and the atmosphere. These models have incorporated many
of the factors that control CH, fluxes and have led to mgor advances in our understanding net
CH, fluxes to the atmosphere from northern ecosystems. However the extant models have not
dealt with the complex behavior of the freeze-thaw phenomena, i.e., freezing upward from the
permafrost boundary as well as downward from the surface [see Zhuang et al., 2001; Goodrich,
1978a,b] in the northern ecosystems. We built on this solid foundation by explicitly considering
freeze-thaw dynamics of permafrost and directly coupling net primary productivity (NPP) to CH,
dynamics.

To examine the responses of CH, fluxes between soils and the atmosphere at high latitudes,
we have developed a new methane module and coupled it to our process-based biogeochemistry
model, the Terrestrial Ecosystem Model [TEM; Mdlillo 1993; Zhuang et al., 2003]. We estimate
the net CH, fluxes from the region above 45° N during the 1990s and the contributions of sub-
regions to thistotal flux. We then explore how these net CH, fluxes from the high-latitude soils
of the Northern Hemisphere have changed from 1900 to 2000.



2.METHODS

2.1 Model Framework

We have developed a daily time-step methane dynamics module (MDM) for TEM that
explicitly considers the process of CH, oxidation (methanotrophy) as well as CH, production
(methanogenesis) and the transport of the gas from the soil to the atmosphere. We coupled the
MDM module with several extant TEM modules (Figur e 1a): the core carbon and nitrogen
dynamics module [CNDM; TEM, Zhuang et al., 2003]; the soil thermal module (STM) that
includes permafrost dynamics [Zhuang et al., 2001]; and an improved and expanded
hydrological module (HM) that simulates water movement across an atmosphere-vegetati on-soil
continuum. For northern ecosystems, the soil component of this HM modul e includes the moss,
organic soil, and minera soil layers[Zhuang et al., 2002], and is designed to consider
fluctuations in water-table depth.

2.1.1 Methane Module

Fluxes of methane between soils and the atmosphere depend on the relative rates of methane
production and oxidation within the soil profile and the transport of methane across the surface
of soils. We assume that soils can be separated into upper unsaturated and lower saturated zones
according to the water table depth. Methanotrophy (methane oxidation) occurs in the unsaturated
zone and methanogenesis (methane production) occurs in the saturated zone. As methanotrophy
reduces soil methane concentrations in the unsaturated zone and methanogenesis increases soil
methane concentrations in the saturated zone, the resulting concentration gradient causes methane
to diffuse from the saturated zone into the unsaturated zone. If the rate of methanogenesisis larger

Hydrological Water Table and (@) . ) (b)
Module Soil Moisture Profile ; Atmospheric Methane Concentration
Soil Thermal : Diffusion P!;n(tj— Ebullition
Module Soil Temperature Profile Methane :Imiession
(STM) i Active Layer Depth ,| Dynamics N ) soil/ Water Surface
?fwog,\‘/“')e ¢ (Oxic Soil) Upper boundary
: : Methane Oxidation
i | Carbon/Nitrogen |: Water Table
i | Dynamics Module | | Labile carbon (AnX|S|I) """"""""""""""""""""""""""""""""""""""""""""""
: (CNDM) : Vegetation Characteristics H OXIC 50
1 > Methane Production
LLTEMSO Lower Boundary

Figure 1. (a) The schematic diagram of the new version of a biogeochemistry model (TEM): It contains a soil
thermal module [STM; Zhuang et al., 2001], a updated hydrologic module (HM) based on Zhuang et al.
[2002], a carbon/nitrogen dynamics module [CNDM] from the previous version of TEM [Zhuang et al., 2003],
and a methane dynamics module (MDM). (b) The structure of the MDM modaule: the soil is separated into
anaerobic and aerobic zones by water table position, the CH, production and oxidation rate are determined
with factors described in Appendices A and B, the CH, fluxes between soils and the atmosphere are
calculated considering different transport pathways described in Appendix C.



than the rate of methanotrophy within the soil profile, such as occursin wetland soils, methane
will be emitted to the atmosphere. There are two other pathways in addition to diffusion that can
be important in CH, transport to the atmosphere. Soil CH, can be transported from deep in
sediments and soils through “hollow tubes’ running from the roots through the stems of some
plants (plant-aided transport). If the water table is above the soil surface, methane can movein
bubbles through the overlying water and escape to the atmosphere. This transport processis
known as ebullition.

If the rate of methanotrophy is greater than the rate of methanogenesis within the soil profile,
then most, if not all, of the methane produced in the saturated zone will be oxidized in the
unsaturated zone and little or no CH, will be emitted from soils. Indeed, if the rate of
methanotrophy is higher than the rate of methanogenesis, a concentration gradient may develop
that causes methane to diffuse from the atmosphere into the soil, such as occursin well-drained
upland soils.

To simulate methane dynamics within the soil, we divide the soil column into alayered
system with 1 cm increments above and below the water table depth from an upper boundary
(i.e., the soil surface or water surface if the water table is above the soil surface) to alower
boundary, which represents the depth of microbial activity (Figure 1b). The lower boundary (Lg)
is defined according to the simulated active layer (unfrozen) depth from the soil thermal module.
If the active layer depth is deeper than the prescribed lower boundary (L,axg; See Table 1), the
Ly isequal to L,.xg; Otherwise the Ly is equal to the active layer depth. Within each soil layer,
changesin CH, concentration are governed by the following equation:

9C,, (z,1)

Py =M, (z,t)-M,(z,t) -

(@1 R,(z,t) = R (z,1) (Eqg. 1)
0z
where C,,(z,t) isthe soil CH, concentration at depth z (cm) and timet (1 hour), My(z,t) is the CH,
production rate, M 4(z,t) isthe oxidation rate, F5(z,t) is the diffusive flux of CH, through the soil
layer, Rp(z,t) isthe plant-aided emissions rate, and R(z,t) is the ebullitive emissions rate.
0F, (z,t)
0z
diffusion of methane into soil layer z from the layer below and the diffusion of methane out of
soil layer z into the layer above. The rates of diffusion and emissions calculated for each soil
layer within the soil profile are then used to determine the CH,, flux at the soil or water surface.
The CH, fluxes (F4(t)) between the atmosphere and the soils are the total of the fluxes at the
soil/water-atmosphere boundary via different transport pathways:

The term, , represents the net change in methane concentration resulting from the

Fry(t) = Fy (2 = 5,0) 4 Fo (1) 4 F (1) (Eq. 2)

where Fy(z = s, t) isthe diffusive flux at the interface between the soil surface and the
atmosphere, F4(t) are the plant-aided emissions, and F(t) are the ebullitive emissions.



Table 1. Parameterizations of the Methane Module at Calibration Sites for Simulating CH, Effluxes in this Study

Parameters* Toolik-D®  Toolik-W SSA-FEN B-F Tundra-NS Tundra-Ul Unit

Lvaxs 80 100 250 100 100 100 cm
Methanogenesis

Meo 2.6 13 2.1 0.4 43 43 uMh™

NPPyax 100 150 250 250 100 100 gCm~month™

Pato 8.0 4.6 4.5 10.0 10.0 10.0 -

P 25.0 23.0 22.0 7.0 8.0 8.0 oC
Methanotrophy

Ouax 35 30 40 1.0 1.0 30 uM h™!

