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Abstract

The currently observed increase in atmospheric CO2 due anthropogenic emissions is sub-
stantially slowed by natural processes that incorporate CO2 into the terrestrial biota and the
ocean. Year-to-year changes in the CO2 growth rate that exceed variations in the fossil fuel
source indicate a significant variability in these global CO2 sinks. However, the enormous
complexity of the terrestrial and oceanic biogeochemical systems that absorb atmospheric
CO2 makes these sinks extremely difficult to understand and precisely quantify. Many
techniques, including the interpretation of the relative changes in atmospheric CO2 and
O2/N2, ocean modeling, and atmospheric data inversions, have been employed to estimate
the mean and variability of global CO2 sinks. However, uncertainty remains large. The goal
of this thesis is to improve understanding of global CO2 sinks by considering (1) the error
in the atmospheric O2/N2 partitioning method due to the neglect of interannual variability
in the air-sea fluxes of O2, and (2) the interannual variability of the ocean CO2 sink. A
global, high-resolution ocean general circulation model is used to estimate the magnitude
and understand the mechanisms of interannual variability in air-sea fluxes of both CO2

and O2. I find that the global variability in the fluxes of both gases are dominantly forced
by large-scale physical processes governing upper ocean dynamics, particularly El Niño /
Southern Oscillation (ENSO) and, for O2, the North Atlantic Oscillation (NAO). Estimates
of the extremes of CO2 and O2 flux variability for the period 1980-1998 are ±0.5x1015 grams
Carbon/yr (PgC/yr) and -70/+100x1012 mol/yr (Tmol/yr), respectively. Global O2 flux
variability implies up to a 1.0 PgC/yr error in estimates of interannual variability in land
and ocean CO2 sinks derived from atmospheric O2/N2 observations. This error is significant
for estimates of annual sinks, but it is cumulatively negligible for estimates of mean sinks
from October 1991 to April 1998. Increasing convergence of estimates of land and ocean
carbon sink variability from independent methods is also found.
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Chapter 1

Introduction

Multiple lines of evidence suggest that the observed increase in the global atmospheric CO2

concentration [Conway et al., 1994a; Keeling and Whorf, 2000, 2001] may have significantly

contributed to the 0.6◦C warming of Earth in the past century [Arrhenius, 1896; Manabe and

Wetherald, 1967; Schimel et al., 1995; Mahlman, 1998; Sarmiento et al., 1998; Prentice et al.,

2001]. Predictions of future warming compiled by the Intergovernmental Panel on Climate

Change (IPCC) range from 1.4 to 5.8◦C for 1990-2100. Although highly uncertain, predicted

impacts of future global warming include sea level rise due to the thermal expansion of

seawater and the melting of glaciers and polar ice caps; alterations in global snow and

ice cover; shifts in the hydrologic cycle; increases in the frequency and severity of both

extreme weather events and El Niño conditions in the equatorial Pacific; and weakening of

the thermohaline circulation. [Albritton et al., 2001]

The increase of atmospheric CO2 is modulated by the natural carbon cycle such that

only about half of the CO2 emitted due to anthropogenic fossil fuel combustion, cement

production and land use change remains in the atmosphere [Tans et al., 1990; Sarmiento

and Sundquist, 1992; Bender et al., 1996; Keeling et al., 1996; Rayner et al., 1999; Francey

et al., 2001; Manning, 2001]. The remaining CO2 is taken up into the ocean due to the

solubility of CO2 in seawater and into the terrestrial biosphere due to a net increase in

biomass. The enormous complexity of the terrestrial and oceanic biogeochemical systems

involved in these CO2 sinks makes them difficult to understand and quantify. Independent

estimates of sink magnitudes and geographical distributions differ significantly and have

large error bars. If future greenhouse warming due to anthropogenic CO2 emissions and
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associated climate changes are to be predicted, these CO2 sinks into the land biota and

ocean must be quantified and their driving mechanisms need to be understood.

Further, observations indicate that the growth rate of atmospheric CO2 varies on inter-

annual timescales significantly more than do CO2 emissions [Conway et al., 1994b; Keeling

et al., 1995]. The substantial variability in CO2 sinks indicated by these observations is also

poorly understood. It is important that the interannual variability of CO2 sinks is better

quantified so that valuable clues to the mechanisms driving the sinks might be uncovered.

This knowledge is crucial for the prediction of future changes in global CO2 sinks that may

alter the rate of CO2 buildup in the atmosphere, the magnitude of global warming and the

severity of climate change.

A variety of independent methods have been developed to address the challenge of

estimating the magnitudes and understanding the mechanisms of the global CO2 sinks.

Takahashi et al. [1997, 1999] use in-situ oceanic measurements of the atmosphere / ocean

∆pCO2 combined with estimates of the wind-dependence of gas exchange to calculate the

mean CO2 sink into the ocean and its geographical distribution. These observations have

been combined with atmospheric data and atmospheric circulation models to estimate both

the land and ocean sinks [Tans et al., 1990]. Ocean general circulation models with param-

eterized biogeochemistry have also been used to refine estimates of the mean ocean CO2

sink [Sarmiento and Sundquist, 1992; Sarmiento et al., 1998], and to estimate its variability

[Winguth et al., 1994; LeQuéré et al., 2000, 2001].

Atmospheric measurements of decreasing O2/N2 have been combined with measure-

ments of the CO2 increase to estimate the mean land and ocean sinks [Keeling and Shertz,

1992; Keeling et al., 1996; Bender et al., 1996] as well as their variability [Battle et al.,

2000; Manning, 2001] in the 1990’s. Using archived air samples and snowpack (firn) gas

measurements, the O2/N2 data set has been extended as far back as 1977 in the Southern

Hemisphere [Langenfelds et al., 1999; Battle et al., 1996]. An assumption crucial to the

O2/N2 method is that global net air-sea O2 fluxes are negligible over the period of the sink

estimate. This thesis will be the first test of this assumption.

Atmospheric inversion techniques have been employed to estimate CO2 sinks into the

land biosphere and the ocean. Rayner et al. [1999] and Francey et al. [2001] use atmospheric

16



δ13C1, CO2, and O2/N2 to estimate the mean sinks, their interannual variability, and their

geographical distribution. In Fan et al. [1998] and Bousquet et al. [2000], only atmospheric

CO2 measurements are used to make similar estimates.

Land carbon sinks can be estimated from studies of terrestrial ecosystems. In-situ

forestry studies tend to indicate a significantly smaller mean terrestrial biota sink [Schimel

et al., 1995] than do other methods based on ocean and atmospheric data and models. Land

surface models may also be used to estimate the mean and variability of the land CO2 sink

and to predict its future change [Schimel et al., 2000; Melillo et al., 1993].

Many other studies have estimated CO2 sink magnitudes, investigated regional details,

and evaluated interannual variability. Yet, the magnitudes of the mean sinks and their

variability remain unclear, and error bars are still large. For the mean land sink, estimates

range from 0.4 ± 1.1 PgC/yr for 1977-1985 [Battle et al., 1996] to 3.3 ± 1.6 PgC/yr [Bender

et al., 1996] for 1991 to 1994; and for the mean ocean sink from <1.0 PgC/yr [Tans et al.,

1990] for 1981 to 1987 to 2.3 ± 0.7 PgC/yr [Langenfelds et al., 1999] for April 1978 - January

1997. Decadal shifts and interannual variability of in sink magnitudes [Battle et al., 2000]

may be to some degree responsible for the wide range of estimates.

I focus on two aspects of the quantification of global CO2 sinks that relate to interannual

variability in air-sea fluxes of O2 and CO2: (1) the potential error in the use of atmospheric

O2/N2 in the estimation of both the mean and variability of CO2 sinks due to interannual

variability of air-sea O2 fluxes; and (2) the magnitude and driving mechanisms of variability

in the global ocean CO2 sink. A suite of biogeochemical ocean models are used to estimate

interannual and decadal variability in air - sea fluxes of O2 and CO2, and to understand

the mechanisms driving the flux variability.

1.1 Using Atmospheric O2/N2 to Estimate CO2 Sinks

Timeseries measurements of atmospheric O2/N2 have allowed significant advancement to be

made in quantifying aspects of the global carbon cycle. Precise atmospheric measurements

of O2/N2 and CO2 in a sparse global network have been used to study the global CO2 cycle

and estimate CO2 sink magnitudes [Keeling and Shertz, 1992; Keeling et al., 1996; Bender

1δ13Csample = [
(13C/12C)sample

(13C/12C)standard
− 1] · 1000
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et al., 1996; Battle et al., 2000; Manning, 2001]. CO2 sinks into the terrestrial biota (B)

and the ocean (O) are estimated using atmospheric data and the following two simplified

equations that describe the global atmospheric carbon and oxygen budgets.

∆CO2 = F − O − B (1.1)

∆O2 = αF F − αBB (1.2)

Here, ∆CO2 (∆O2) is the observed global change in the atmospheric CO2 (O2) con-

centration, F is the global source of CO2 due to the burning of fossil fuels. The factor

αF is the O2:C molar ratio describing O2 utilization and CO2 production with fossil fuel

burning, and αB is the O2:C ratio for O2 production and CO2 utilization with terrestrial

photosynthesis. ∆O2 is measured as O2/N2 in the atmosphere. It is assumed that over the

time period these equations are applied, there is no net air-sea O2 flux, and for this reason

Equation 1.2 has no term to describe the ocean’s interaction with atmospheric O2.

