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Measuring Welfare Loss Caused by Air Pollution in Europe: A CGE Analysis 

Kyung-Min Nam, Noelle E. Selin, John M. Reilly†, and Sergey Paltsev  

Abstract 

To evaluate the socio-economic impacts of air pollution, we develop an integrated approach based on 
computable general equilibrium (CGE). Applying our approach to Europe shows that even there, where 
air quality is relatively high compared with other parts of the world, health-related damages caused by 
air pollution are substantial. We estimate that in 2005, air pollution in Europe caused a consumption loss 
of around 220 billion Euro (year 2000 prices, around 3 percent of consumption level) and a social 
welfare loss of around 370 billion Euro, measured as the sum of lost consumption and leisure (around 2 
percent of welfare level). In addition, we estimated that a set of 2020-targeting air quality improvement 
policy scenarios, which are proposed in the 2005 CAFE program, would bring 18 European countries as 
a whole a welfare gain of 37 to 49 billion Euro (year 2000 prices) in year 2020 alone. 
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1.  INTRODUCTION  

Outcomes related to human health account for the majority of the socio-economic costs 
induced by air pollution (EPA, 1997; Holland et al., 1999). This paper evaluates the impacts of 
air pollution on human health in Europe and on the European economy using an integrated 
model of pollution-health dynamics. Compared with standard methods, our approach addresses 
more comprehensively the cumulative health and economic burden of exposure to air pollution 
and the benefits of reducing pollution.  

Conventional methods employed in other studies to quantify the health impacts of air 
pollutants are static, and provide estimates of damages at a single point in time (e.g., Aunan et 
al., 2004; Burtraw et al., 2003; Davis et al., 1997; EPA, 1999; Ostro and Chestnut, 1998; 
Vennemo et al., 2006; West et al., 2006; World Bank and SEPA, 2007). Point estimates may 
substantially underestimate health impacts of air pollution, because air pollution can affect health 
outcomes that only appear years later, and the effects of pollution can be cumulative. An 
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example of this is premature death caused by chronic exposure to particulates.  
A few studies have attempted to measure the health impacts of air pollution in the European 

region. Early studies defined exposure-response functions on the basis of existing 
epidemiological studies, and computed the number of diseases and premature deaths caused by 
air pollution at a single time (Krupnick et al., 1996; Olsthoorn et al., 1999; Künzli et al., 2000). 
They then valued these health endpoints by using survey data such as average costs that people 
are willing to pay in order to avoid specific health-related outcomes. More recent studies use a 
computable general equilibrium (CGE) modeling approach in order to assess economic impacts 
over time (Holland et al., 2005; Mayeres and Van Regemorter, 2008). In their approach, labor 
and leisure loss caused by air pollution can affect market equilibrium in the future. In their CGE 
models, however, chronic mortality is dealt with in the same manner as acute mortality, which 
inaccurately captures the flow of lost labor over time. 

We go beyond these previous studies by analyzing the economic impacts on health that result 
from cumulative and acute exposure as it occurs over time. We apply to Europe a method that 
was developed and applied to the United States and China (Matus, 2005; Matus et al., 2008). We 
consider 14 separate health endpoints (e.g., hospital admissions, restricted activity days, 
premature death, etc.) in combination with observed and modeled air pollution data from 1970-
2005 to estimate the lost time and additional expenditures on health care. We then apply a CGE 
model of the economy to estimate the total economic impact, valuing both work and non-work 
(i.e., leisure) time as well as the economic cost of reallocating economic resources to the health 
care sector. An important implication of this approach demonstrated by previous applications is 
that economic damages accumulate—lost income in earlier years means lower GDP and savings, 
and therefore less investment and growth over time.  

The paper is organized as follows. In Section 2 we describe the CGE model and modifications 
made to analyze health effects. Section 3 discusses the economic and epidemiological inputs 
used in our study. Air quality data for Europe are outlined in Section 4, and the results of our 
simulations and a sensitivity analysis with respect to exposure-response relationships are 
provided in Section 5. We provide our benchmark analysis to Clean Air for Europe (CAFE)-
proposed emission scenarios in Section 6, and conclusions from our study in Section 7. 

2. THEORETICAL FRAMEWORK AND METHOD: EPPA-HE 

For our analysis, we use the MIT Emissions Prediction Policy Analysis (EPPA) model, 
modified as reported in Matus et al. (2008) to address health effects and with updates and 
applications to Europe described below. EPPA is a multi-region, multi-sector, recursive dynamic 
CGE model of the world economy (Paltsev et al., 2005), which uses economic data from the 
GTAP dataset (Dimaranan and McDougall, 2002). 