Keha 5.0 5.0 5.0 15 10.0 5.0 uM

Oq10 3.5 2.2 1.9 1.5 0.8 25 -

Or 14.0 20.0 25.0 5.4 5.0 20.0 oC

MVyax 1.0 1.0 1.0 1.0 0.9 1.0 % Volume

MVyn 0.0 0.0 0.0 0.2 0.0 0.0 % Volume

MVger 0.5 0.5 0.5 0.6 0.4 0.5 % Volume

?See Text or Appendix for the definition of variables

bSee Table 2 for site name and description

By numerically solving the Eq.1, we obtain F(z = s, t) which will be positive if methane
diffuses from soils out to the atmosphere and will be negative is methane diffuses from the
atmosphere into soils. We determine F4(t) by integrating the Ry(z,t) across the soil profile from
the soil surface to the rooting depth. Similarly, Fc(t) is obtained by integrating R-(z,t) over the
saturation zone. The Fg(t) term will be equal to 0.0 if the water tableis not at or above the soil
surface.

As both biological activity and transport rates influence our estimates of CH, fluxes at the
soil/water surface, we describe below how we obtain the termsin equation 1 in more detail.

Methane production. Methane production is modeled as an anaerobic process that occursin
the saturated zone of the soil profile. We estimate hourly methanogenesis (M (z,t)) within each
1 cm layer of the sail profile asfollows:

M p(2.0) = My f (S ()] (M oy GO/ (PH () S (R, (2.)) (E0.9)

where M, is the vegetation-specific maximum potential production rate (Table 1); f(Soy(z,t))
denotes the effects of methanogenic substrate availability, which is afunction of NPP ssimulated
from the CNDM module and is described in section 2.1.4.; f(M<(z,t)) denotes the effects of soil
temperature, which is calculated in the STM module; f(pH(t)) represents the effects of soil pH;
and f(R.(z,t)) denotes the effects of the availability of electron acceptors which isrelated to
redox potential. Details of the components of Equation 3, except f(Sy(z,t)), are presented in
Appendix A.

Methane oxidation. Methane oxidation is modeled as an aerobic process that occursin the
unsaturated zone of the soil profile. We estimate hourly methanotrophy (M(z,t)) within each
1 cm layer of the sail profile as follows:

M, (z,0) = 0, S (C (2,8) [ (Ts0, (2,0) [ (Ey (2,0) f (R (2,1)) (Eg. 4)



where O, , . isthe vegetation-specific maximum oxidation coefficient (Table 1), that typically
ranges between 0.1 and 100 umolm2s™[Segers, 1998]; f(C,,(z,t)) is the effect of the soil methane
concentration; f(Ty,, (z,t)) isthe effect of soil temperature, which is calculated in the STM
module; f(Egy,(z,t)) isthe effect of soil moisture, which is provided from the HM module;
f(Rox(z,1)) isthe effect of redox potential; z represents the depth (cm) of the soil layer and t
represents time (hour). Details of the components of Equation 4 are presented in Appendix B.
Methane transport. In the model, we consider three pathways by which CH, can be transported
from the site of production to the atmosphere: diffusion through the soil profile (Fy(z,t)), plant-
aided transport (Rp(z,t)) and ebullition (Rg(z,t). Soil diffusion is the dominant transport process,
and we assume that it follows Fick’s law. Along the diffusion pathway, CH, can be oxidized in
the unsaturated zone so that it does not reach the atmosphere. In contrast, methane in plant-aided
emissions and ebullitions will not undergo oxidation before reaching the atmosphere. We describe,

in more detail, how we modeled each of these transport pathwaysin Appendix C.
2.1.2 Soil Thermal Module

The soil thermal module [STM; Zhuang et al., 2001, 2002, 2003] is used to estimate the active
layer depth (seasonal thaw depth) and soil temperatures at specified depths within the soil profile
based on monthly or daily air temperatures and precipitation. In the module, the vertical soil
profile is divided into snow cover, moss (or litter), and four soil layers: upper organic soil, lower
organic soil, upper mineral soil, and lower mineral soil. The snow cover and these soil layers have
distinct soil thermal conductivities and heat capacities. The module considers two freezing fronts;
i.e., freezing upward from the permafrost boundary, as well as freezing downward from the
surface. A snow classification system [Liston and Pielke, 2000] has been implemented to better
characterize the effect of the snow density and thermal conductivity on the soil thermal regime at
alarge spatial scale. The soil thermal module has been designed to run at aflexible time step (e.g.,
0.5 hour, 0.5 day) and severa depth steps (e.g., 2 cm, 5cm). The module has been calibrated and
validated for magjor biomes in the Northern Hemisphere in Zhuang et al., [2001, 2002] and for
different biome types across the globe in Zhuang et al. [2003]. In this study, the methane module
requires the soil temperatures at each 1 cm depth of the soil layer in addition to the active layer
depth of soils. Therefore, we first ssimulate the soil temperatures for a variable number of depths
within the organic and mineral soil layers. The soil temperatures at each 1 cm depth are then
obtained through linear interpolation with the ssimulated soil temperatures for those layers.

2.1.3 Hydrologic Module

In this study, the methane modul e requires soil moisture estimates for each 1 cm soil layer
within the profile and the estimated depth of the water table in wetland soils on adaily basis. We
use an updated version of the hydrologic module [HM, Zhuang et al., 2002] to provide these
estimates. Module improvements include: 1) the consideration of surface runoff when determining



infiltration rates from rain throughfall and snow melt, 2) the inclusion of the effects of temperature
and vapor pressure deficit in the determination of canopy water conductance when estimating
evapotranspiration, and 3) amore detailed representation of water storage and fluxes within the
soil profile of upland soils based on the Richards equation in the unsaturated zone [Hillel, 1980].
Asthe origina version of the HM is designed to simulate water dynamics only in upland soils,
algorithms have also been added to simulate water dynamicsin wetland soils.

For wetlands, the soil profileis divided into two layers: 1) an oxygenated, unsaturated zone;
and 2) an anoxic, saturated zone based on the water table depth. The soil water content and the
water table depth in these soils are determined using a water-balance approach that considers
precipitation, runoff, drainage, snow sublimation, and evapotranspiration. The soil moisture at
each 1 cm depth above the water table is modeled with a quadratic function and increases from
the soil surface to the position of the water table [Granberg et al., 1999]. The detailed
description of the updated HM module is documented in Appendix D.