Studies using this method and different data sets over various time periods have made

various estimate for the CO2 sinks into the ocean and terrestrial biota. For the period July

1991 to July 1994, Keeling et al. [1996] estimate global land and ocean sinks of 2.0 ± 0.9

PgC/yr and 1.7 ± 0.9 PgC/yr, and use the north - south gradient of O2/N2 and CO2 to infer

that the land biota sink is primarily in the temperate northern latitudes. For 1991-1994,

Bender et al. [1996] find global land and ocean sinks of 3.3 ± 1.6 PgC/yr and 1.1 ± 1.6

PgC/yr, respectively. Manning [2001], in an update of the Keeling et al. [1996] study, finds

land and ocean sinks of 1.62 ± 0.58 PgC/yr and 1.51 ± 0.41 PgC/yr, an average for July

1991-July 1999. Manning [2001] extends the O2/N2 method to estimate the interannual

variability of the CO2 sinks by assuming that Equations 1.1 and 1.2 are valid over each

annual cycle.

Battle et al. [1996] and Langenfelds et al. [1999] use measurements from air trapped in

the firn at the South Pole and in air archives at Cape Grim, Tasmania to extend the O2/N2

record back to 1977. Battle et al. [2000] use these data sets and atmospheric δ13C to infer a

significant decadal shift in the terrestrial sink of CO2 wherein the land biosphere is neutral

to CO2 in the 1980’s and has a sink of 1.4 ± 0.8 PgC/yr from mid-1991 to mid-1997.
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The approach used in all these studies assumes that the global atmospheric oxygen

concentration can be described by only a land photosynthetic source and a fossil fuel sink.

However, evidence exists that variability of air-sea fluxes of O2 may not be negligible on

interannual timescales. In the study of Bender et al. [1996], O2/N2 data from two stations

at 41◦S are shown to have a large seasonal cycle with substantial interannual variability

(21% of the mean). In a latitude with minimal terrestrial influence, the only remaining

forcing for O2 cycle variability is the ocean. These observations support the hypothesis

that interannual variability in air-sea fluxes of O2 may not actually be negligible.

There are several physical mechanisms which may allow for interannual and longer

timescale air - sea flux variability of O2.

• Local Balance: [Bender et al., 1996] A net efflux of O2 from the ocean occurs in the

warm months when photosynthesis exceeds respiration and the euphotic zone becomes

supersaturated with O2. Some organic matter sinks below the euphotic zone and is

oxidized, creating an undersaturated reservoir beneath. Deep mixed layers of the cold

months bring this undersaturated water to the surface and a net influx of O2 from

the atmosphere occurs [Jenkins and Goldman, 1985]. In the interpretation of joint

timeseries measurements of atmospheric CO2 and O2/N2, a local balance of warm

month efflux and the cold month influx has been assumed over each annual cycle.

However, it is likely that temporary storage and deficit occurs due to the advection of

anomalies, and because mixed layer depths and productivity rates change on various

timescales. Dutkiewicz et al. [2001] illustrate the relationship of significant changes in

phytoplankton productivity to physical processes in the North Atlantic.

• Stationary Fluxes: [Bender et al., 1996] Local O2 flux imbalances over each annual

cycle due to organic matter sinking into isopycnals below the depth of deepest winter

convection will to some degree be compensated for by the ventilation of O2 undersat-

urated waters along that isopycnal in high latitudes. However, isopycnal ventilation

has a decadal timescale. A possibility of temporary storage or deficit with decadal

timescales exists through this mechanism.

• Temperature variability: Efflux of O2 occurs in summer and influx in winter due to

the inverse relationship of solubility and temperature. Sea surface temperatures vary
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interannually, and therefore a potential for flux variability due to thermal forcing also

exists. However, the effect of temperature variability on atmospheric O2/N2 may be

effectively cancelled by proportional changes in the air-sea flux of N2.

• Net O2 outgassing: Observations of decreasing in-situ O2 concentrations in the North

Pacific [Keller et al., 2002; Emerson et al., 2001] and global modeling studies [Plattner

et al., 2001; Matear et al., 2000; Sarmiento et al., 1998] indicate that global warming is

driving a net O2 outgassing from the ocean. Increasing upper ocean stratification has

been found to be primarily responsible for the net outgassing. The studies of Plattner

et al. [2001] and Keeling and Garcia [2002] find that this global net O2 outgassing

implies a correction to the most recent IPCC sink estimates for 1990-2000 [Manning,

2001] that shifts 0.7 PgC/yr and 0.2 PgC/yr, respectively, of carbon uptake from the

land sink to the ocean sink.

Via the above-mentioned mechanisms, variability in meteorological forcing, influencing

the ocean through convective and advective changes, SST anomalies, gas transfer coeffi-

cients, and productivity changes may be linked to air - sea O2 flux variability. Coordinated

regional climate shifts associated with the North Atlantic Oscillation, the El Niño / South-

ern Oscillation cycle and the Antarctic Circumpolar Wave may drive variability in air - sea

fluxes of O2.

For the short timeseries used for mean calculations with O2/N2, and especially for

calculations of the interannual variability in the sinks, there may be significant error due

to the interannual variability in O2 air-sea fluxes. This neglected variability could disturb

the assumed balance between fossil fuel emissions of CO2 and uptake by the land biota

and ocean solubility. Hitherto, it has not been possible to incorporate the error due to the

neglect of air-sea gas flux variability into atmospheric data / modeling studies because this

variability has not been quantified. The first goal of this thesis is to estimate the global

interannual variability in air-sea O2 fluxes and to evaluate the error the neglect of this

variability imparts to O2/N2 estimates of CO2 sinks.
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1.2 Interannual Variability of the Sink of CO2 into the Ocean

The variability of the CO2 sink in the oceans has been the subject of some controversy in

the recent past. LeQuéré et al. [2000] point out that ocean observation and model-based

estimates of ocean CO2 sink variability [Winguth et al., 1994; Lee et al., 1998; LeQuéré

et al., 2000] are all significantly smaller that atmosphere inverse model estimates [Francey

et al., 1995; Keeling et al., 1995; Rayner et al., 1999; Joos et al., 1999].

The recent atmospheric inversion study of Francey et al. [2001], updating the work

of Rayner et al. [1999], indicates a substantially smaller ocean CO2 sink variability than

previous atmospheric inversion studies. Recalibration of δ13C data at Cape Grim, better

gross flux estimates and new smoothing routines are responsible for the smaller estimate of

ocean flux variability (Roger Francey, personal communication). Data issues such as these

may be the root cause of the discrepancy pointed out by LeQuéré et al. [2000]. However,

the cause may be that the models are too coarse in resolution, have overly crude forcing,

or are otherwise unable to capture the physical variability of the ocean that actually causes

air-sea CO2 flux variability. For example, the model of LeQuéré et al. [2000, 2001] may be

limited in its capacity to capture the physical variability of the ocean outside the tropics

because model temperature and salinity are restored to climatological values beneath the

mixed layer at a rapid 1 month timescale everywhere away from the coasts and outside 10◦S

to 10◦N. This means that physical variability in the model of LeQuéré et al. [2000, 2001] is

likely damped in the middle and high latitudes.

Model estimates presented by Winguth et al. [1994], LeQuéré et al. [2000] , and LeQuéré

et al. [2001] indicate that the equatorial Pacific drives the majority of the global CO2 flux

variability. Physical changes associated with the El Niño / Southern Oscillation cycle ex-

plain a significant portion of the air-sea flux variability in this region. Further, the equatorial

Pacific observations summarized by Feely et al. [1997] indicate a CO2 flux variability in this

region that is similar in magnitude to the model estimates of the global flux variability, sug-

gesting that this region may indeed be globally dominant. However, another interpretation

of this comparison is that model variability is only realistic in the tropics.

In addition, other recent studies question the dominance of the equatorial Pacific in the

global air-sea CO2 flux variability. A study of data from the Bermuda Atlantic Timeseries
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Station in the North Atlantic indicates the potential for significant CO2 flux variability

associated with the North Atlantic Oscillation (Niki Gruber, personal communication). It

is possible that the properties of previous ocean models have made them unable to capture

this type of extratropical variability.

In summary, there remain several outstanding questions regarding the magnitude and

mechanisms of the variability of air-sea CO2 fluxes. It is particularly unclear how the differ-

ent properties of ocean general circulation models might change flux variability estimates.

Therefore, the second goal of this thesis is to provide a new model estimate of air-sea CO2

flux variability using a fully prognostic, high-resolution ocean general circulation model. I

will consider the contributions of basin-scale regions of the ocean to CO2 flux variability,

evaluate the driving mechanisms in these regions, and determine whether the properties of

this model makes it better able to capture the full extent of CO2 flux variability.

1.3 Summary

The importance of variability in air-sea fluxes of O2 to estimates of global CO2 sinks has

not been investigated. Assumptions neglecting O2 air-sea flux variability in the use of

atmospheric O2/N2 data to determine CO2 sinks need to be tested and the error resulting

from these assumptions needs to be quantified. In face of a dearth of oceanic measurements,

alternative methods must be used. In this thesis, I use an ocean general circulation model

with parameterized biogeochemical processes in an effort to provide reasonable bounds for

the O2 air-sea flux boundary condition.

In addition, significant questions remain about the variability of the global ocean CO2

sink and the mechanisms responsible for this variability. This work provides an updated

estimate of the ocean CO2 sink variability by using a fully prognostic, high-resolution ocean

general circulation model.