Using a CGE model to estimate pollution costs has two major advantages. One is that a CGE 
model can describe economic dynamics (savings and investment) and resource reallocation 
implications of lost labor, leisure, and additional demands on the health services sector. The 
second is that a CGE model allows analysis of multiple scenarios. Our approach is to first 
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develop a historical benchmark simulation that replicates actual economic performance where 
the health impacts associated with observed levels of pollution are included.  We then analyze 
what would have happened if air pollution were at background levels, in order to estimate what 
economic performance would have been without pollution stemming from human activity.  The 
difference between economic performance from this counterfactual scenario and our replication 
of actual performance gives us an estimate of the economic burden of air pollution.  The estimate 
of burden changes over time as pollution levels change and as past exposure continues to affect 
economic performance.  These dynamic effects of past exposure stem from lost lives due to 
chronic exposure and the impacts of lower economic activity on savings and investment, which 
then carry through to lower economic activity in future years. Our primary measure of economic 
performance is a change in welfare, which includes consumption and leisure and is measured as 
equivalent variation. Consumption is measured as total macroeconomic consumption. Leisure 
time is valued at the marginal wage rate.  An average wage profile over the lifetime of an 
individual is applied to each age cohort to estimate the impact of air-pollution related deaths. Our 
counterfactual scenarios include simulation of the potential benefits of certain pollution goals. 

As mentioned above, the EPPA-Health Effects (EPPA-HE) model is described in Matus et al. 
(2008). Briefly, it accommodates pollution-generated health costs in a feedback loop, which in 
turn affects the economy and the emissions of pollutants in later periods. The extended social 
accounting matrix (SAM), on which EPPA-HE is based, includes a household production sector 
that uses medical services and household labor to provide pollution health service. An increase in 
pollution health related household labor reduces the pool of labor and leisure available for other 
economic activities. The EPPA-HE model captures the magnitude of pollution health impacts on 
the basis of the size of additional medical services and their factor inputs, produced by air 
pollution and the amount of labor and leisure lost due to acute and chronic exposure to 
pollutants. As we are limited to the European aggregation in the EPPA model, which aggregates 
18 European countries1 into one region (EUR), we do not consider the EU-27, but only a subset 
of the EU countries (plus Norway, Iceland, and Switzerland) as a single region.2 

EPPA-HE computes 29 different health outcomes (the health impacts of ozone or PM 
exposure on e.g., the number of asthma attacks, hospitalizations, restricted activity days, or 
premature deaths) on the basis of historical pollution levels, exposure-response (E-R) 
relationships, and demographic information. The health outcomes are then converted into health 
service requirements (i.e., cost of medical care) and lost labor and leisure. These changed levels 
of health service demands and labor availability are then used to force the economic module of 
EPPA-HE. The model is thus able to capture pollution-generated health outcomes and their 
subsequent ripple effects on the economy.  

                                                 
1 The region EUR in EPPA version 4 includes Austria, Belgium, Denmark, Finland, France, Germany, Greece, 

Iceland, Ireland, Italy, Luxembourg, the Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, and the 
United Kingdom. 

2 EU-15 countries, represented in EUR region, account for 95 percent of the EU-27 GDP and 78 percent of the EU-
27 population. 
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Following the air pollution health effects literature, we treat deaths due to chronic and acute 
pollution exposure differently.  For acute exposure, we follow the literature and assume that 
deaths in such cases occur to individuals whose health condition was already poor, with pollution 
exposure leading to half a year of life lost on average. For chronic exposure, we assume that 
death is related to cardio-pulmonary or lung disease, and so we use age-specific death rates from 
these diseases to estimate a distribution for the age of death. To do this, we include a 
demographic module in the model that tracks five-year age cohorts, their exposure level 
throughout their lifetime and the death rate for each from cardio-pulmonary and lung diseases for 
each cohort. We assume that an increase in the death rate due to chronic exposure proportionally 
increases the cardio-pulmonary and lung death rate in each cohort.  Because deaths from these 
diseases are much less prevalent among younger people who have had less time for these 
diseases to develop, this weights the deaths to be among the older population thereby reducing 
the average number of years of lost life. We assume that (i) death from chronic exposure occurs 
only in age groups of 30 and older, and (ii) the life expectancy of the whole population in the 
absence of excess air pollution is 75.  

3. ECONOMIC/DEMOGRAPHIC INPUTS AND EPIDEMIOLOGICAL PARAMETERS 

3.1  Economic and Demographic Data 

EPPA-HE requires historical information on market transactions, resource/income 
distribution, and demographic growth as key inputs. It solves for 5-year time intervals starting in 
1970. We scale the GDP from the original GTAP data to 1970 levels and benchmark labor 
productivity growth to replicate actual GDP growth in Europe for the period 1970 to 2005 based 
on World Bank statistics (World Bank, 2009).  

We construct the model’s basic demographic inputs such as age cohort-specific 
population/mortality and urbanization rates at the EUR level (1970-2005) from time series 
estimates of national population, published by the United Nations Statistical Division (UN, 1999, 
2008). Overall and cohort-specific cardio-pulmonary mortality rates are computed from the 
World Health Organization (WHO) database (WHO, 2009). Information on cardio-pulmonary 
mortality is used to modify the original E-R function for chronic mortality (0.25 % chronic 
mortality rate increase per unit PM10 concentration measured in μg/m3) into age-conditioned 
forms. Matus et al. (2008) provide further details on this conversion process. 