2.1.4 Carbon/Nitrogen Dynamics Module

We assume that the production of root exudates during the growing season enhances
methanogenesis by increasing the availability of organic carbon substrate. To capture the effect
of spatial and temporal variationsin root exudates on methanogenesis, we use net primary
productivity (NPP) estimates from the carbon/nitrogen dynamics module (CNDM) of the
Terrestrial Ecosystem Model [TEM; Zhuang et al., 2003]. The NPP estimates are used as an
indicator for the variations in methanogenic substrate as follows:

NPP(mon)
NTW)f(CDlS (2) (Eq. 5)

(8o (z,0)) = (1+
where NPP(mon) is monthly net primary productivity; NPP,, .« represents the maximum monthly
NPP expected for a particular vegetation type (Table 1); f(Cy,5(2)) isthe relative availability of
organic carbon substrate at depth z in the soil profile; and t represents time (hour). While organic
substrates associated with fine root mortality are assumed to be available throughout the year, the
ratio of NPP(mon) to NPP,,, is used to represent the additional availability of root exudates
during the growing season (i.e., NPP greater than 0.0). Hence, the first term on the right-hand
side of equation 5 is assumed to equal 1.0 during the dormant season. We assume the simulated
monthly NPP remains constant throughout the month. As aresult of root mortality, we assume
that f(Cpy,5(2)) isequal to 1.0 throughout the rooting zone (i.e., z is above the rooting depth). If z
is below the rooting depth, the effect of f(Cy,5(2)) is assumed to decrease exponentialy with
depth [Walter and Heimann, 2000] as follows:

-(z-Rp)

f(Cps(z))=e 100 (Eq. 6)

where R, is rooting depth as determined by soil texture and vegetation type [V 6résmarty et al.,
1989].
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2.2 Methane M odule Parameterization

We parameterize the model using measurements of CH, fluxes and key soil and climate
factors made at six field sitesin North America between 53°N to 68.5°N (Table 2). Four of the
six sites are in the Alaskan tundra and they include both tussock and wet tundra. One of the sites
isin the boreal forest of Alaska and another isin the boreal forest of Canada.

We parameterize the methane module by minimizing the differences between observed fluxes
and simulated fluxes at the Toolik-D, Toolik-W, and SSA-FEN field sites. For each site, we start
the parameterization procedure with an initial set of parameter values determined by areview of
the literature. Each individual parameter has been adjusted to be within arange of values
provided from the literature review until the root mean square error (RMSE) between the daily
simulated and observed CH,, fluxes was minimized. This procedure is conducted sequentially for
al parameters with the result that RM SE for the Toolik-D, Toolik-W, and SSA-FEN
parameterizations are 20, 52, and 42 mg CH, m™ day ™, respectively.

Unlike the wetland sites, we do not have adaily time series of CH, flux datafor the other
three upland sites. Therefore, we parameterize the methane module so that the difference
between the simulated and observed maximum daily CH, consumption rate was minimized at
these sites. Specifically, we ater the parameters of the methane module until the smulated CH,
uptake reaches the maximum uptake rate of 0.95, 1.2, and 2.7 mg CH, m~day™ at the B-F,
Tundra-NS, and Tundra-Ul sites, respectively. Because the meteorological observations of some
sites are not available to us, we use climatic data from other sources (see Table 2), and it is
possible that this may lead to biases in the parameterization. In addition, our approach of
adjusting a single parameter at atime may lead to biases in parameterizations. The site-specific
parameters for the methane module are documented in Table 1. The parameterizations are
applied to our regional extrapolation for wetlands and uplands of major northern ecosystems
including apine tundra/ polar desert, wet tundra, and boreal forests (Table 3).

2.3Modd Testing at the Site L evel

To test the model and validate our parameterizations, we conduct simulations for a boreal
forested wetland site (NSA-FEN) in Canada and atundra site (Tundra-F) at Fairbanks, Alaska,
which are not used for our parameterization process. We compare the simulated daily CH, fluxes
to observations. The site descriptions, input climate data sets, and observed CH, fluxes are
described in Table 2. For conducting simulations for the NSA-FEN site, we apply the
parameterization of the SSA-FEN site. For the simulations at the Tundra-F site, we apply the
parameterization of the Toolik-W site.

Table 3. Parameterizations Applied to Major Ecosystem Types in Northern High Latitudes

Ecosystem Wetland Upland
Alpine tundra/polar desert Toolik-D Tundra-NS
Wet tundra Toolik-W Tundra-Ul
Boreal forests SSA-FEN B-F




2.4 Regional Simulations Using Geographically Explicit Data

To make spatially and temporally explicit estimates of CH, emissions and consumption in the
northern high latitudes (above 45°N) with our new version of TEM, we use spatially explicit data
of climate, vegetation, and soils from avariety of sources. The model is applied at the spatial
resolution of 0.5° by 0.5° (longitude by latitude) and at adaily time step for the period 1900
through 2000.

The non-climate datasets include potential vegetation similar to that described in Mélillo et al.
[1993], and soil texture and elevation described by Zhuang et al. [2003]. In addition, we use the
dataset of Matthews and Fung [1987] to define the distribution of wet soilsin theregion, and a
dataset from the International Geosphere-Biosphere Programme (IGBP) to assign spatially
explicit soil-water pH [Carter and Scholes, 2000]. The dataset of the fractional inundation of
wetlands, which is used to derive the proportions of wetlands and uplands of grid cells, isaso
taken from Matthews and Fung [1987].

The daily climate datasets are derived from the historical monthly air temperature,
precipitation, vapor pressure, and cloudiness datasets [Mitchell et al, 2003] of the Climatic
Research Unit (CRU) of the University of East Angliain the United Kingdom. We linearly
interpolate the monthly air temperature and vapor pressure to daily data using three consecutive
month’s data. To determine a current month’s daily air temperatures, for example, we assume
that: 1) the value of day 15 isequal to the current month’s mean air temperature; 2) the value of
thefirst day is equal to the average monthly air temperature of the current month and the
previous month; and 3) the value of last day is equal to the average monthly air temperature of
the current and the next month. The temperatures for the other days are linearly interpolated
using values of the first, 15" and last days. To convert monthly precipitation into daily rainfall,
we use the statistical algorithm of Li and Frolking [1992] and Liu [1996]. The algorithm converts
the monthly precipitation into a number of rainfall events of different duration and intensity
based on air temperature and the statistical results on the correlation of monthly precipitation
with the frequency of heavy, intermediate, and small rainfall events.

In the HM module, the evapotranspiration processes are driven by monthly LAI datasets for
the period 1982 to 1999 derived from satellite imagery [Myneni et al., 1997; 2001]. From 1900
to 1981, we use the LAI of 1982 to represent LAI during this period. We aso use the LAI of
1999 to represent LAI during 2000. We assume the LALI is constant within a month.

To develop regional estimates of CH, exchange from 1900 to 2000, we simulate the methane
dynamics and estimate CH,, fluxes from both wetland and upland ecosystems in each 0.5° grid
cell. These ecosystem-specific CH, flux estimates are then area-weighted for each grid cell as
defined by the fractional inundation data set of Matthews and Fung [1987].
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3. RESULTS AND DISCUSSION
3.1 Site-Specific Testing

At thetest site Tundra-F, the simulation captures inter-annual and seasonal variations of the
net CH, emissions. The simulated annual emissions are 12.2, 10.4, 7.6, and 12.1 g CH, m?yr for
1987, 1988, 1989, and 1990, respectively compared to observed fluxes of 8.05 + 2.5, 11.38 +
2.88, 8.11 + 1.80, and 13.64 + 1.20 g CH, m?yr* for the same years [ See Whalen and Reeburgh,
1992]. The linear regression statistics show a significant (P < 0.01; N = 48 months) relationship
between the simulated and observed monthly emissions with R* = 0.77, slope = 0.75, and
intercept = 0.25 g CH, m™ month™ (Figure 2a). Overall, the simulations tend to have higher
emissions compared to observations during the spring of each year (Figure 2b). This discrepancy
is probably because that the model ssmulated an early spring thaw by considering the insulation
of snow pack, which led to early CH, production for the site. In 1990, the model underestimates
the emissions in August and September. Thisis primarily because the simulated water tables
range from 27 to 28 cm, which is deeper than the measured maximum depth of 23 cm. The
deeper water table leads to less CH, production and emissions.