In Chapter 2 (published as McKinley et al. [2000]), the question of O2 flux variability

is initially addressed using a regional model of the North Atlantic for 1987-1995. The model

estimates a significant O2 flux variability in this region and the results suggest that global

interannual variability in O2 fluxes may be large.

The physical model driving the offline global biogeochemical model is evaluated in
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Chapter 3. The biogeochemical model for phosphorus, O2, and CO2 is then described. As

part of this description, the derivation of a spatially inhomogeneous export parameter that

improves the model agreement with the nutrient climatology is discussed.

Estimates of the variability of global air-sea fluxes of CO2 and O2 for 1980-1998 from

the global biogeochemical model are detailed in Chapter 4. A significant flux variability

exists for both gases. Large-scale physical changes in the equatorial Pacific associated with

the El Niño / Southern Oscillation cycle dominate the global air-sea flux variability of

both CO2 and O2. Variability in global O2 fluxes is also driven to a significant degree

by convective variability in the North Atlantic that is typically associated with the North

Atlantic Oscillation. The global CO2 flux variability is minimally impacted by rapid physical

changes in the North Atlantic because shifts in biogenic export eliminate DIC anomalies

before CO2 gas exchange is significantly altered. Carbonate reactions are responsible for

slowing CO2 gas exchange and allowing time for the biogenic response.

In Chapter 5, I find that estimates of air-sea flux variability of O2 and CO2 are changed

only slightly in 1997-1998 by the use of a new version of the physical model that has been

constrained by satellite altimetry. The minimal change in gas flux variability is due to

the altimetric constraint having little impact on the physical state of the model below the

surface layer.

The impact of air-sea O2 flux variability on the calculation of land and ocean CO2 sinks

and their variability using atmospheric O2/N2 is quantified in Chapter 6. The impact is

found to be significant on interannual timescales, but negligible for mean sinks calculated

over the period October 1991 - April 1998. In addition, it is shown that the most recent

estimates of the variability of CO2 sinks from separate methods agree that the global land

sink of CO2 is significantly more variable (approximately ±2 PgC/yr ) than the ocean sink

(less than ±1 PgC/yr).
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Chapter 2

Interannual Variability of the

Air-Sea Flux of Oxygen in the

North Atlantic

This chapter appeared in full as McKinley, G.A., M.J. Follows and J.C. Mar-

shall, Interannual variability of the air-sea flux of oxygen in the North Atlantic,

Geophysical Research Letters, 27(18), 2933-2936, 2000.

In studies using timeseries observations of atmospheric O2/N2 to infer the fate of fossil

fuel CO2, it has been assumed that multi-year trends in observed O2/N2 are insensitive to

interannual variability in air-sea fluxes of oxygen. We begin to address the validity of this

assumption by investigating the magnitude and mechanisms of interannual variability in

the flux of oxygen across the sea surface using a North Atlantic biogeochemical model. The

model, based on the MIT ocean general circulation model, captures the gross patterns and

seasonal cycle of nutrients and oxygen within the basin. The air-sea oxygen flux exhibits

significant interannual variability in the North Atlantic, with a standard deviation (0.36

mol m−2 y−1) that is a large fraction of the mean (0.85 mol m−2 y−1). This is primarily a

consequence of variability in winter convection in the subpolar gyre.
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2.1 Introduction

The variability of air-sea O2 fluxes has recently become of particular interest since observed

atmospheric O2/N2 trends have been used to estimate the partitioning of the sink of fossil

fuel CO2 between the ocean and terrestrial biosphere [Keeling et al., 1996; Bender et al.,

1996]. These studies indicate that approximately one-third of anthropogenically produced

CO2 is taken up by the global land biota (2.0 ± 0.9 Pg carbon y−1 (PgCy−1);[Keeling et al.,

1996]). Keeling et al. [1996] also use the meridional gradient of O2/N2 and CO2 to infer

that the sink in the Northern Hemisphere land biota is approximately the same magnitude

(1.9 ± 0.9 PgCy−1) as the global sink. Forest inventory studies, however, suggest a smaller

global land biota sink (0.5 ± 0.5 PgCy−1, [Schimel et al., 1995]).

A key assumption made by Keeling et al. [1996] and Bender et al. [1996] is that multi-

year trends in observed O2/N2 are insensitive to interannual variability in the global, annual

mean air-sea oxygen flux. The global atmospheric balance for CO2 and O2/N2 is assumed

to be comprised only of the long-term trends imparted by fossil fuel combustion, land

biota and ocean CO2 uptake. However, data suggests that interannual variability may be

significant. Bender et al. [1996] study atmospheric O2/N2 data from two stations at 41◦S

and interpret a large seasonal cycle with substantial interannual variability (21% of the

mean). At a latitude with minimal terrestrial influence, the likely source for O2 variability

is air-sea exchange.

The magnitude of interannual variability in air-sea oxygen fluxes has yet to be estimated

either globally or regionally. Although the impact of interannual variability on CO2 sink

estimates will be reduced by forming multi-year averages, the timescale on which interannual

variability is negligible also remains an unknown.

In this study we focus on air-sea O2 flux variability in a model of North Atlantic ocean.

Our goals are two-fold. Firstly, to examine the regional interannual variability of air-

sea O2 fluxes. Is there potential for a significant uncertainty in estimates of fossil fuel

CO2 partitioning due to the assumption that interannual variability in air-sea O2 fluxes

can be neglected? Secondly, we elucidate the physical mechanisms underlying the model’s

variability.
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2.2 North Atlantic Biogeochemical Model

We use a North Atlantic biogeochemical model based on the MIT ocean general circulation

model (MITgcm) [Marshall et al., 1997b,a] integrated globally at one degree horizontal

resolution, with 21 vertical levels, and initialized with Levitus and Boyer [1994] climatology.

It was forced with 12-hourly, reanalyzed wind stress and heat flux fields during the period

1979-1996, and a nine-year segment (1987-1995) of model variables stored for use in offline

studies. Geostrophic eddy transfer is parameterized using the Gent and McWilliams [1990]

scheme and the upper ocean mixed-layer is parameterized by convective adjustment. The

MITgcm and offline model are discussed in more detail in Dutkiewicz et al. [2001].

The biogeochemical model is based on the cycles of phosphorus and oxygen in the ocean.

The governing equations for phosphate, P, and oxygen, O2 are

∂P

∂t
= −∇ · (uP ) + ∇ · (κ∇P ) + CP + Sb + Sr (2.1)

∂O2

∂t
= −∇ · (uO2) + ∇ · (κ∇O2) + CO2

+RO2:P · (Sb + Sr) + E (2.2)

where u is the transformed Eulerian mean velocity and ∇·(κ∇P ) is a tensorial representation

of mixing along isentropic surfaces, with transfer coefficient κ = 103 m2 s−1 as in the

MITgcm [Gent and McWilliams, 1990]. Convective mixing (C) is achieved using statistics

of convection in the MITgcm to govern the distribution and frequency of vertical mixing

events [Dutkiewicz et al., 2001], and acts on the local gradients of individual tracers. Sb is

the loss of P due to formation of sinking particles, and Sr the source from remineralization.

We use a simplified, light and nutrient limited parameterization of particulate export:

Sb = −ε(∂Φ/∂z)(P/(P + Pmax)). Light limitation is implemented to ensure that the rate

of export cannot exceed the photosynthetic energy supplied by the vertical flux divergence

of photosynthetically radiation radiation, ∂Φ/∂z, assuming a photosynthetic efficiency, ε.

This is an upper bound where all photosynthetically available photons are assumed used

for new production. When light is limiting (P � Pmax) the export rate asymptotes to

−λbPmax = ε(∂Φ/∂z). Here Pmax is the concentration of nutrients at which light becomes

limiting to export production. The characteristic timescale for export of P, 1/λb, is chosen

such that when light is not limiting it is about 1 week. The monthly mean solar radiation
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flux at the surface of the ocean (Φ(y,0,t)) is determined using the astronomical formula

of Paltridge and Platt [1976] and a latitudinally varying albedo according to North et al.

[1981]. The profile of light in the water column is assumed to follow Φ(z) = Φ(0)e−kwz,

where kw, the extinction coefficient, is an empirical function of latitude, based on Secchi

depth observations [Lewis et al., 1988; Parsons et al., 1984]. Photosynthetic efficiency, ε, is

assumed to have a value of 1.35×10−5 µmol P per Joule of surface incident radiation when

vertically averaged over the euphotic zone, consistent with Morel [1978]. Export production

is reduced by sea-ice, proportional to the fractional ice cover in each grid cell. The sinking

particle flux at all depths is parameterized using an exponential profile with a scale height of

400m [Dutkiewicz et al., 2001], the divergence of which provides the remineralization source

of P.

Biological sources and sinks of O2 are assumed to be in fixed proportion to those of P,

where RO2:P = −175 : 1 [Takahashi et al., 1985]. Air-sea gas exchange (E) of O2 is pa-

rameterized as a function of wind speed, sea surface temperature and salinity [Wanninkhof,

1992] with solubility properties as determined by Weiss [1970]. Air-sea oxygen fluxes are

reduced by sea-ice, proportional to the fractional ice cover in each grid cell. A constant

atmospheric O2 concentration of 21 pph is assumed.