3.2  Health Endpoints and Exposure-Response Functions 

Epidemiological literature has extensively documented the link between major air pollutants 
and associated health outcomes (e.g., Anderson et al., 2004; Aunan and Pan, 2004; Dockery et 
al., 1993; Hiltermann et al., 1998; Hurley et al., 2005; Kunzli et al., 2000; Ostro and Rothschild, 
1989; Pope et al., 1995; Pope et al., 2002; Pope et al., 2004; Samet et al., 2000; Venners et al., 
2003; Zhang et al., 2002). The ExternE project (Holland et al., 1999), initiated by the European 
Commission, synthesizes existing epidemiological studies, and provides a comprehensive list of 
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Table 1. Exposure-Response Functions†. 

Low High Low High
PM10 2.07E-06 3.58E-07 3.78E-06 7.03E-06 3.83E-06 1.03E-05
O3 3.54E-06 6.12E-07 6.47E-06

Cerebrovascular 
hospital 
admissions

PM10 5.04E-06 3.88E-07 9.69E-06 5.04E-06 3.88E-07 9.69E-06

Cardiovascular 
hospital 
admissions

PM10 n/a 4.34E-06 2.17E-06 6.51E-06

Respiratory 
symptoms days

O3 3.30E-02 5.71E-03 6.03E-02

Asthma attacks O3 4.29E-03 3.30E-04 8.25E-03
Acute Mortality O3 0.06% 0.00% 0.12% 0.03% 0.01% 0.04%

PM10 0.04% 0.00% 0.08% 0.06% 0.04% 0.08%
Chronic 
Mortality***

PM10 0.25% 0.02% 0.48%

Chronic 
Bronchitis

PM10 1.61E-03 1.24E-04 3.10E-03

Chronic Cough PM10 2.07E-03 1.59E-04 3.98E-03
Respiratory 
symptoms days

PM10 n/a 1.86E-01 9.20E-02 2.77E-01

Bronchodilator 
usage

PM10 7.80E-02 6.00E-03 1.50E-01 1.80E-02 -6.90E-02 1.06E-01 Defined on children aged 5-14 
years meeting the PEACE study 
criteria (around 15% of children in 
Northern and Eastern Europe and 
25% in Western Europe.)

PM10 1.33E-01 2.30E-02 2.43E-01 n/a
O3 n/a 9.30E-02 -1.90E-02 2.22E-01 ER functions on cough for ozone 

are defined on general population 
of ages 5-14.

PM10 1.03E-01 1.78E-02 1.88E-01 1.86E-01 9.20E-02 2.77E-01 ExternE (2005) LRS values for PM 
include impacts on cough.

O3 n/a 1.60E-02 -4.30E-02 8.10E-02 LRS ER functions for ozone, which 
do not take into account cough, 
are defined on general population 
of ages 5-14.

Restricted 
activity day

PM10 2.50E-02 1.92E-03 4.81E-02 5.41E-02 4.75E-02 6.08E-02 Restricted activity days include 
both minor restrcted days and 
work loss days.

O3 9.76E-03 7.51E-04 1.88E-02 1.15E-02 4.40E-03 1.86E-02
PM10 4.90E-05 3.77E-06 9.42E-05 3.46E-02 2.81E-02 4.12E-02

Work loss day PM10 n/a 1.24E-02 1.06E-02 1.42E-02 Part of restricted activity days
Respiratory 
symptoms days

PM10 n/a 1.30E-01 1.50E-02 2.43E-01 defined only on adults population 
with chronic respiritory symptoms 
(around 30% of adult population)

Chronic 
bronchitis

PM10 4.90E-05 8.48E-06 8.95E-05 2.65E-05 -1.90E-06 5.41E-05

PM10 1.63E-01 1.25E-02 3.13E-01 9.12E-02 -9.12E-02 2.77E-01

O3 n/a 7.30E-02 -2.55E-02 1.57E-01

Cough PM10 1.68E-01 2.91E-02 3.07E-01 n/a
Lower respiratory 
symptoms 
(wheeze)

PM10 6.10E-02 1.06E-02 1.11E-01 1.30E-01 1.50E-02 2.43E-01 LRS ER functions for PM are 
defined on adult population with 
chronic respiratory symptoms 
(around 30% of total adult 
population); ExternE (2005) LRS 
values for PM include impacts on 
cough.

Respiratory 
hospital 
admissions

O3 n/a 1.25E-05 -5.00E-06 3.00E-05

Congestive heart 
failure

PM10 1.85E-05 1.42E-06 3.56E-05

use ExternE (1999) numbers. 

Part of restricted activity days 

Bronchodilator 
usage

Defined on population of 20+ with 
well-established asthma (around 
4.5% of total adult population).

Elderly 
65+

use ExternE (1999) numbers.

Ischaemic heart 
disease

PM10 1.75E-05 1.35E-06 3.37E-05

Children use ExternE (1999) numbers. 

use ExternE (1999) numbers.

Cough

Lower respiratiry 
symptoms 
(wheeze)

Adults

Minor restricted 
activity day 

Entire 
Population

Respiratory 
hospital 
admissions

use ExternE (1999) numbers, 
except for elderly population.

use ExternE (1999) numbers.

use ExternE (1999) numbers.

use ExternE (1999) numbers.

Receptor
Impact 
Category Pollutant

ExternE (1999)* ExternE (2005)**

NotesE-R fct
C. I. (95%)

E-R fct
C. I. (95%)

 
† E-R functions for acute and chronic mortality have the unit of [%Δannual mortality rate/µg/m3]. 