Similarly, at our test site, NSA-FEN, the model is able to capture the inter-annual and
seasona dynamics of net CH, emissionsin 1994 and 1996. A linear regression between monthly
simulated and observed net emissions is significant (P < 0.01; N = 10 months) with R* = 0.90,
slope = 0.70, and intercept = 0.46 g CH, m~ month™ (Figure 2a).

The model dlightly underestimates the emissions from June to September in 1996 (Figure 2¢).
Our analyses suggest that the lower emissions in our simulation are primarily due to the lower
soil temperatures resulting from the low soil thermal conductivity prescribed for the model. The
deviation may be also partially due to the climate data used to drive the model. Due to the lack of
in-situ meteorological data at the site, data from the Thompson station of the Canadian
Atmospheric Environment Service (AES) has been used to drive the model for this analysis.

3.2 Contemporary Regional and Sub-Regional Fluxes

Overadl, our simulations estimate that the Pan-Arctic region has been a source of about 51 T g
CH, yr™ during the 1990s. This estimate is in the same range as a number of other recent
estimates that have been made using a variety of approaches (Table 4). Differences between our
estimates and those of other studies may be aresult of using different geographical boundaries or
assuming different importance of various ecosystems in contributing methane to the atmosphere.
For example, Walter et al. [2001b] considered areas above 30° N in developing their regional
estimates rather than the 45° N boundary used in this study. Several studies considered only
tundra, boreal forests or wetlands when developing their regional estimates. In our study, we
estimate that the source strength varies over the Pan-Arctic and that large regions have actually
been small net sinks of atmospheric CH,, (Figure 3).

11
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Figure 2. Comparisons between simulated and observed CH, emissions at the test sites. (a) Scatter plot of
observed versus simulated monthly CH, emissions for two sites. The open circles indicate data for the NSA-
FEN site. The solid triangles indicate data for the Tundra-F site. See Table 2 for site descriptions. The dashed
line indicates the 1:1 line for the regressions. For the NSA-FEN site, the statistics are significant (P <0.01, N=10
months) with R>=0.90, slope = 0.70, and intercept = 0.46 gCH, m~ month™. Similarly, for the Tundra-F site,
the statistics are significant (P <0.01, N = 48 months) with R?=0.77, slope = 0.75, and intercept = 0.25 gCH,
m~ month™". (b) Comparison of the observed and simulated monthly CH, emissions at the Tundra-F site
during the period 1987 to 1990. Error bars indicate the standard deviations for the mean monthly
observations from three tussock tundra subsites T1, T2, and T3, see Whalen and Reeburgh [1992] for more
details. The observed monthly data is aggregated from available daily data from February to December of
1987, January to December of 1988 and 1989, and from May to September of 1990. (c) Comparison of the
simulated and observed monthly CH, emissions at the NSA-FEN test site during 1994 and 1996. The observed
daily data are averaged from CH, chamber flux measurements at six subsites in 1994 and four subsites in
1996. These subsites represent the range of plant communities, water chemistry, and peatland types found in
northern peatlands, including bog, rich fen, poor fen, and collapse scars. The observed monthly data is
aggregated from available daily data from May to September of 1994 and from June to October of 1996.
Error bars indicate the standard deviations for the mean monthly observations from these subsites.
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Table 4. Emissions, Consumption and Net Emissions of Methane from Ecosystem Soils across the Pan-Arctic

Region during the 1990s

Studies Emissions (Tg CH, yr™") Consumption (Tg CH, yr™) Net Emissions (Tg CH, yr™")
TEM 57.3 6.3 51.0
Whalen & Reeburgh [1992] 42 +26°

Whalen & Reebugh [1990a] 53°

Sebacher et al. [1986] 45-106 ¢

Matthews & Fung [1987] 62

Crill et al. [1988] 72°¢

Walter et al. [2001a] 65"

Caoetal.[1998] 31°

Liu [1996] 47"

Born et al. [1990] 1-15"

Whalen et al. [1991] 0-0.8’

Steudler et al. [1989] 03-5.1*

Ridgwell et al. [1999] 55'

Potter et al. [1996] 24"

Chen [2004] 42-45"

2Estimates for Arctic wet meadow and tussock and shrub tundra hEstimates for natural wetlands between 40°N and 80°N
b Estimates for global tundra and taiga ecosystems

Estimates for Arctic and boreal wetlands

9Estimates for forested and non-forested bogs between 50 - 70°N
¢Estimates for undrained peatlands above 40°N

fEstimates for wetlands above 30°N

9Estimates for natural wetlands above 40°N

iEstimates for boreal forests

JEstimates for upland and floodplain taiga

Estimates for boreal forests

'Estimates for tundra and boreal forests

™ Estimates for tundra and boreal forests

"Estimates based on inverse modeling for the Northern Hemisphere
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Figure 3. Simulated net CH, emissions and consumption in the Pan-Arctic region during the 1990s. Positive
values indicate the net CH, release to the atmosphere, and negative values indicate the CH, uptake from the
atmosphere.
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Our regiona emissions estimate for the Pan Arctic includes wetland areas. This functioned as
anet source of CH, and upland areas that functioned as a net sink. In our simulations, we estimate
that wetlands across the Pan-Arctic emitted about 57 T g CH, yr™ during the 1990s. Wetlands
within boreal forests have the highest rates of emissions (23 g CH, m™ yr™) but the large areas of
wetlands within wet tundra cause these ecosystems to be the largest contributor of atmospheric CH,.

In addition to the estimates of net CH, emissions from wetlands, our simulations estimate that
soil microbes in upland areas have consumed about 6 Tg CH, yr™ across the Pan-Arctic during
the 1990s. This estimate is higher in comparison to most other studies of methane consumption
(Table 4), which estimate the consumption rate to be between 0 and 5.5 Tg CH,, yr ™. An exception
isthe Born et al., [1990] study, which suggested a consumption rate of up to 15 Tg CH, yr™.
Upland areas within wet tundra have the highest consumption rates (0.27 g CH, m?yr™).

The ssmulated CH, emissions and consumption vary across the region depending on the
distribution of wetlands as well as spatial climate variability (Figure 3). For the 1990s, our
simulations estimate that terrestrial ecosystems within Russia, Canada, and Alaska are the major
sources of emissions in the Pan-Arctic, which are contributing 64%, 11%, and 7%, respectively,
of the total of 51 T g CH, net emissions per year (Table5). Similarly, soils of Russia, Canada,
and Alaska consume 38%, 25%, and 5% of the total of 6 Tg CH, per year. The West Siberia
wetlands in Russia are estimated to emit CH, at the rate of 21g CH, m? yr™ for atotal of 12 Tg
yr which is close to the high end of the estimates of 0.3-14 Tg CH, yr by Smith et al. [2004],
but lower than the estimate of 26 g CH, m™ yr™ by Friborg et al. [2003] for this region.