At open boundaries, we restore to climatological P and O2 [Conkright et al., 1994;

Levitus and Boyer, 1994] with a timescale of 2 months. Since we are primarily interested

in upper ocean variability, we restore to P climatology, but not O2, below 1200m on a 200

month timescale. Tracer fields are initialized from the climatology of Conkright et al. [1994]

and Levitus and Boyer [1994] and the model is integrated over a repeating 9 year cycle for

10 cycles until an equilibrium solution, exhibiting interannual variability, is obtained.

2.3 Model Results

The model successfully captures the broad distribution of P and O2 in the upper ocean and

exhibits a strong surface seasonal cycle typical of the North Atlantic.

In Figure 2-1 we compare the 9 year mean modeled O2 distribution on the mean

σθ = 27.5 isopycnal surface to the observed distribution [Conkright et al., 1994; Levitus

and Boyer, 1994]. Modeled dissolved O2 decreases towards the interior of the subtropical
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Figure 2-1: (a) Observed and (b) modeled climatological dissolved O2 on σθ = 27.5 density

surface (µmol kg−1). Gray areas are north of the isopycnal outcrop. The 130, 210 and 290

isolines are darkened for clarity.
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gyre, indicative of respiration of exported organic matter, in a manner consistent with the

broad features of the climatology. However, it overestimates the magnitude of the oxygen

minimum zone on the eastern margin near Africa. In addition, high O2 isolines extend too

far south, suggesting that the model ventilates too quickly or does not export biological

matter efficiently enough in other regions of the subtropics and tropics. Model isolines

appear displaced to the north in the subpolar gyre in comparison to the data. This dis-

crepancy may be due in part to summer bias in the data. Vertical displacement of the

isopycnal in the physical model could also contribute to each of these discrepancies. In

another comparison (not shown), we find that seasonal, surface ocean O2 saturation levels

are broadly consistent with the climatology of Najjar and Keeling [1997].

Over decadal and longer timescales, large scale circulation and surface heat fluxes lead

to a net transfer of O2 rich waters to the south at depth and a northward flux of warm, O2

depleted waters near the surface. The model has a net transport of oxygen to the south,

balanced by a net annual uptake from the atmosphere. At 24◦N and 48◦ N, the modeled

southwards O2 transport is 2161 and 2057 kmol s−1 respectively, very close to the southward

estimates of 2069±581 and 1748±475 kmol s−1, respectively, deduced by Ganachaud [1999]

from observed hydrographic and O2 data.

Upper ocean convective mixing is particularly significant in determining nutrient supply

to the surface ocean and air-sea fluxes of oxygen. The general circulation model captures the

mean mixed-layer cycle and its interannual variability, as illustrated in Figure 2-2 where data

from the Bermuda Atlantic Time-Series Station (BATS, 31◦40”N, 64◦10”W) are compared

to area-averaged model results for a small region representative of the Sargasso Sea (marked

on Figure 2-1b). We also find that modeled annual cycles of mixed layer depth, surface P

and O2 in the intergyre region (marked on Figure 2-1b) compare well (not shown) with

observed data from Ocean Weather Ship “Charlie” (OWS C, 52◦48”N, 35◦30”W).

We compare observed and modeled surface O2 at BATS and in the Sargasso region

in Figure 2-3. The mean amplitude and phase of the surface annual cycle of O2 in the

Sargasso Sea compares well with the observed cycle (2-3a). The model, however, shows

less variability than the observed data on sub-seasonal and interannual timescales (2-3b).

The mean P cycle (not shown) in the model looks unlike the data, exhibiting a regular

seasonal cycle that is not observed. Modeled P at BATS does not exhibit the intermittent
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Figure 2-2: Observed (BATS, solid) and modeled (Sargasso region, dashed) mixed-layers.

BATS observations began in October 1988. Mixed-layer depths are determined using a

criteria of ∆T|z = 0.5◦C. Both the modeled (a) mean annual cycle for 1989-95 and (b)

variability with this cycle removed compare well with observations.

peaks in concentration that are seen in the data. The lack of sub-seasonal variations may

be attributed to the low resolution of the model since mesoscale eddies are not explicitly

resolved. Further, monthly mean model results should be less variable than instantaneous

monthly observations.

In summary, the physical model works well in the North Atlantic, but the biologi-

cal model is too simple to capture complex ecosystem dynamics at BATS. Despite this

shortcoming, the model exhibits interannual variability in surface O2 concentrations (and

therefore, air-sea fluxes) that is comparable, although smaller in magnitude, to the data at

BATS. We conclude that physical processes control surface O2 concentrations and air-sea

O2 fluxes, and that the simplicity of the biological model is acceptable given the goals of

our work.

What is the interannual variability in the integrated, basin-scale oxygen flux in the

model? We find a substantial and significant interannual variability in the net air-sea ex-

change of O2 over the North Atlantic basin (Figure 2-4a) which varies by as much as one-half

of the mean flux from year to year. The standard deviation of the timeseries is 0.36 mol m−2
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Figure 2-3: Surface O2 at BATS / Sargasso: observed (solid) and modeled (dashed) (a)

mean 1989-95 cycle and (b) variability with this cycle removed (µmol kg−1).

y−1, a large fraction of the mean flux into the North Atlantic (0.85 mol m−2 y−1). Since the

modeled surface O2 exhibits weaker than observed variability on both short (month) or long

(decadal) timescales, we expect that our estimate of variability in basin-averaged modeled

air-sea fluxes represents a lower bound. Sensitivity experiments show similar variability

over a range of values for the air-sea exchange and export parameterization coefficients.

What is the cause of this variability? The dominant balance on seasonal and interannual

timescales in the North Atlantic is a vertical one; net O2 supply to the surface ocean

by wintertime air-sea exchange and net biological production is balanced by transfer of

O2 to the seasonal thermocline by convective overturning. Below, O2 is consumed by

remineralization of particles.

We illustrate the annual-average, basin-scale variations in the individual influences on

the surface layer of the model in Figure 2-4b. Annual air-sea O2 flux anomalies are largely

driven by changes in convective mixing, primarily in the subpolar gyre, and the consequent

transport of oxygen away from the surface waters. The dominant factor controlling changes

in the air-sea flux is interannual change in entrainment of oxygen-depleted waters from

the seasonal thermocline. Anomalies in biological production of oxygen tend to show the

opposite influence, since enhanced entrainment also supplies more nutrients which may

32



87 88 89 90 91 92 93 94 95
0

0.5

1

1.5

O
2 (

m
ol

 m
-2

y-1
)

(a)

87 88 89 90 91 92 93 94 95

 -0.5

0

0.5

O
2 (

m
ol

 m
-2

y-1
)

(b)

Air-Sea Flux
Biology     
Convection  
Transport   

Figure 2-4: (a) Modeled sequence of North Atlantic annual and basin average, air-sea O2

flux (mol m−2 y−1). (b) Annual, basin-averaged, anomalies (relative to 9 year mean) of the

air-sea flux and the dominant biological and physical influences driving the flux anomalies.
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boost the biological production, but this process is generally of secondary importance to

the air-sea O2 flux anomaly. Advective transport anomalies in the model are generally

small.

2.4 Conclusions

Using a biogeochemical model of the North Atlantic, we have shown that there may be

significant interannual variability in the basin-wide air-sea flux of O2. We find variations

as much as one half of the mean uptake of O2 by the North Atlantic. The variability,

we believe, represents a lower bound, since modeled surface O2 tends to be less variable

than the observed ocean. This significant variability prompts further investigation. We are

pursuing a global, multidecadal study which will provide an estimate of the annual global

imbalance of air-sea O2 fluxes.
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Chapter 3

The Global Biogeochemical Model

Motivated by the finding of a significant interannual variability in O2 fluxes in the North

Atlantic, I develop an expanded offline biogeochemical model for the purpose of estimat-

ing the mechanisms and amplitudes of global air-sea fluxes of O2. The variability of the

ocean CO2 sink is also estimated and its driving mechanisms evaluated with this model. In

this chapter, the ocean general circulation model that provides the circulation and physical

properties of the offline model is discussed. The mean properties and variability of the phys-

ical fields from this model are evaluated through comparisons to ocean observations. Next,

the structure of the biogeochemical components of the offline model are specified. Finally,

the calculation of a spatially varying export parameter that improves the climatological

nutrient distribution of the model is explained in detail.

3.1 The Ocean General Circulation Model

The offline biogeochemical model is based upon the MITgcm [Marshall et al., 1997b,a].

Physical model results were produced at the Jet Propulsion Laboratory, simulating the pe-

riod 1980-1998 [Lee et al., 2001]. Horizonal resolution is 1◦ in longitude, 1◦ in latitude at

high latitudes and transitions smoothly between 26◦ and 10◦ from the equator to a 0.3◦

tropical resolution. There is a closed boundary at 79◦ N, and thus the Arctic circulation

is neglected. The Mediterranean Sea is included in the model, connecting to the Atlantic

over a 300m sill at Gibraltar. The online model has 47 vertical levels, with 10m resolution

from the surface to 150m, transitioning to 100m resolution between 865 - 1265, and tran-
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sitioning again to 400m resolution at depths greater than 3015m. To achieve a reasonable

representation of mixed layers and eddy transfer processes, the Gent-McWilliams [Gent and

McWilliams, 1990] for eddy parameterization and the KPP mixed layer [Large et al., 1994]

schemes are used.