The rest E-R functions are measured in [cases/(yr-person-µg/m3)]. 
Source: * Computed from Holland et al. (1999); ** Computed from Bickel and Friedrich (2005); *** 

Adapted from Pope et al. (2002). 
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Table 2. Valuation of Health-end Outcomes. 

Outcome Unit Cost (year 2000 Euro) 
Hospital Admission per admission 2,000 
Emergency Room Visits for respiratory 
illness per visit 670 
General Practitioner visits:   
Asthma per consultation 53 
Lower Respiratory Symptoms per consultation 75 
Respiratory Symptoms in Asthmatics:   
 Adults per event 130 
 Children per event 280 
Respiratory medication use - adults and 
children per day 1 
Restricted Activity Day per day 130 
Cough day per day 38 
Symptom day per day 38 
Work loss day per day 82 
Minor Restricted Activity day per day 38 
Chronic Bronchitis per case 190,000 
Source: Adapted from Bickel and Friedrich (2005), p. 156. 

E-R functions.  We use these E-R functions from the ExternE study and as updated for ozone and 
particulate matter as reported in Bickel and Friedrich (2005). We also use the valuation table of 
health endpoints developed in the ExternE studies. Tables 1 and 2 summarize E-R functions and 
health endpoint valuation outcomes used in the EPPA-HE model. 

4.  AIR QUALITY DATA 

In this section we focus on impacts from exposure to ozone (O3) and particulate matter (PM10). 
Ozone and particulate matter are considered the pollutants with the most potential to affect 
human health (EEA, 2009a). Confirming this conclusion, the U.S. study of Matus et al. (2008) 
found that among the five criteria air pollutants defined by the United States Environmental 
Protection Agency (ozone, carbon monoxide, nitrogen dioxide, sulfur dioxide, and particulate 
matter), over 95 percent of the health costs were attributable to exposure to ozone and particulate 
matter.  

Our estimates of ground-level ozone data are based on model results from the European 
Monitoring and Evaluation Programme (EMEP) database, co-maintained by the United Nations 
Economic Commission for Europe (UNECE) and the Co-operative programme for monitoring 
and evaluation of long range transmission of air pollutants in Europe (EMEP and UNECE, 2006). 
EMEP ozone data are available between 1980 and 2004.  Because we are interested in the 
cumulative effects of air pollution, we assume that concentrations in for 1970 and 1975 were the 
same as those in 1980. We also use 2004 data for 2005. Among various ground level ozone 
measurements, provided by the EMEP database, we used annual means of 8-hour daily 
maximum, for which E-R functions are defined.  
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For input into EPPA-HE, we compute a representative air quality number for the European 
region for each year and each pollutant. As the goal of our research is to estimate the impact of 
air pollution on human health, we use population weights to construct average concentrations for 
Europe.  For this purpose we use a 1°×1° world population share grid data for 1990 (SEDAC, 
2009) as a weight for ozone and PM concentrations for all years’ air quality data. Original EMEP 
grids, each of which is sized at 50 km × 50 km, are converted into 1°×1° to match those of the 
population data by using ArcGIS software and the inverted distance weighted (IDW) spatial 
interpolation technique (See Figures 1 and 2).  

We do not use the same data sources for PM, however, because EMEP PM concentration 
estimates substantially underestimate actual PM levels for two reasons (EMEP, 2001). One 
reason is that the EMEP model is designed to estimate PM concentration solely from secondary 
inorganic aerosol (SIA) concentrations and primary emissions of particles, while ignoring other 
key components such as resuspended anthropogenic and natural mineral dust, sea salt, and 
biogenic aerosols, which also substantially contribute to PM concentration. Second, the EMEP 
model was built on underestimated SIA concentration inputs. Thus, we use two alternative data 
sources for PM: the AirBase database, maintained by the European Environment Agency 
(2009b), and the World Development Indicators (WDI) database, published by the World Bank 
(2009). The AirBase database provides historical concentration levels both of PM and of Total 
Suspended Particulate (TSP). When PM10 data were not available, we convert TSP data into 
PM10 concentrations by applying a factor of 0.55, following Dockery and Pope (1994). While for 
at least some major monitoring stations the data extends back to 1976, data for some stations for 
some years are missing and the station coverage prior to the late 1990s is very sparse. To fill 
missing data, we first compute the average ratio of PM data from a set of monitoring stations 

 

 

Figure 1. Population Share Grid, EUR, 1990. 
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Figure 2. Procedure of Computing Population-weighted Concentration Level of Ozone, 2004: (a) EMEP Grids and Ozone Data 
for 2004, (b) IDW-based spatial interpolation, EMEP Data, (c) 1°×1° Raster-converted Ozone data, and (d) Compute 
Population-weighted Concentration Level of Ozone for 2004. 

(a) (b) 

(c) (d) 
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Figure 3. Procedure of Computing Population-weighted Concentration Level of PM10, 2005: (a) AirBase PM10 Data for 2005, (b) 
IDW-based spatial interpolation, AirBase Data, (c) 1°×1° Raster Layer Converted from the Spatial Interpolation Layer, 
and (d) Compute Population-weighted Concentration Level of PM10 for 2005.