Our simulations indicate that 60% of emissions come from the latitude band of 45-60°N as
compared to 40% of total emissions from the region of 60-75°N. This pattern is probably due to
the larger areas of wetlands in the southern Pan-Arctic compared to the middle Pan-Arctic as
well as to the warmer conditions in the south. The consumption in the southern Pan-Arctic isaso
two times larger than in the middle Pan-Arctic (Table 6), which is primarily due to the larger
forest areain the southern Pan-Arctic.

Table 5. Regional Variation in Emissions, Consumption and Net Emissions of Methane during the 1990s

Russia Canada Alaska Pan Arctic
Emissions (Tg CH, yr™) 35.1 7.1 3.8 57.3
Consumption (Tg CH, yr™) -2.3 -1.5 -0.3 -6.3
Net Emissions (Tg CH, yr™") 328 5.6 35 51.0
Area (Mha) 687.4 370.2 65.2 3826

Table 6. Latitudinal Variations in Emissions, Consumption and Net Emissions of Methane during the 1990s

Northern Pan-Artic Middle Pan-Arctic Southern Pan- Pan-Arctic
(75-90°N) (60-75°N) Arctic (45-60°N) (45-90°N)
Emissions (Tg CH, yr™) 0.2 23.0 34.0 573
Consumption (Tg CH, yr™) -0.2 -2.0 -4.0 -6.3
Net Emissions (Tg CH, yr™) 0.0 21.0 30.0 51.0
Area (Mha) 58.7 14733 2294.6 3826
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3.3 Twentieth Century Trends

During the past century, our simulations estimate that CH, emissions have increased at arate
of 0.08 Tg CH, yr™. For the 1980s, the model simulates the increasing trend of emissions (~1.0
Tg CH, yr™), which is consistent with the direct measurements made in Northern Hemisphere
[Dlugokencky et al., 1994].

While methane consumption rates remain fairly constant throughout the study period, net CH,
emissions vary from decade to decade (T able 7) with relatively large emissions in the 1920-
1930s, 1950s and the 1980-1990s. The decadal net emission rates are correlated with decadal
variationsin climate and its derived variables, namely, soil temperature, water table depth, and
NPP. Our analyses indicate net CH, emissions are more significantly correlated with air
temperature (R = 0.91; P < 0.01, N = 10 decades) than precipitation (R = 0.64; P<0.01; N =10
decades). The correlations between decadal net emissions and water table depth, soil
temperature, and NPP are significantly (P < 0.01) high with R-values of 0.89, 0.92, and 0.82,
respectively. These analyses suggest that the climate and its influence on ecosystem production
and the soil environment exert strong feedbacks on CH, emissions.

Decadal changes of simulated monthly emissions from the 1900s to 1990s show an increasing
trend in the magnitude of CH, emissions during the growing season (May through September,
see Figur e 4) when root exudates provide additional carbon for methanogenesis. Our simulations
show the peak emissions occurred in July, which is consistent with the results of recent inverse
modeling studies [Houweling et al., 2000; Chen, 2004] and other process-based modeling [Cao
et al., 1996].

Table 7. Decadal Variations in Climate, Net Primary Productivity (NPP), and CH, Fluxes for the Past Century in the
Pan-Arctic Region

1900s 1910s 1920s 1930s 1940s 1950s 1960s 1970s 1980s 1990s

CH,Emissions

(Tg CH, yr™") 47.8 48.0 515 51.7 50.7 534 50.7 50.7 53.8 573
CH, Consumption

(Tg CH, yr™) -6.0 -6.1 -6.1 -6.2 -6.2 -6.2 -6.1 -6.2 -6.2 -6.3
Net CH,Emissions

(Tg CH, yr™") 41.8 419 454 45.5 445 47.2 446 445 47.6 51.0
Mean Annual Air

Temperatures (°C) -4.0 -4.0 -37 -35 -35 -37 -37 -37 -33 -29
Mean Annual

Precipitation (mm) 471 474 473 478 484 494 505 503 507 505
Mean Annual Soil

Temperatures (°C) -1.2 -1.2 -1.0 -0.9 -0.9 -1.0 -1.0 -1.0 -0.7 -0.5
Mean Annual Water

Table Depths (mm) 198.6 1988 199.5 2005 200.5 199.6 1996 2000 2015 2029
NPP (Pg Cyr™) 83 8.4 83 8.6 8.7 8.7 8.7 8.7 9.0 9.1
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Figure 4. (a) Cumulative net CH, emissions for each decade from 1900s to 1940s in the Pan-Arctic region.
(b) Cumulative net CH, emissions for each decade from 1950s to 1990s in the Pan-Arctic region.

Our simulations also show that large interannual variability in net CH, emissions occurred
during the 20™ Century (Figure 5a,b). For example, our simulations capture the decreasing trend
of the CH, emissions after the Mount Pinatubo eruption in 1991 (Figure 5¢). We estimate that the
50 Tg CH, emissions in 1991 decreasesto 40 and 45 Tg CH, yr in 1992 and 1993, respectively.

This decreasing trend has been observed in the inverse modeling study of Dlugokencky et al.
[1994], and the modeling study of Walter et al. [2001b]. During 1998, there was a large positive
anomaly in the global growth rate of atmospheric methane concentrations, Dlugokencky et al.
[2001] attributed this anomaly in part to increased emissions from wetlands in the high northern
latitudes resulting from warm conditions in 1998 due to the strong El Nifio phenomena. Our
simulation results support this interpretation and indicate that the region released 55 Tg CH,in
1998, an amount that is 8-11 Tg higher than emissionsin 1999 and 1997.

3.4 Conclusions and Future Directions

In this study, we couple key aspects of soil thermal and hydrological dynamics and carbon
dynamics of theterrestrial ecosystems with methane cycling to estimate CH, fluxes between the
atmosphere and the soils in the Pan-Arctic region. By considering the ability of soilsto produce
methane in wetland soils and to oxidizemethane in both wetland and upland soils, we have
developed more comprehensive regiona estimates of CH, fluxes than provided by earlier studies
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Figure 5. (a) Annual net methane emissions from the Pan-Arctic region during the 20t century. (b) Annual
methane consumption from the Pan-Arctic region during the 20" century. (c) Anomaly of simulated net CH,
emissions in the pan-Arctic region from 1983 to 2000. Anomalies are calculated based on the averaged net
CH, emissions from 1982 to 2000.

using process-based models or field estimates. Our analyses suggest that CH, emissions are more
sensitive to changesin climate, particularly air temperature, than consumption such that natural
ecosystems may become alarger source of atmospheric CH, with future climate change. In
addition, our analyses suggest that changes in root exudates associated with climate-induced
enhancements in plant productivity may also increase CH, emissions. However, reductions in the
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area of wetlandsin the Pan Arctic region [e.g., McGuireet al., in press| as aresult of aterations
of the hydrological cycle may alow methane consumption by soils to become more important.