The general circulation model was forced with 12 hourly reanalyzed wind stress, and

heat and freshwater fluxes. These fields are a product of the National Center for Envi-

ronmental Prediction (NCEP) variability of each quantity added to the Comprehensive

Ocean-Atmosphere Data Set (COADS) long-term mean quantity. The COADS mean, in-

stead of the NCEP mean, has been used because it was found that COADS mean winds

corresponded better to observations at the TOGA/TAO moorings than do NCEP mean

winds. Sea surface temperature (SST) is also relaxed to NCEP fields with a spatially vary-

ing relaxation constant that has a global average value of approximately 40 W/m2/K. (D.

Menemenlis, personal communication)

The physical model was initialized with Conkright et al. [1998] fields, and integrated for

10-years with climatological surface forcing fields that included the seasonal cycle prior to

19-year real-time integration. The model was largely spun-up at the point where the varying

run began, but still exhibited some drift due to longer diffusive and advective time scales.

A complete spin-up to depth would take many thousands of years. A salinity adjustment of

relaxation to climatological sea surface salinity (SSS) with a timescale of 60 days is included

in the real time 19-year run to address salinity drift. Drifts in other parameters are assumed

to be small. (D. Menemenlis, personal communication)

Ten (10) day average output from the physical model is used to force the offline model.

These parameters are u, Gent-McWilliams tensors and background diffusion (K13, K23,

KGM), the KPP mixing coefficients which determine all convective mixing in the model,

temperature (T), and salinity (S). The salinity relaxation term, added to the freshwater

forcing term, is applied to the surface of the offline model as a total freshwater flux. Model

sea surface height (SSH) is also determined for diagnostic purposes.

Results for the evolution of an idealized passive tracer field in equatorial Pacific sector of

the offline model have been compared to online calculations. Differences in the development

in the offline tracer field from the online results are negligible when 10-day average fields

are used to force the offline model. (Ichiro Fukumori, personal communication)
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3.1.1 Model performance

The realism of the offline biogeochemical model estimates of O2 and CO2 fluxes depends to

a large degree upon the quality of the physical model’s representation of the global ocean,

both in the mean and variability. Further, it has been illustrated in Chapter 2 and by

LeQuéré et al. [2000] that physical variability is an important influence on O2 and CO2

air-sea flux variability. It is therefore important to understand how well the physical model

represents the global ocean and its variability.

Mean temperature sections

Comparisons of SST in all months to the Levitus and Boyer [1994] climatology indicate

that the model deviates from the climatology by at most 3◦C in small regions, but typically

deviates by less than 1◦C (comparisons not shown).

Figure 3-1 illustrates that the model captures the basic shape and depth of the thermo-

cline in the Atlantic. Comparisons in other regions of the ocean have a similar quality. In

Figure 3-2 the difference of observed climatological temperatures from 19-year mean model

temperatures are presented along meridional sections in both the Atlantic and Pacific, and

some of the deviations of the model from the observations can be seen. In both basins,

the model thermocline is too shallow in the subtropics and equatorial regions, creating low

thermocline temperatures, or negative differences, in Figure 3-2. In the North Atlantic,

the plume of anomalously warm water at approximately 55◦ acts as evidence that deep

mixing occurs too vigorously in this region. Although the model deviates spatially from

the observations, the broad structure of the thermocline in the model is consistent with the

data.

Meridional overturning

The meridional overturning of the general circulation model is presented in Figure 3-3. The

circulation reaches a maximum of 22 Sv at 1000m and 45◦N in the Atlantic, reasonably

consistent with the estimate by Ganachaud [1999] of 16 ± 2 Sv North Atlantic Deep Wa-

ter formation north of 48◦N. In the model, 15 Sv of Antarctic Bottom Water is formed

the Southern Ocean, consistent with the 22 ± 8 Sv estimate by Ganachaud [1999]. Ap-

proximately 20 Sv of Antarctic Intermediate Water is formed from North Atlantic Deep
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Figure 3-1: Thermocline temperature sections at 329◦E in the Atlantic in (a) Levitus and

Boyer [1994] climatology and (b) the 19-year model mean conditions for March.
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Table 3.1: Transport of major currents

Transport Comparisons in Sv

location model observed source

Gulf Stream at Cape Hatteras 42 70-100 Tomczak and Godfrey [1994]

Gulf Stream at 65◦W 33 90-150 Tomczak and Godfrey [1994]

Gulf Stream at 40◦W 36 37 Worthington [1976]

Kuroshio at Japan 29 40 Pickard and Emery [1990]

Kuroshio Extension at 152◦E 33 57 Tomczak and Godfrey [1994]

Drake Passage 134 140 ± 6 Ganachaud [1999]

Water in the Southern Ocean, somewhat larger than the rather uncertain value of 6 ± 9 Sv

from Ganachaud [1999]. Overall, the model is close to consistency with the observational

estimates.

Transports of major currents

In Table 3.1, the model transport in major ocean currents is compared to published observa-

tional estimates. For all model estimates except the Drake Passage, the flow over a section

10◦ wide and 965m deep is integrated to calculate the transport. At the Drake Passage, the

flow over the full width and depth of the channel is integrated. Model transports compare

favorably with the observational estimates in the Drake Passage, the Gulf Stream at 40◦W

and in the Kuroshio off the coast of Japan. The underestimation of transport in the Gulf

Stream at Cape Hatteras and at 65◦W and in the Kuroshio system is due in large part to

the model’s lack of recirculation which would act to strengthen western boundary current

transport.
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Figure 3-4: Mixed layer depth comparisons. Levitus and Boyer [1994] (left) compared to

the 19-year model average (right) in March (top) and September (bottom). Contours are

at 25, 50, 100, 250, 500, 750, 1000, and 3000m.

Mixed layer depths

In Chapter 2, it was shown that variability in high latitude mixing dominates O2 air-sea

flux variability in the North Atlantic. Thus, in addition to being an indicator of overall

physical skill, mixed layer depths are likely to be important to global air-sea flux variability

of O2 and CO2. Here, model monthly climatological mixed layer depths of the model

are compared to the Levitus and Boyer [1994] observed climatology and to four timeseries

stations. For consistency with Levitus and Boyer [1994], the mixed layer depth criterion

in all comparisons is the depth at which the difference from the surface potential density

equals or exceeds 0.125 kg m−3.

In Figure 3-4, the global distribution of model and climatological [Levitus and Boyer,

1994] mixed layer depths in March and September are shown. The model exhibits a global
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distribution, magnitude, and seasonality of deep mixing similar to the data. In the Tropics

and mid-latitudes, model mixed layer depths compare well to the observations in both

March and September.

In March, the deepest mixed layers occur in the subpolar North Atlantic and the north-

west Pacific. Model mixed layers are approximately 150m too deep in a region to the east

of Japan, and too shallow by 50m in the western subpolar North Pacific. In the subpolar

North Atlantic, model mixed layers are significantly deeper than the observed estimate in

the Labrador Sea where they extend beyond 3000m in areas where observations indicate

depths of 1000m - 2000m. In the region of the Gulf Stream, mixed layers are deeper than

observed by 150-250m. Model mixed layers are too shallow by 25-75m across much of the

Southern Ocean in March.

In September, the deepest mixing occurs in the Southern Ocean. The model demon-

strates less small scale variation in mixed layer depths than the observations but still cap-

tures the broad scale extent of the mixing regions and their depths. The model does not

capture the deepest mixing, below 750m, that is indicated in a few localized regions of the

observational climatology.

In Figure 3-5(a-d), timeseries of model mixed layers are compared to ocean timeseries

data from Bermuda-Atlantic Timeseries Station (BATS, 31◦40”N, 64◦10”W,[Bates, 2001]),

Ocean Weather Station “Charlie” (OWS C, 22◦45”N, 158◦W, [http://www.ices.dk/ocean/]),

the Hawaii Ocean Timeseries Station (HOT, 52◦48”N, 35◦30”W, [Karl and Lukas, 1996]),

and at the Kerguelen islands (KERFIX, 50◦41”S, 68◦25”E, [Jeandel et al., 1998]).

At BATS, the timing of mixing in the model is quite close to that of the data, although

the model is often overly deep at its deepest point. The overestimation of winter mixed

layer depths at BATS is consistent with the comparison of mean model mixed layers to the

climatology in March (Figure 3-4). This comparison of indicates that, on the mean, the

mixing region associated with the Gulf Stream is overly broad and deep in the model. BATS

lies near the edge of this mixing region, and thus horizontal displacement of the region from

year to year is likely responsible for overly deep model mixed layers in some years.

At OWS C, observed mixed layer cycles starting in 1975 are compared to the nineteen

years of the model. The model is quite close to the data in the summer, spring, and fall, but

it is likely deeper than reality in winter, consistent with the broadscale patterns illustrated
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Figure 3-5: Mixed layer depth comparisons at four ocean timeseries stations. Averages over

local regions in the model (dash and crosses) are used to compare to the in-situ data (solid):

(a) BATS (model area: 30-32◦ N, 297-299◦ E) (b) OWS C (model area: 45-55◦ N, 318-328◦

E), (c) HOT (model area: 22-24◦ N, 156-158◦ E) and (d) KERFIX (model area: 50-52◦ S,

67-70◦ E)
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in Figure 3-4 in March. At HOT, the model captures the depth and timing of the mixing

in a manner generally consistent with the observations. At KERFIX, data are scarce, but

the indication is that model mixed layers are 50-100 meters deeper and less variable than

in the real ocean. Similar to the situation at BATS, relatively small displacement of the

location of the Antarctic Polar Front in the model could be responsible for the mixed layer

depth discrepancies at KERFIX.