(b) (a) 

(c) (d) 
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Figure 4. Concentration Levels of Ozone and PM10, EUR, 1970-2005. Here, the 

measurement standard for ozone is annual means of 8 hour daily maximum, and 
that for PM10 is annual mean of 24 hour average. 

which have data for two consecutive years, and then apply this factor to monitoring stations, 
which have data for either of the two years. We eliminate monitoring stations which have 
missing data or cannot be filled this way for two consecutive years. As data for later years are 
more complete, we carry out this procedure from recent years to early years. After completing 
this procedure, we convert AirBase data layers for each year into 1°×1° raster maps in a similar 
way as for the EMEP ozone data. In this case, 1970 and 1975 PM levels are assumed to be 
constant at the 1976 level (See Figure 3). 

PM10 data from the WDI database are available between 1990 and 2005. As the database 
provides only nation-wide average concentration numbers, we calculate EUR-wide PM10 
concentration numbers by using each country’s population as weight. PM10 levels for 1985 and 
earlier are assumed to be constant at 1990 levels. See Figure 4 for air quality numbers used here. 

To compare these two different historical PM concentration estimates, we set up two 
reference case scenarios. We use AirBase-estimated PM concentrations for Reference Case 
Scenario A, and WDI-based estimates for Reference Case Scenario B. All other inputs for the 
two reference scenarios except PM concentration are identical. 

5. RESULTS 

We estimate pollution costs by comparing simulation outcomes for two air quality scenarios. 
One scenario is the Historical scenario, in which air quality inputs are set at historical levels and 
GDP growth is benchmarked to observed levels for the 1970 to 2005 period. This reference 
scenario reflects the fact that these air pollution levels were observed, and observed economic 
results were already distorted by air pollution effects.  To estimate the economic impact of these 
observed levels, a second Green scenario is simulated as a counterfactual simulation where 
concentrations of these pollutants are set at 20 µg/m3 for ozone and 0.001 µg/m3 for PM10, which 
are levels that would be observed if there were no anthropogenic sources of pollutant emissions 
(Seinfeld and Pandis, 1998).  
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5.1 Overview 

We find that air pollution caused substantial socio-economic costs in the European region 
(Tables 3 and 4). First, we measure the pollution health cost in terms of consumption loss, which 
does not include leisure time value. In terms of consumption, we calculate that the European 
economy has lost annually 2.8 percent to 4.7 percent of historical consumption levels due to air 
pollution for the last three decades. With increasing concerns about air pollution and stricter air 
quality control, consumption-measured pollution-health cost shows a declining tendency, though 
with slight intra-period fluctuations. In absolute values, the region’s consumption loss, which 
ranged between 169 billion Euro4 and 229 billion Euro during the period 1975-2005, was 
estimated to reach its maximum of 229 billion Euro in 2000 (Reference Case A) or of 226 billion 
Euro in 2000 (Reference Case B). The simulation outcomes based on Reference Case B suggest 
that improving air quality in Europe led to lower consumption loss through the period of our 
analysis in terms not only of relative measure to historical consumption levels but also of 
absolute monetary units.  

Table 3. Consumption and Welfare Losses Caused by Air Pollution (Reference Case A), EUR, 
1975-2005. 
 Consumption Loss  Welfare Loss 

Year 
Billions of year 

2000 Euro 

% of Historical 
Consumption 

Level  
Billions of year 

2000 Euro 
% of Historical 
Welfare Level 

1975 169 4.7  293 3.3 
1980 169 3.9  297 2.7 
1985 175 3.7  260 2.2 
1990 225 4.0  467 3.3 
1995 219 3.6  374 2.4 
2000 229 3.2  418 2.3 
2005 217 2.8  354 1.8 

Table 4. Consumption and Welfare Losses Caused by Air Pollution (Reference Case B), EUR, 
1975-2005. 
 Consumption Loss  Welfare Loss 

Year 
Billions of year 

2000 Euro 

% of Historical 
Consumption 

Level  
Billions of year 

2000 Euro 
% of Historical 
Welfare Level 

1975 169 4.7  292 3.2 
1980 167 3.9  278 2.6 
1985 180 3.8  300 2.5 
1990 216 3.8  370 2.6 
1995 210 3.4  358 2.3 
2000 226 3.2  393 2.1 
2005 217 2.8  373 1.9 
 

                                                 
4 We measure Euro as year 2000 Euro unless specifically noted. 
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The loss of welfare, which we evaluate as a loss in the sum of consumption and leisure, shows 
a similarly declining tendency. This simulation outcome is not surprising, given the fact that the 
European region’s air quality has been kept constant (in the case of ozone) or improved (PM), 
and the changes—whether positive or negative—in air quality are small relative to the region’s 
economic growth. For the last three decades, the European region’s annual welfare loss, caused 
by air pollution, ranged between 1.8 percent and 3.3 percent of the historical welfare level or 
between 260 billion Euro and 467 billion Euro, on the basis of Reference Case A. Welfare loss 
estimates based on Reference Case B were similarly between 278 billion Euro and 393 billion 
Euro and between 1.9 percent and 3.2 percent of the historical level. 