Our regional estimates of net CH, emissions from natural ecosystems are 10 to 20 percent
higher than those estimated from an inverse modeling study based on spatial and temporal
changes in atmospheric CH, concentrations [Chen, 2004]. To help resolve this discrepancy and
to better understand the role of natural ecosystemsin the global methane budget, it is desirable to
couple our spatially explicit estimates of CH, fluxes to an atmospheric transport model to
simulate seasonal and interannual changes in atmospheric CH, concentration. This approach has
aready been taken with CO, fluxes and has proved helpful in evaluating and improving the
simulation of the various aspects of the carbon cycle including net carbon storage [McGuire et
al., 2000; Dargaville et al., 2002; Zhuang €t al., 2003].
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APPENDIX A. METHANE PRODUCTION

Methane production occurs in the saturated zone of soils. We model its rate with Equation 3
as afunction of carbon substrate availability, soil thermal conditions, soil pH and soil redox
potentials. The influence of carbon substrate availability is documented in section 2.1.4. Here we
describe, in more detail, the influence of soil thermal conditions, soil pH conditions, and soil
redox potentials on the production rate of methane.

Al. Effectsof Soil Temperatures

We assume the hourly methane production rate increases logarithmically with soil
temperature based on Walter and Heimann [2000]:

Tson (2,0)=Prg

SM g (z,0) =By 10 (Eq. AL)

where T4, (z,t) isthe hourly (t) soil temperature, which is simulated in the STM module for each
1 cm depth (2) of the soils; P,y isthe reference temperature for methanogenesis and varies with
vegetation type (Table 1), and Py, is a vegetation-specific coefficient (Table 1).

A2. Soil pH Effects on M ethanogenesis

The effect of soil pH on methane production is modeled following Cao et al. [1996] as:
f(pH)= (pH_pHMIN)(pH_pHMAX) . (Eq A2)
(PH - pH ) (PH — PHyax) - (PH — PHopr)

where pH isthe soil pH value at the site, pH,,,\, IS the minimum pH, pH,,.x IS the maximum pH,
and pHpr is the optimum pH for methane production. We assume values of 5.5, 9.0 and 7.5 for
PHuviny PHuax @nd pHopr, respectively, for al soils.

A3. Redox Potential Effects

Redox potential (E,;) isused to model the relative availability of electron acceptors (e.g., O,,
NO,, SO, Fe", Mn*), which suppress methanogenesis [Seger and Kengen, 1998]. The effects
of redox potential on CH,, production is modeled for each 1 cm depth (z) following Zhang et al.
[2002] and Fiedler and Sommer [2000]:

Ff(R.(z,) = 1.0 if E,_ < —200; (Eq. A3.13)
f(R.(z,£)==0.01x E,, —1.0 if E, =—200 and E,, < —100 (Eq. A3.10)
Ff(R.(z,1) = 0.0 if E,,_=-100; (Eq. A3.10)

where E,, is estimated redox potential (mv day™).
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Following Zhang et al. [2002] and Seger and Kengen [1998], we model changesin E,, asa
function of the root distribution, the fraction of water filled pore space, and the water table
position at the site:

% = C, x(4, —1.0) If thedepth z isin saturated zone (Eq. A3.29)

t

dE,, (2) _ _

—5 Cpx(4, +1.0- F, (z)) If depth z isin the unsaturated zone (Eg. A3.2b)
t

A, =F,, xP,/xR,, (Eq. A3.3)

where, Cy isthe change rate of soil redox potential under saturated conditions, F,,(z) isthe
fraction of water filled pore space, the F., isthe cross-sectional area of atypical fineroot, P, isa
scalar for the degree of gas diffusion from root to atmosphere, and R, ; is the fine root length
density. We assume that C is 100 mv day ™, F., is0.0013 m? and R ; is 10 m m™[See
McClaugherty et al., 1982] for all ecosystems. We assume P, is 1.0 for forested ecosystems and
0.5 for other ecosystems. The HM determines F,,(z) for each 1 cm depth based on soil moisture
and the porosity of the moss or litter layer, the upper and lower organic soil layer, and the upper
and lower mineral soil layers [See Zhuang et al., 2002].

APPENDIX B. METHANE OXIDATION

Methane oxidation occursin upland soils and the unsaturated zone of wetland soils. The
oxygenase pathway of methane oxidation dominates methanotrophy in terrestrial ecosystems.
We model the oxidation rate as a function of soil CH, concentration, which may be supplied
either from the atmosphere or methanogenesis in the soil. Other factors include soil temperature,
soil moisture, and soil redox potential in Equation 4. Below we describe in more detail the
influence in each factor of this equation.

B1. Effects of CH, Concentrations

We assume the effect of the CH, substrate on oxidation follows Michaelis-Menten kinetics:

C, (z,1)

J(Culzt) = Kerna+ C,,(z,1)

(Eq. B1)

where C,,(z,t) is soil CH, concentration at depth z and timet and K, is the vegetation-specific
half saturation constant for CH, concentrations (Table 1). Typical values of K, constants range
between 1-66.2 uM. The concentrations of methane in the soil depend on the ability of methane
to move through the soil profile. We discuss the transport of methane through the soil profilein
Appendix C.

24



B2. Effects of Soil Temperature

Based on Walter and Heimann [2000], we assume the hourly oxidation rate increases
logarithmically with soil temperature:

T on (z,1)=Orp

S (T, (2,0)) = Oy, 10 (Eq. B2)

where T (z,t) isthe hourly (t) soil temperature, whichis simulated in the STM module for each
1 cm depth (2) of the soil; Oy isthe reference soil temperature (°C) and varies with vegetation

type (Table 1); and O, is a vegetation-specific coefficient (Table 1).

B3. Effects of Soil Moisture

We assume the effect of soil moisture on methane oxidation is similar to the effect of soil
moisture on soil carbon decomposition [See Tian et al., 1999]. Therefore, we model the
influence of volumetric soil moisture on methanotrophic microbial activity as:

(MV _Mme)(MV _MVmax)

. (Eq. B3)
(M, -My . )My =My )]-(M, -M,,,)

S (Egy(2,1) =
V min
where M, i, Mg, @ad M, @re the minimum, optimum, and maximum volumetric soil
moistures for the methanotrophic reaction, respectively, and vary with vegetation types
(Table 1); M,, isthe soil moisture at each 1 cm depth of the soil ssimulated in the HM module.