Sea surface temperature variability

Modeled SST variability is compared to the Reynolds and Smith [1994] weekly analyzed

fields in this section. Reynolds and Smith [1994] SSTs are interpolated from the weekly

analyzed product to daily values, and then reaveraged to 10 days before the following

analyses are performed.

When considering these comparisons, it is crucial to remember that modeled SST is

relaxed toward NCEP fields that are, in large part, based the analysis of Reynolds and Smith

[1994]. The relaxation constant for model SST varies in space and time. Its approximate

global average is 40 W/m2/K in the model, which implies that it typically takes 1.7 weeks

for a model - data temperature difference of 1K in the upper 10m to be eliminated. Where

surface forcing creates deep mixed layers, it will take significantly longer for model - data

SST differences to be removed. Nevertheless, approximately one-half of the model heat

flux can be attributed to the SST relaxation (D. Menemenlis, personal communication).

As such, a good model - data agreement in SST may not necessarily indicate that ocean

subsurface processes have skill. Despite the complication of SST relaxation, I choose to

present this comparison because SST has been shown to be a central driver of the seasonal

cycles of O2 and CO2 fluxes over much of the ocean [Najjar and Keeling, 2000; Takahashi

et al., 1993; Keeling et al., 1993], and may be an important driver of interannual variability.

SST comparisons in four representative ocean regions are shown in Figure 3-6. In the

subpolar North Atlantic (Figure 3-6(a)), modeled SST exhibits a larger seasonal cycle than

the data in most years, with significantly lower SSTs in the winter months than observed.

These lower SSTs are most likely due to model mixed layers being too deep in this region.

Interannual variations in maximum annual SSTs are well captured by the model. In the

subtropical North Atlantic (Figure 3-6(b)), mean SSTs and their interannual variability are
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Figure 3-6: SST in four representative ocean regions: model (dashed) compared to Reynolds

and Smith [1994] (solid). (a) Subpolar North Atlantic at 45-55◦N, 340-350◦E, (b) Subtrop-

ical North Atlantic at 25-35◦N, 330-340◦E, (c) Equatorial Pacific at 5◦S - 5◦N, 220-250◦E,

and (d) Southern Ocean at 55-65◦S, 215-225◦E.
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well captured. In the equatorial Pacific (Figure 3-6(c)), modeled SSTs are too low on the

mean by 1◦C. Yet, interannual and shorter timescale variability is well represented. The

high SST characteristic of El Niño events is clearly seen in 1982-1983 and 1997-1998. In the

Southern Ocean (Figure 3-6(d)), the model mean SST is too high by 1.5◦C, perhaps due

excessive stratification in this region. Nevertheless, much of the interannual variability of

SST is captured.

In Figure 3-7, the zonal average SST variance is presented for each basin. These com-

parisons indicate that the model either correctly estimates or slightly overestimates the

observed variance in SST in most regions. In the Atlantic from 40-60◦ N, however, the

model significantly overestimates SST variance. Excessive winter mixing in this region may

be responsible for this overestimate.

In summary, while the model underrepresents local features of the annual SST cycle

and variability, it successfully captures SST variance on the large scale in most regions.

Model relaxation to NCEP SSTs, providing approximately one-half the total heat flux, is a

significant contributor to the good agreement shown here.

Sea surface height

Sea surface height (SSH) has been observed by the TOPEX/POSEIDON satellite since late

1992. Here, model SSH variability is compared to the TOPEX/POSEIDON observations

in order to estimate the model’s skill at capturing variability in the circulation of the upper

ocean on a global scale. This comparison follows the methodology of Stammer et al. [1996].

For these comparisons, the MIT altimetric data set, with 10 day temporal resolution

and 2◦x2◦ spatial resolution is used [King et al., 1994]. Model SSH is regridded to 2◦x2◦ for

these comparisons. After mean seasonal cycles of both the observations and the model are

removed, comparisons are made for the period 1993-1998.

The global variance of SSH is compared to TOPEX/POSEIDON in Figure 3-8. While

the model captures the basic features of the upper ocean circulation, such as the western

boundary currents, it significantly underestimates the magnitude of the variability. This

underestimation can also be seen in Figure 3-9 where the SSH variance averaged zonally

across the center of each basin is compared between the model and the observations. Again,

the model captures the basic features, but only 35% of the observed variance. When the
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Figure 3-7: Zonal averages of SST variance in the major ocean basins: model (dash) com-

pared to Reynolds and Smith [1994] (solid). (a) Indian from 60-90◦E, (b) Pacific from

180-250◦E, and (c) Atlantic from 310-350◦E. The seasonal cycle of both the observations

and the model is removed before the variance is calculated.
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Figure 3-9: Zonal averages of SSH variance in the major ocean basins: model (dash) com-

pared to TOPEX/POSEIDON (solid). (a) Indian, 58-88◦E, (b) Pacific, 178-248◦E, and (c)

Atlantic, 328-348◦E.
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comparison shown in Figure 3-9 is repeated with both the model and observations averaged

to 10◦x10◦, the model still only captures approximately 35% of the observed variance,

indicating that the model does not fare better at larger spatial scales. Similar to the finding

of Stammer et al. [1996], the model significantly underrepresents upper ocean variability at

all spatial scales. The use of boundary conditions that damp small scale variability and the

lack of mesoscale eddies, with high-frequency energy that may cascade upscale, are likely

contributors to the model’s underrepresentation [Stammer et al., 1996].

Summary of physical comparisons

Overall, the physical model captures the major features of the observed temperature and

density structures of the global oceans. The model captures SST variance on the global

scale, but locally deviates from Reynolds and Smith [1994] observations. SSH comparisons

indicate that the model significantly underestimates the physical variability of the upper

ocean.

Bearing in mind that significant deviations from the observations do occur in the model,

I believe that the model is still useful for estimating the magnitude and mechanisms of in-

terannual variability in air-sea fluxes of O2 and CO2 because it captures the major features

of the upper ocean circulation and its variability. However, caution is required when inter-

preting air-sea gas flux results, and the underrepresentation of physical variability indicates

that the gas flux variability results are likely to be lower bounds.

3.2 Offline Biogeochemical Model

The offline biogeochemical model that is forced by the MITgcm is an expanded and updated

version of the offline biogeochemical model used in the North Atlantic to estimate O2 fluxes.

Carbon cycle biogeochemistry is added for the purpose of estimating CO2 flux variability.

The biological export parameterization is modified in order to account for the heterogeneity

of global biogenic export efficiency. Freshwater forcing and interannually varying wind

speeds for gas exchange estimation are also included.
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3.2.1 Governing equations

The governing equations for phosphorus (P, O2, and Dissolved Inorganic Carbon (DIC)) in

the offline biogeochemical model are:

∂P

∂t
= −∇ · (uP ) + ∇ · (K∇P ) + Sb + FWP (3.1)

∂O2

∂t
= −∇ · (uO2) + ∇ · (K∇O2) + RO2:P ∗ Sb + FWO2 + EO2 (3.2)

∂DIC

∂t
= −∇ · (uDIC) + ∇ · (K∇DIC) + RC:P ∗ Sb + FWDIC + EDIC (3.3)

where DIC is the summation of the concentrations of aqueous CO2, the bicarbonate ion,

and the carbonate ion:

DIC = CO∗
2 + HCO−

3 + CO=
3 (3.4)

CO∗
2 = CO2(aq) + H2CO3 (3.5)

In Equations 3.1, 3.2, and 3.3, u is the transformed Eulerian mean velocity, ∇ · (K∇X)

is a tensorial representation of mixing along isentropic surfaces as in the MITgcm [Gent

and McWilliams, 1990] and the boundary layer mixing scheme of Large et al. [1994]. The

physical model that provides these components is described in Section 3.1. A third-order

upwind, flux corrected advection scheme is used in the offline model for tracers in the model

[Dutkiewicz et al., 2001].

As described in detail below, Sb represents both the loss of P due to the biological

formation of sinking particles and a source of P from remineralization. Biological changes

to O2 and DIC occur proportionally to changes to P based on the Redfield ratios: RO2:P =

-170:1, RC:P = 117:1 [Anderson and Sarmiento, 1994]. FW is the change in surface tracer

concentrations due to of precipitation and evaporation of freshwater, and E is the air-sea

gas exchange of O2 and CO2. The neglect of the impact of the CaCO3 cycle on DIC is likely

to reduce surface DIC gradients and damp variability in DIC concentrations (Ray Najjar,

personal communication).
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3.2.2 Biological transformations

Chapter 2 and the work of LeQuéré et al. [2000, 2001] indicate that upper ocean mixing and

advective processes dominate CO2 and O2 air-sea flux interannual variability. However, it

has been shown that export production is important to the annual cycle of air-sea fluxes of

O2 [Jenkins and Goldman, 1985; Keeling et al., 1993; Najjar and Keeling, 1997, 2000], and

that the annual cycle of pCO2 in the North Atlantic (north of 40◦N) is dominated by DIC

cycling associated with export production [Takahashi et al., 1993]. Therefore, a parame-

terization of export that captures the broad features of biogeochemical processes affecting

export in the global ocean is needed. Although in the North Atlantic I find that a range

of export timescales in a simple production and remineralization scheme only minimally

affects O2 air-sea flux variability, the global ocean is far more heterogeneous in its export

characteristics. The model must account for the wide variety of biogeochemical conditions

in the global ocean, from the High Nutrient / Low Chlorophyll (HNLC) conditions in the

Southern Ocean, eastern equatorial Pacific and north-east Pacific to the rapid export of the

North Atlantic.