5.2 Decomposition Analysis 

We decompose pollution-induced health costs below for further analysis. For simplicity, we 
used Reference Case Scenario B only for the following decomposition analysis, because while 
both Reference Case Scenario A and B produced similar simulation results, as shown in Tables 3 
and 4, the latter simulations were less variable and thus produced more consistent time-series 
outcomes.    

Table 6 displays decomposed explicit pollution health costs for year 2005, which are based 
on EPPA-HE-simulated pollution-induced case increases by health outcome shown in Table 5. 
We define explicit pollution health costs as the sum of (i) medical expenses, (ii) wage loss 
caused by illness or premature deaths, and (iii) leisure loss caused by illness or premature deaths. 
We estimate that explicit pollution health costs for 2005 are as much as 201 billion Euro. Around 
60 percent of ozone-related costs are from leisure loss, while more than 70 percent of PM10-
induced costs are from medical costs to deal with illness. PM10 contributes more than four times 
as much to explicit pollution health costs as ozone: over 82 percent of the 2005 total explicit 
pollution health costs were caused by PM10.  

Table 5. Pollution-induced Health Outcomes by Pollutant (Reference Case B), EUR, Selected 
Years. 

Unit: thousands of cases 

Health Outcomes 
1975 1990 2005 

O3 PM10 O3 PM10 O3 PM10 
Respiratory Hospital Admission 175 80 213 88 242 70 
Cerebrovascular Hospital Admission n/a 58 n/a 63 n/a 50 
Cardiovascular Hospital Admission n/a 50 n/a 54 n/a 43 
Respiratory Symptom Days 461,420 339,789 562,187 398,383 640,103 323,005 
Acute Mortality 40 66 49 72 56 58 
Chronic Bronchitis n/a 172 n/a 204 n/a 176 
Chronic Cough (only for Children) n/a 6,673 n/a 5,909 n/a 4,249 
Cough and Wheeze 36,802 689,398 33,636 685,042 35,163 532,759 
Restricted Activity Day 115,434 471,348 151,155 552,629 177,083 448,065 
Congestive Heart Failure n/a 28 n/a 34 n/a 31 
Asthma Attacks 2,399 n/a 2,923 n/a 3,329 n/a 
Bronchodilator Usage 35,023 47,968 45,772 52,162 53,021 41,515 
Chronic Mortality (current year only) n/a 221 n/a 259 n/a 307 
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Table 6. Decomposition of Explicit Pollution Health Costs* in 2005 (Reference Case B). 
Unit: millions of year 2000 Euro 

Health Outcome 
Category 

Ozone PM10 
Medical 

Expenses 
Wage Loss Leisure 

Loss 
Medical  

Expenses 
Wage Loss Leisure 

Loss 
Non-fatal Health 

Outcomes 13,384 20 19,172  106,748 10,429 30,806 
Acute Mortality n/a 436 1,452  n/a 447 1,490 
Chronic Mortality 

(Year 2005 Only) n/a n/a n/a  n/a 2,666 13,459 
        
Sub-total 13,384 456 20,624  106,748 13,542 45,755 
Sub-total by Pollutant 34,463 (17.2 %)  166,045 (82.8 %) 
Total 200,508 (100 %) 
* Explicit pollution health costs do not include pollution-induced residual cumulative impacts. 

Table 7 displays decomposed total welfare loss in 2005, caused by air pollution. Estimates 
shown in the table consider two counterfactual economic outcomes. One is estimated output loss 
due to chronic mortalities in the past and current years, and the other is residual impact, which 
shows how aggregate social welfare changes when resource allocation is not distorted by air 
pollution. We decomposed the 2005 welfare loss into three categories: (i) wage loss in the 
current year only, (ii) wage loss due to chronic mortality in the past, and (iii) residual impact. 
One notable conclusion from this analysis is that a large fraction of the total welfare loss is from 
pollution-induced distortions in resource allocation. We estimate that over 45 percent of the 2005 
total pollution health cost was from the residual cumulative impact. It is clear that point 
estimation techniques, which fail to capture this residual cost, can substantially underestimate the 
pollution health cost. The remaining 20 percent and 35 percent of the cost is attributable to the 
first and the second categories, respectively.  

Table 7. Decomposition of Welfare Loss* in 2005 (Reference Case B). 

 

Total 
Pollution 

Health Cost 

Pollution Health Cost, 2005 Only Chronic 
Mortality 

in the Past 
Residual 
Impact 

Non-fatal Outcomes 
and Acute Mortality 

Chronic 
Mortality 

In billions of year 
2000 Euro 

373.8 59.4 14.8 130.4 169.3 

In % to Total 
Welfare Loss 

100.0 15.9 4.0 34.9 45.3 

* Welfare Loss is defined as sum of Consumption Loss and Leisure Loss; ** Non-fatal diseases + 
Acute Mortality + Chronic Mortality in 2005. 

5.3 Sensitivity Analysis 

Given that E-R relationships can vary by time and place, even for the same pollutant and 
health outcome, a substantial degree of uncertainty may come from the E-R functions. In this 
section, we conduct two sets of sensitivity analysis on E-R functions to evaluate the robustness 
of the results presented above. The first analysis compares reference simulation outcomes with 
those using upper and lower bound values of E-R functions, acquired from the 95 percent 
confidence interval. For the second analysis, we run the model by replacing reference E-R 
functions by E-R functions from the 1998 ExternE study. We compared both sets of sensitivity 
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analysis simulation results with those from Reference Case Scenario B, which employs WDI-
based estimates for historical PM10 concentration levels. 