B4. Effects of Redox Potential

Redox potential (E,;) isused to model the relative availability of electron acceptors (e.g., O,,
NO,, SO, Fe", Mn*) on methane oxidation. Oxygen in the soil is the primary electron
acceptor for this process [Seger, 1998]. However, methane oxidation may still occur under
anaerobic conditions (E,,, lessthan 300 mv), if alternative electron acceptors are available. To
simulate these effects, we use the relationship between redox potential and methane oxidation
described by Zhang et al. [2002]:

F(Ryy (z,1)) = 0.0 if B,y < —200 (Eq. B4a)

F(Ryy (z,1)) = 0.0075E,, +1.5 if =200 < E,, <—100 (Eq. B4b)
1 5

Ry (z.1)) = By += i =100 < B <200 (Eq. B4c)

F(Ryy (z,1)) = 1.0 if Eyy > 200 (Eq. B4d)

where f(R,, (z,t) isthe effect of redox potential at depth z (cm) and timet (hour), and E,,, isthe
estimated redox potential. The calculation of E,,, isdescribed in section A3.
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APPENDIX C. METHANE TRANSPORT

The atmosphere, vegetation, and soils are treated as a continuum for the movement of
methane from soils to the atmosphere. This movement can occur viathree different pathways:
diffusion, plant-aided emissions, and ebullition. In upland soils, we assume that diffusion of
atmospheric methane into soilsis the sole method of moving methane through the soil. However,
in wetland soils, we assume that all three pathways are important. Here we describe, in more
detail, how we estimate the transport of methane through these pathways and how this transport
influences our estimates of methane fluxes from the soil to the atmosphere.

C1l. Methane Diffusion

We assume that diffusion of methane occurs throughout the soil profile based on the
concentration gradient of methane within the soil following Fick’slaw through coarse soil pores:

9C,, (z,1)

0z

F,(z,t) =-D(z) (Eqg. C1)

where Fy(z,t) isthe diffusive flux, and C,(z,t) is the methane concentration at depth z (cm) and
timet (hour). The diffusion coefficient, D(z) in units of mol cm™ h™, depends on water content
and soil texture. We assume a maximum diffusion rate of 0.132 x 10* cm™s™ under saturated
conditions and arate of 0.132 cm™s™ under unsaturated conditions. This diffusion rateis
reduced with increases in silt and clay content of the soil. The Fy(z,t) for each 1 cm depth can be
deduced simultaneously from Equation C1 and Equation 1 using the Crank-Nicolson method
[Presset al., 1990]. The concentration change at the lower boundary (L) is set to zero. The
concentration at the soil surface (or water surface if the water tableis at or above the soil surface)
isset to 0.076 uM to represent the atmospheric CH, concentration. As methane may be oxidized
as it moves through the unsaturated zone of the soil profile, only diffusion from the soil surface
contributes to methane fluxes to the atmosphere as F,(z=s, t).

C2. Plant-Aided Transport

The root systems of some plants al'so provide a more direct conduit for methane produced at
depth in the soil to reach the atmosphere. As described in Walter and Heimann [2000], the rate of
methane (R.(z,t)) removed from a soil layer through vegetation roots is modeled as a function of
an index of vegetation growth rate (f,(t)), and the quality of plant-mediated transport at a site
based on vegetation type and plant density (T,,,). We assume T, equals 0.5 for tundra
ecosystems, and 0.0 for boreal forests. In addition, we use the daily mean temperature at 20 cm
depth below ground, instead of the 50 cm depth used by Walter and Heimann [2000] to calculate
the vegetation growth rate index. The plant-aided CH, fluxes (F(t)) is obtained by integrating the
R.(z,t) calculated for each 1 cm soil layer from the soil surface to the rooting depth. The rooting
depth is determined from vegetation type and soil texture based on Vordsmarty et al. [1989].

26



C3. Methane Ebullition

The formation of bubblesin the soil profile allows methane to be transported through the soil
more rapidly than would be predicted by diffusion alone. Following Walter and Heimann [2000],
the loss of methane through bubbles (R (z,t)) from asoil layer at depth z and at time t is modeled
as afunction of CH, concentrations Cy,(z,t). In the layers above the water table, the R(z,t) is 0.0.
In the layers below the water table depth, bubbles are assumed to reach the water table within 1
hour. If the water table is at or above the soil surface, ebullition is assumed to contribute to
methane fluxes to the atmosphere as F(t). The ebullitive flux F(t) is obtained by integrating
R:(z,t) over the whole water-saturated zone between the water table depth and the lower
boundary of the soil. If the water table is below the soil surface, methane in bubbles adds to the
methane concentration in the soil layer just above the water table and methane continues to
diffuse upward. In this case, F<(t) equals 0.0.

APPENDIX D. UPDATED HYDROLOGIC MODULE

The hydrologic module [Zhuang et al. 2002] has been revised to be appropriate for the both
upland and wetland soils. The revisions include improvements in the simulation of infiltration
(1), evapotranspiration of the vegetation canopy (E,), soil surface evaporation (Eg), and soil
sublimation (Sg). In addition, soil moisture dynamics are represented in greater detail and
algorithms have been added for simulating water content and water table depth for wet soils
based on Granberg et al. [1999].

D1. Infiltration from the Soil Surface to the Sail (I;)

The liquid water from rain throughfall or snowmelt either infiltrates into the soil column or is
lost as surface runoff. In Zhuang et al. [2002], al liquid water reaching the soil surface has been
assumed to infiltrate into the soil column. In this study, we add algorithms to estimate surface
runoff and subtract this estimate from rain throughfall and snowmelt to estimate infiltration (I7).
Following Bonan [1996], surface runoff is cal culated using the Dunne runoff or the Horton
runoff depending on whether the soil surface is saturated.

D2. Evapotranspiration from the Vegetation Canopy (E,)

The evapotranspiration rate from the vegetation canopy (E,) is modeled using the Penman-
Monteith approach [Zhuang et al., 2002]. We have modified the calculation of the canopy water
conductance (G) to include the effects of air temperature and vapor pressure deficit on G in
addition to the effects of |eaf water potential. In addition, the algorithms are implemented at a
daily time step rather than the monthly time step used in Zhuang et al. [2002].

A simplified equation of Waring and Running [1998] has been adopted to model the canopy
water conductance (G):
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G =g (AD) f(VPD)f () (Eq. D2.1)

where g, is the maximum canopy conductance (mms™), f(A,) is the effect of air temperature
(A+) on the canopy conductance, f(VPD) is the effect of the vapor pressure deficit (VPD in
Mbar), and f(y) isthe effect of leaf water potentia (Iwp in MPa). We set g, to be 3.5, 13.5, and
21.2 for alpine tundra, wet tundra, and boreal forests, respectively. The effects of air temperature
on canopy conductance are calculated following [ Thornton, 2000]:

f(4,)=0.0 if A, <-8.0°C (Eq. D2.23)
f(4;)=1.0+0.125x 4, if 8.0°<AT<0.0°C (Eqg. D2.2b)
f(4,)=1.0 if A;>0.0°C (Eq. D2.23)
The effects of vapor pressure deficit on canopy conductance are calculated as:

f(WPD)=0.0 if VPD >VPD, (Eq. D2.39)
FVPD) = szgiim— ;Zgiﬁ if VPDpen < VPD < VPD o (Eq. D2.3b)
JPD)=1.0 if VPD <VPD,,, (Eg. D2.3c)

where VPD,, is the vapor pressure deficit at complete conductance reduction, and VPD,,, is
the vapor pressure deficit at the start of canopy conductance reduction. We assume VPD . IS
41.0 Mbar and VPD,,, is 9.3 Mbar for all vegetation types.