One way to address in heterogeneity of ocean biogeochemistry would be to use a multi-

compartment ecosystem model in which heterotrophs, autotrophs, and nutrient compart-

ments are resolved. This would require a significant effort to get a plausible result due to the

sensitivity of these models to parameterization and parameter value choices. Although these

models have been made to work on the local or basin scale, multi-compartment models are

only very recently becoming successful on the global scale [Moore et al., 2002; Gregg, 2002].

As the goal of this thesis is to study interannual variability in gas fluxes, the implementation

of a multi-compartment ecosystem is not a feasible choice.

Another possibility would be to restore the surface nutrient field to observations and

calculate export production based on the magnitude of the restoration [Najjar et al., 1992].

However, existing observed surface nutrient distributions are multi-year composites and do

not capture interannual variability. Forcing the model toward the long-term average should

undesirably damp the variability imparted to the model by the varying physical fields.

For this global biogeochemical model, a prognostic export parameterization based on

light and nutrient limitation, the most fundamental controls on export is used. All other

controls are lumped into a tunable export factor, α. For each layer z in the model’s euphotic
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zone (0-140m), export is:

B(z) = −α(x, y) ·
(

I(z)
I(z) + Io

)
·
(

P (z)
P (z) + Po

)
h(z) ≤ 140m (3.6)

Here, the factor α incorporates all processes either not represented or incompletely repre-

sented in the terms for nutrient and light limitation. The flux of photosynthetically active

radiation (PAR) at the surface of the ocean (I(y,0,t)) is determined using the astronom-

ical formula of Paltridge and Platt [1976], a conversion factor of 0.42 for total radiation

to PAR [Morel, 1978], and a latitudinally varying albedo according to North et al. [1981].

The profile of light in the water column is assumed to follow I(z) = I(0) e−kwh(z), where

kw, the extinction coefficient, is an empirical function of latitude, based on Secchi depth

observations [Lewis et al., 1988; Simonot and LeTreut, 1986]. The half-saturation constant

for light (Io) is 30 W m−2 in PAR, and for phosphate (Po) is 0.01 µmol kg−1 [Dutkiewicz

et al., 2001].

This form for the export parameterization is motivated by analytically reducing a more

realistic, although still highly simplified, Nutrient - Phytoplankton - Zooplankton (NPZ)

model to this form in Appendix A. We show that the factor α can be expressed as a function

of the input parameters required for the NPZ model. In other words, α may be seen as

an expression of the multitude of unknowns in an multi-compartment model. Using this

derivation, it is estimated that α has a plausible range of 4x10−9 to 1x10−5 µmol P kg−1

s−1 over the top 140 meters of the ocean.

The sinking particle flux at all depths is parameterized by using an exponential profile

with a scale height (z∗) of 400m [Dutkiewicz et al., 2001]. The instantaneous remineralization

source of P into each layer z is calculated as the divergence of the export from each layer

above that is within the euphotic zone:

F (z) =
h(z−1)∑
ho=10m

B(ho)
(
e(ho−h(z))/z∗ − e(ho−h(z+1))/z∗

)
h(z) ≤ 140m (3.7)

F (z) =
140m∑

ho=10m

B(ho)
(
e(ho−h(z))/z∗ − e(ho−h(z+1))/z∗

)
h(z) > 140m (3.8)

where h(z) is the total depth of the layer z.
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The total biological change (Sb) of each layer within the euphotic zone is the sum of

export removal of nutrients and remineralization:

Sb(z) = B(z) + F (z) h(z) ≤ 140m (3.9)

Below the euphotic zone, only remineralization is active, such that:

Sb(z) = F (z) h(z) > 140m (3.10)

Using Redfield ratios, this P source is translated into an instantaneous sink of O2 and

source of DIC (Figure 3.2 and 3.3). Anoxic respiration of exported particles, wherein the

source of P and DIC are active without an O2 sink, occurs in the model when the O2

concentration falls below 4 µmol/kg [Orr et al., 2000].

Similar particle export parameterizations have been used with constant parameter values

in the North Atlantic [McKinley et al., 2000; Williams and Follows, 1998], and for a global

study of anoxia in the Permian deep ocean [Zhang et al., 2001]. When combined with various

representations of light limitation, the resulting fallout timescales are a week in the summer

to many years in the high latitude winter. These models have been able to capture the major

features and annual cycles of nutrients in the North Atlantic. Maier-Reimer [1993] uses such

a model with a constant export factor to calculate production in the HAMMOC3 global

ocean model and finds reasonable agreement with surface nutrient observations in most of

the ocean, but significantly overestimates new production and underestimates CO2 partial

pressure in the eastern equatorial Pacific. In order to avoid these effects, it is necessary that

this global model have a spatially inhomogeneous α. Building on the simplified prognostic

form representing export production in Equation 3.6, a novel approach to imparting spatial

heterogeneity to the parameterization will be introduced in Section 3.3.

3.2.3 Freshwater forcing

Freshwater forcing on tracer concentrations was not included in the offline model used in

the North Atlantic study presented in Chapter 2. This element is added to the global offline

model. To compute the impact of freshwater fluxes on the tracers in the offline model, a

combination of forcing fields used for the physical model and the diagnosed relaxation of

the physical model to climatological SSS is used. The forcing fields used for the physical
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model are the NCEP 12 hourly freshwater fluxes, minus the NCEP long-term mean, plus

the COADS long-term mean. This field is then adjusted to conserve mass over the 19 year

run (T. Lee, personal communication). However, the physical model still drifts in surface

salinity. Thus, a term for relaxation to climatological SSS [Levitus and Boyer, 1994] was

included in the online physical model run. The 10 day mean of the relaxation term is

diagnosed from the physical model and is added to the 10 day average of the forcing field

to arrive at the total freshwater forcing to the physical model (EP in m/s) over each 10 day

interval.

The impact of total freshwater forcing on the tracers is to either dilute or concentrate

them in the surface layer. This impact is calculated following the specifications of the Ocean

Carbon-Cycle Model Intercomparison Project (OCMIP) [Orr et al., 2000].

FWX = EP · X∗ · 1
dz1

(3.11)

Freshwater forcing in the surface layer of the global model is applied for each tracer (X =

P, O2, or DIC) as in Equation 3.11. X∗ is the global mean tracer concentration, calculated

each 10 days, and dz1 is the depth of the surface layer of the model (dz1 = 10m).

3.2.4 Gas exchange

For the global model, interannual variability in the gas exchange forced by wind speed

variability is included. This variability was not present in the North Atlantic study where

a monthly climatology of wind speed was used.

The method of Wanninkhof [1992] is used to parameterize gas exchange of O2 and CO2

as a function of a gas-transfer velocity and surface layer excursion from the saturation

concentration for O2 or as an excursion from equilibrium with the atmospheric partial

pressure of CO2 (pCO2
atm). Fluxes are positive to the ocean. The solubility of CO2, L, is

is also required for the CO2 gas exchange calculation [Weiss, 1974].

EO2 =
1

dz1

(
k ∗ (Osat

2 − O2)
)

(3.12)

ECO2 =
1

dz1

(
k ∗L ∗ (pCOatm

2 − pCO2)
)

(3.13)
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In Equations 3.12 and 3.13, k is the gas transfer coefficient, calculated as a function of

wind speed (u), a constant exchange coefficient calibrated with 14C invasion data (a), and

the Schmidt number (Sc), in turn a function of temperature and salinity for each gas. After

Wanninkhof [1992],

k = a · u2 · ( Sc

660
)−

1
2 (3.14)

O2 saturation (Osat
2 ) is determined following Weiss [1970] as a function of sea surface temper-

ature and salinity. The partial pressure of carbon (pCO2) in the surface ocean is calculated

a function of DIC concentration, alkalinity, temperature, salinity, and borate concentration

as in Follows et al. [1996]. Alkalinity is assumed to be a linear function of salinity based on

GEOSECS data after Campbell [1983]. The carbonate equilibrium coefficients of Merbach

are used, following Dickson and Millero [1987]. Water dissociation is calculated according

to Hoffert et al. [1979]. Borate equilibrium is based on GEOSECS data following Taka-

hashi et al. [1981], with a globally constant dissolved inorganic boron concentration of 409

µmol/kg.

The pCO2 of seawater is a function of CO2
∗ (CO2(aq) + H2CO3) which, due to carbonate

chemistry, is only approximately 0.5% the total DIC concentration. Thus, when air-sea gas

fluxes occur to address a disequilibrium of atmospheric and oceanic pCO2, 20 times more

carbon than that which ends up in the CO2
∗ form must be exchanged. This means that the

equilibration time for CO2 is approximately 20 times longer than for O2, a gas that does

not react with seawater.

Wind speeds

As previously described, NCEP 12 hour reanalysis wind stress variability for 1980-1998

added to COADS mean wind stress were used to force the physical model. Thus, for the

offline biogeochemical model to have consistency with the physical fields, NCEP vector wind

components are adjusted by removing the NCEP mean and adding the COADS mean at

12 hour resolution. The scalar wind speed at 12 hour resolution is then computed from the

two components.