When we used lower bound values of E-R functions, EPPA-HE not surprisingly produced 
lower estimates of air pollution-driven health costs than the reference case (Table 8). Compared 
with estimates in Table 4, both consumption and welfare loss fell by more than half. However, 
lower bound E-R values also produce non-trivial estimates for consumption and welfare loss 
from air pollution, which reach 1.4-2.1 percent of historical levels. In contrast, upper bound E-R 
values raised pollution-caused health damage estimates to 4.9-7.4 percent of consumption or 3.2-
5.0 percent of welfare with a declining trend over time (Table 9). From this result, we can 
conclude that although uncertainty involved in E-R functions themselves widens the range of our 
pollution health cost estimates substantially, it does not undermine our general conclusions that 
substantial socio-economic burdens result from air pollution, and that relative pollution health 
costs have declined over time.  

Table 8. Sensitivity Analysis 1-1: Lower Bound Values (95% C.I.) of E-R Functions. 

 Consumption Loss  Welfare Loss 

Year 
Billions of year 

2000 Euro 

% of Historical 
Consumption 

Level  
Billions of year 

2000 Euro 
% of Historical 
Welfare Level 

1975 76 2.1  143 1.6 
1980 78 1.8  144 1.3 
1985 85 1.8  158 1.3 
1990 101 1.8  192 1.3 
1995 101 1.7  192 1.2 
2000 110 1.6  215 1.2 
2005 107 1.4  209 1.1 

Table 9. Sensitivity Analysis 1-2: Upper Bound Values (95% C.I.) of E-R Functions. 

 Consumption Loss  Welfare Loss 

Year 
Billions of year 

2000 Euro 

% of Historical 
Consumption 

Level  
Billions of year 

2000 Euro 
% of Historical 
Welfare Level 

1975 269 7.4  452 5.0 
1980 262 6.0  420 3.9 
1985 281 6.0  451 3.8 
1990 338 6.0  557 3.9 
1995 328 5.3  533 3.4 
2000 352 4.9  581 3.2 
2005 335 4.3  550 2.8 

Table 10 summarizes simulation outcomes based on the 1998 ExternE study-proposed E-R 
functions instead of the updated values from the 2005 ExternE study. When 1998 E-R functions 
were used, pollution health cost estimates were reduced to 1.3-2.6 percent of consumption and 
0.8-1.7 percent of welfare. This outcome, though lower in magnitude, does not contradict our 
general conclusion that air pollution has generated substantial socio-economic costs to the 
European economy. 
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Table 10. Sensitivity Analysis 2: Old E-R values from the 1998 ExternE Study. 

 Consumption Loss  Welfare Loss 

Year 
Billions of year 

2000 Euro 

% of Historical 
Consumption 

Level  
Billions of year 

2000 Euro 
% of Historical 
Welfare Level 

1975 93 2.6  151 1.7 
1980 93 2.2  146 1.3 
1985 104 2.2  169 1.4 
1990 126 2.3  213 1.5 
1995 117 1.9  190 1.2 
2000 117 1.7  186 1.0 
2005 102 1.3  154 0.8 

6. COMPARISON WITH THE CAFE STUDY 

There are several studies that attempt to estimate health impacts of air pollution in Europe 
(e.g., Krupnick et al., 1996; Olsthoorn et al., 1999; Holland et al., 2005). It is difficult, however, 
to compare their estimates directly with ours due to different pollutants of interest, target years, 
target air quality, and geographical boundaries. Nonetheless, we concluded that the 2005 Clean 
Air for Europe (CAFE) study of Holland et al. took the most analogous approach with ours in 
estimating pollution health costs, and thus we present here a comparison to their results. For 
comparison, we modified EPPA-HE to simulate economic and health outcomes up to year 2020.  

6.1 Additional Inputs and Emission Scenarios 

Emission scenarios, used by Holland et al. (2005), are summarized in Table 11. Their 2020 
Baseline scenario is consistent with that of the Regional Air pollution Information and 
Simulation (RAINS) model, which was also employed for other CAFE studies. EU-25’s 
emission levels for policy alternative scenarios are set at around 11 to 43 percent-reduced levels 
from the Baseline emission levels. Among them, Policy Scenario C has the most ambitious 
emission reduction target, while Policy Scenario A has the least ambitious target.  

Table 11. Emission Scenarios for the CAFE Study, EU-25. Unit: kt 
 Year 2000  Year 2020 
   Baseline Scenario A Scenario B Scenario C 

SO2 8,735 2,806 1,814 1,700 1,594 
NOx 11,581  5,886 4,560 4,136 3,923 
VOC 10,661  5,907 5,232 4,867 4,743 
NH3 3,824  3,683 n/a n/a n/a 
Primary PM 37  27 23 22 22 
Source: Adopted and computed from Amann et al. (2005: 20-24) and Holland et al. (2005: 17). 