The effects of leaf water potential (Iwp) on canopy conductance are calculated in asimilar
manner:

F@p)=0.0 if IWp <yoe (Eq. D2.4a)

S@)= M if Peose < IWp < Yopen (Eq D24b)
close — ¥ open

F@p)=0.0 ifIwWp> g, (Eq. D2.4¢)

where . iS the leaf water potential at complete conductance reduction, and v, is the leaf
water potential at the start of conductance reduction. We assume that e 1S —2.3 MPa and 1o,
is0.6 MPafor all vegetation types.

D3. Evaporation from the Soil Surface (Ey)

The algorithms used to calculate evaporation from wet soil surface (Es) have been modified
from Zhuang et al. [2002] to calculate E5 on adaily time step rather than a monthly time step.
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D4. Snow Sublimation from Ground (Sg)

Daily snow sublimation from the ground (Ss) has been updated from Zhuang et al. [2002] by
modifying the dynamics of snowmelt. The snowmelt rate (S, Now uses adaily time step,
which depends on daily air temperature and solar radiation [ Edward Rastetter, Personal
Communication, 2002, Brubaker et al., 1996]:

R, /100.0

S =mgx
metr = 14 (0.2388

)+ A x A; (Eq. D4)

where mg is a constant (2.99 kg MJ™?), R, isthe incident solar radiation to the ground snow, Ay is
aconstant (2.0 mm °C*day™), and A, isthe daily air temperature.

D5. Upland Soils

In Zhuang et al. [2002], the soil profile has been represented with three soil layers: a moss or
litter layer, an organic soil layer, and amineral soil layer. Overall, changes to the water content
of the whole soil profile (S) depends on infiltration (1), evapotranspiration from the vegetation
canopy (E,), evaporation from the soil surface (Es), and drainage from the deep minera layer:

ds
T I.-E, -E,-D, (Eq. D5.1)

Within each soil layer, changesin water content are determined using a water balance
approach similar to that described in equation D5.1. Theterms |- and Dy, are replaced by
percolation into and out of asoil layer, respectively, and Eg and Sg are assumed to occur only
from the top moss or litter layer. Soil moistures are assumed to be uniformly distributed within
each of the three soil layers.

To improve our simulation of water dynamicsin upland soilsin high latitude ecosystems, we
now represent the soil profile with six layers with different hydrologic characteristics: a10 cm
thick moss or litter layer, a 20 cm thick upper organic soil layer, a40 cm thick lower organic soil
layer, 280 cm thick upper minera soil layer, a 160 cm thick lower mineral soil layer, and a 320
cm thick deep mineral soil layer. Changes to the water content of the entire soil profile are still
influenced by the factors given in Equation D5.1, but soil moisture between the six layers are
now assumed to obey the Q-based Richards equation [Hillel, 1980; Celia et al., 1990]:

W, 9 (k(aWC oYy
ot 0z 0z oW,

+1)) (Eq. D5.2)

where W, is the volumetric water content, K is the hydraulic conductivity, and () is the soil
matrix potential, which varies as afunction of W, and soil texture [Clapp and Hornberger,
1978]. To solve the above equation, the upper boundary condition is set by the infiltration (I¢)
from the first soil layer. The lower boundary condition is set to the drainage (D) of the deep
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mineral soil layer, which is equal to the water conductivity of this layer. The numerical solution
of soil water content (W) for the middle of each of the different layers of the unsaturated soilsis
obtained through solving tridiagonal systemswith Eq. D5.1 and Eq. D5.2 [see Press et al.,

1990]. To estimate the soil moisture at each 1 cm depth, the soil moisture contents are
interpolated across the six soil layers.

D6. Wetland Soils

Because Zhuang et al. [2002] only considered water dynamics in unsaturated soils, new
algorithms needed to be devel oped to estimate the proportion of the soil profile that becomes
saturated, the depth of the resulting water table, and the influence of the water table on soil
moisture in the unsaturated portion of the soil profile. We assume that wetland soils are always
saturated below 30 cm, which represents the maximum water table depth (Z,). Thus, changesin
water content (S) of the top 30 cm of the soil profile can be calculated with a water balance
model that considers the water input and outputs at the daily time step:

ds
dt

where | isinfiltration, E, is evapotranspiration of the vegetation canopy, Es is evaporation from
the soil surface, and Qpy isthe saturated flow drainage below Z,. Calculation of the |, E;, and E,
terms have been described in the previous sections of Appendix D. Similar to Walter et al.,
[20014], Qp iscalculated as:

=1y -E, -Es-Op (Eq. D6.1)

Opk = Oprasax X (Sand x PV, + Silt x PV g, . + Clay x PV, ,, )% 0.01 (Eq. D6.2)

where Qpruax iS the maximum drainage rate of 20 mmday™; PV ¢ano, PVgi 1, and PV .y arethe
constants 0.45, 0.20, and 0.14, respectively and sand, silt, and clay are the proportion of different
sizefractionsin the soil.

Instead of the six layers used to simulate upland soils, we assume that water dynamicsin
wetland soils can be represented by two functional horizons: an upper oxygenated, unsaturated
layer; and alower anoxic, saturated layer. The water table represents the boundary between these
two horizons and it’ s depth is allowed to change over time with changes in soil moisture. The
maximum thickness of the upper unsaturated layer is represented by the maximum water table
depth (Z,), which is assumed to be 30 cm [Frolking, 1996; Granberg et al., 1999]. The minimum
thickness of the lower saturated layer is the difference between the depth of the lower boundary
(Lg) and 30 cm. The total volume of water in the top 30 cm of the sail profile (V1) IS
represented by:

Vior =9(z, = Wy) + [, 0,,(2)dz (Eq. D6.3)
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where ¢ isthe soil porosity, Z, isthe maximum water table depth, W; is the actual water table
depth, and 6,((z) is the volumetric water content in the unsaturated zone at depth z. We assume ¢
isequal to 0.9 cm® cm™ [Frolking, 1996] for the entire soil profile. If Sis greater than Z,x¢, the
water table will be above the soil surface and the height of water above the soil surfaceis
determined by the difference of Sand Z,x¢. Otherwise, V4 isequal to S and we can then invert
Eq. D.6.3, to solve for the water table depth (W-) following Granberg et al. [1999]:

W, = /3("”‘2;;‘5) if Z< Zye un (Eq. D6.43)

_3(pxz,-5)
2(¢ - Qs,min )

where a, is a constant (6.5, based on a soil porosity of 0.9 cm® cm™), 6, is the minimum
volumetric water content of the soil surface and Z ., is the maximum depth where evaporation
influences soil moisture. We assume 0, is 0.25 and Z,, is 10 cm for all wetland soils. A
negative value of the water table depth indicates the water table is above the soil surface whereas
a positive value indicates the water table is below the soil surface.

After determining the water table depth, the volumetric water content at each 1 cm depth can
then be estimated. If depth z isin the saturated zone, the volumetric water content is assumed to
be equal to ¢. If depth z isin the unsaturated zone, the volumetric water content (6,,) is estimated
following Granberg et al. [1999]:

if 2> Zymin (Eq. D6.4b)

T

6,, = min(g,6, + (¢—93)(Wi)2) (Eq. D6.5)

where 6, is the volumetric water content at the soil surface and is calculated as:

0, =max(@, ...¢ - (a.xW,)) (Eq. D6.6)
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