As explained in previous sections, EPPA-HE needs concentration data of ozone and PM for 
the computation of health end point cases. Thus, emission-based scenarios shown in Table 11 
should be converted into concentration-based ones. Holland et al. (2005) clarify that their PM 
and ozone concentration data are taken from the RAINS model and the EMEP model, 
respectively. We obtained country-specific PM and ozone concentration data that were used for 
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their CAFE reference and three policy scenarios (C. Heyes, pers. comm.). For PM10, we 
computed population-weighted average for EPPA region EUR directly from the provided 
numbers. However, an additional step was necessary for the case of ozone, as the provided data 
was measured as the sum of excess of daily maximum 8 hour means over the cut-off of 35 ppb 
(SOMO35). To approximate year 2020 ozone concentration numbers without thresholds, we first 
computed the ratio between year 2000 and year 2020 SOMO35 numbers, and then applied the 
ratio to year 2000 ozone concentration numbers without thresholds.5 Annual means of ozone 
concentration for a large region are highly correlated (r = 0.99) with SOMO35 (Dentener et al., 
2006). Table 12 displays PM and ozone concentration numbers for 2020 by scenario. In addition, 
EPPA-HE’s future projection assumes annual GDP growth rates of 1.8 percent for 2006-2015 
and of 2.0 percent for 2016-2020 (Paltsev et al., 2005). 

Table 12. Air Quality Inputs, EUR, 2020. 
Unit: µg/m3 

Ozone  PM10 
Reference Policy A Policy B Policy C  Reference Policy A Policy B Policy C 

52.5 48.7 47.5 46.7  9.0 7.4 7.0 6.8 

6.2 Results and Analysis 

Holland et al. (2005) provides two sets of estimates for net welfare benefits of CAFE-
proposed emission regulation scenarios. One is a low set of estimates based on the value of a life 
year (VOLY) of 52,000 Euro, and the other is a high set of estimates based on the VOLY of 
120,000 Euro. As EPPA-HE uses ExternE-proposed health end point valuation tables, which are 
based on the VOLY of 50,000 Euro, we compare our estimates with their low estimates. As 
shown in Table 13, we estimate that CAFE-proposed emission regulation measures will bring a 
welfare gain of 34 billion to 48 billion Euro. Our estimates are very close to those of Holland et 
al. (2005), which are between 37 billion and 49 billion Euro. Perhaps, part of the estimates 
difference is from dissimilar geographical boundaries of interest for each study as well as from 
difference in methodology. While EPPA region EUR includes EU-15 member states and three 
non-EU high-income countries (Switzerland, Norway, and Iceland), the CAFE study embraces 
the whole EU-25 member countries. As of 2000, the population of the former region was no 
more than 86 percent of EU-25’s total. 

Table 13. Net Welfare Gains from CAFE-proposed Emission Control, Year 2020 Only. 
Unit: billions of year 2000 Euro 

Holland et al. (2005)  EPPA-HE 
Policy A Policy B Policy C  Policy A Policy B Policy C 

37 45 49  34 43 48 

                                                 
5 This calculation procedure can be expressed as the following equation, where Ozonet indicates annual means of 8 

hour daily maximum (without threshold) in time t.  

t
t

t
t Ozone

SOMO35
SOMO35Ozone 1

1 ×= +
+  
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7. CONCLUSIONS 

Our results show that air pollution has generated substantial economic burdens for the 
European region. Although air quality in Europe has been controlled, we estimate that the region 
still lost 3 percent of consumption (or 2 percent of welfare) due to air pollution in 2005, even 
when only human health-related aspects and two key air pollutants (ozone and PM10) were 
considered. This suggests that policy measures formulated to improve air quality can benefit 
society, though they may cause explicit economic costs in the short term. A set of sensitivity 
analysis shows us that our general conclusion is robust even in the presence of substantial 
degrees of uncertainty embedded in key parameters such as E-R functions and PM concentration 
levels.  

Our benchmark analysis to the 2005 CAFE study makes this point clearer. We modified 
EPPA-HE to run simulations for the future and incorporated CAFE-proposed emission scenarios. 
From this analysis, we obtain results very close to those of the 2005 CAFE study. A Europe-wide 
reduction from the 2020 baseline scenario of 10 to 40 percent of key air pollutants such as SO2, 
NOx, VOC, NH3, and PM is estimated to bring a net welfare gain of 34 billion to 48 billion Euro 
for year 2020 alone.  

Finally, we emphasize from our CGE analysis the cumulative nature of pollution-induced 
health cost. Pollution from one period can affect economic welfare of the future for quite a long 
time, as the level of welfare is a function of the stock of economic and human capital rather than 
of their flows. Our estimates of pollution health cost for Europe may be greater than most other 
studies, because we include the residual cumulative impacts of air pollution, which are often 
omitted by others. We find from the decomposition analysis of year 2005 pollution-induced 
welfare loss that roughly half the total cost is attributable to the residual cumulative impacts. 
Studies that consider only pollution costs that happened in the year of analysis or fatal and non-
fatal health outcomes, although they may take chronic mortality of the past into account, are 
likely to underestimate the real economic burdens to the society generated by air pollution. In 
this sense, a CGE-based approach is a more reasonable approach than the point estimation 
method used in other studies of health costs of air pollution. 
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