Ideally, these high temporal resolution wind magnitudes could be used directly to cal-

culate gas exchange. However, with a 10 day resolution in all other fields, it would be
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inappropriate to impose this rapid variability on the model when all other physics, par-

ticularly convective mixing, change at lower temporal resolution. At the same time, it is

desirable to capture the high gas exchange imparted by transient high wind events.

As illustrated by Boutin and Etcheto [1995] and implemented in OCMIP, this dilemma

can be resolved by adding the second moment about the 10 day mean of the 12 hour wind

magnitude to the square of the 10 day mean wind. The 10 day average of the solution to

Equation 3.14 using the 12 hour wind magnitude in Equation 3.14 is:

k = a · (u12 + u′
12)

2 · ( Sc

660
)−

1
2 (3.15)

Equivalent to:

k = a · (u12
2 + 2u12u

′
12 + (u′

12)
2) · ( Sc

660
)−

1
2 (3.16)

Averaging over 10 days results in the cancellation of 2u12u
′
12 in Equation 3.16. Thus,

Equation 3.14 can be revised to:

k
10d

= a · (u12
2 + (u′

12)2
10d

) · ( Sc

660
)−

1
2 (3.17)

The term (u′
12)2

10d
in Equation 3.17 is the second moment about the mean of the 12 hourly

wind speed data set. This is calculated and added to the mean of the square of the 12 hourly

wind, resulting in a 10 day average wind magnitude product that includes the impact of high

wind events on gas exchange that is associated with wind variability at 12 hour resolution.

Calibration of gas exchange with 14C invasion data

An appropriate exchange coefficient, a, is needed to calibrate the wind fields to 14C invasion

data. Following Wanninkhof [1992], the probability distribution, P(u), of the 12 hour wind

magnitude fields is estimated by forming a histogram of all wind magnitude data points.

The global mean Schmidt number is estimated to be 660, appropriate for CO2 and global

average SST of 20◦C. The appropriate value for a is then:

a =
kav∑

[P (u) · u2]
(3.18)
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where kav is the natural and bomb 14C invasion rates, 21.2 cm/hr and 21.9 cm/hr, re-

spectively. An average a from the two calculations is taken to be our constant, a = 0.39

(cm/hr)/(m2/s2). This coefficient is the same as that arrived at by Wanninkhof [1992] for

long-term averaged winds, and is greater than his a = 0.31 for instantaneously observed

winds. This comparison indicates that, as expected, the 12 hourly winds from NCEP plus

the COADS mean are less intense than in-situ observed winds, and therefore necessitate a

larger exchange coefficient in order to agree with the 14C invasion data.

3.2.5 Sea ice

Gas exchange and export production are reduced by the percent of the ocean surface covered

with sea ice in the monthly climatology of the Ocean Carbon-Cycle Model Intercomparison

Project [Orr et al., 2000].

3.2.6 Boundary conditions

Due to computational constraints, the offline biogeochemical model is run only in the upper

ocean (0 - 1265m) and relaxation to the climatological P, O2 and DIC fields over the bottom

three layers (965-1265m) is imposed. In the bottom-most layer, relaxation to climatological

tracers is instantaneous to prevent unrealistic fluxes across the bottom boundary; and in

the second-to-bottom and third-to-bottom layers, relaxation occurs with timescales of 16

days and 128 days, respectively.

A annual climatology of the 19 years (1980-1998) of model physical fields is used to force

the model during spinup and for the work on adjusting the export parameterization which

is explained in the following section.

The recently published DIC climatology of Goyet et al. [2000] is used to both to ini-

tialize model DIC and for restoration at the base of the model domain. For P and O2 the

climatological values from Conkright et al. [1998] are used. A constant atmospheric O2

concentration of 20.946 pph [Weiss, 1970], and a CO2 concentration of 354 ppm, a mean

value for 1990 from the Mauna Loa measurements [Keeling and Whorf, 2000], are used

as the atmospheric boundary conditions. We choose 1990 as a reference year as this is

approximately the temporal midpoint of our variable physical fields.
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3.3 Export Parameterization

Here, I describe in detail a novel approach to impart spatial heterogeneity to the export

parameterization introduced in Section 3.2.2. In Section 3.3.1, it is shown that when such

a model is run forward with spatially constant parameter values, significant deviation from

the climatological nutrient field occurs. The pattern of the deviation has distinct spatial

coherence and can be related to known or hypothesized controls on export production in the

various ocean regions, e.g. iron limitation in the HNLC regions. In Section 3.3.2, a method

to include spatial variability in the tunable export parameter is derived, and in Section 3.3.4,

it is illustrated that there is improvement in the modeled upper ocean nutrient distribution

and global mean air-sea O2 fluxes when this spatial variability is included.

3.3.1 A constant export parameter

A spatially homogeneous export constant, αo = 2.3x10−8 µmol kg−1 s−1 (derived from a

9 month estimated global average fallout timescale and a global average surface PO4 from

World Ocean Atlas 1998 (WOA98) [Conkright et al., 1998] of 0.5 µmol kg−1) is chosen;

the model is initialized with the WOA98 winter climatology on January 1 and integrated

forward. The model becomes adequately equilibrated in terms of surface phosphorus after

a 15 year model run. At this point, the model global volume weighted average change of

the annual average nutrient field is under 1% per year, due to adjustment toward initial and

boundary conditions. The volume weighted average change for the surface is ±1.1% per

year. The spatial pattern of the change is distributed relatively evenly across the globe, with

local maxima / minima not exceeding ±5% from year-to-year, except for a few small regions

of large change (up ±20%) around the north and east margins of the Pacific. Although it

would be desirable to further reduce the magnitudes of these drifts by integrating the model

for additional years, the computational expense of the model makes this impractical.

The resulting nutrient climatology for the final year of this run is compared to the annual

climatology in Figure 3-10.

Large-scale patterns of deviation in the mean phosphorus field (averaged 0-140m) from

the climatological distribution are found (Figure 3-11a). This comparison is also made

over 14 large-scale ocean regions (defined in Table 3.2) in Figure 3-11b. In both figures,
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Figure 3-10: Euphotic zone (0-140m average) nutrient distribution comparison. Conkright

et al. [1998] climatology of phosphate (top), and model phosphorus after 15 years run with

constant α(bottom).
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it can be seen that the subtropical regions and the Atlantic and Indian equatorial sectors

are phosphorus-depleted, while the subpolar North Atlantic, Subantarctic and Southern

Ocean regions have too much phosphorus. This result is similar to that of Maier-Reimer

[1993] because a spatially constant export parameter that does not account for the global

heterogeneity of export is in use. The model drift from the climatology is due to missing

processes such as iron limitation, community structure, nitrogen fixation or eddy nutrient

supply that are not resolved in our parameterization. In the next sections, some of the

effect of these processes is absorbed into a spatially variable α.

3.3.2 Solution for a spatially inhomogeneous export parameter

The α(x,y) that, given model flow fields, will produce a model annual mean phosphorous

distribution consistent with climatological observations is sought. The result is a spatially

varying α(x,y) into which all the unknowns of the biological system are incorporated. Mar-

shall and Molteni [1993] used a similar method to determine spatially varying potential

vorticity flux forcings for a quasigeostropic model of the atmosphere, and found a signifi-

cant improvement in the streamfunction climatology of their model.

An α∗(x,y) is defined as the spatial distribution of the export parameter that makes

the long-term mean of the global model nutrient field equal to the initial climatology; in

other words, the drift of the model is exactly zero. Following Equation 3.1 and assuming

negligible freshwater impacts, this can be written as:

∂P

∂t

t

= −∇ · (uP )
t −∇ · (K∇P )

t − α∗Γt = 0 (3.19)

where Γ =
(

I
I+Io

)
·
(

P
P+Po

)
.

The field α∗(x,y) is the spatial distribution of export factor values that we seek. To

begin with, we have only αo, a guess at α∗(x,y). The error in our guess is ∆α(x,y).

αo = α∗(x, y) + ∆α(x, y) (3.20)

By running the model for multiple iterations, successive values of ∆α(x,y) are found

that allow α to be updated and to approach α∗(x,y) .

Specifically, the model is integrated forward for 15 years with αo and it is found:
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Figure 3-11: Difference of the observed nutrient distribution [Conkright et al., 1998] from

the model, averaged over the euphotic zone (0-140m) (top); same result, spatially averaged

over the 14 ocean regions defined in Table 3.2

(bottom).
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∂P

∂t

t

= −∇ · (uP )
t −∇ · (K∇P )

t − αoΓ
t �= 0 (3.21)

Substitution of equation 3.20 into 3.21 gives:

∂P

∂t

t

= −∇ · (uP )
t −∇ · (K∇P )

t − α∗Γt − ∆α(Γt) (3.22)

The first three terms on the right-hand side of 3.22 are zero by definition (Equation 3.19),

leaving:

∂P

∂t

t

= −∆α(Γt) (3.23)

which allows solution for the error in the initial guess.

∆α(x, y) = − 1

Γt

∂P

∂t

t

(3.24)

Due to the model’s non-linearity, iterative solutions are used to approach α∗(x,y).

The optimal spatial structure of α for the 14 regions defined in Table 3.2 is that which

is solved for here. These regions are used so that an α∗(x,y) consistent with ocean biogeo-

chemical regimes defined at the broadest possible scale can be found. Our evaluation of the

physical model (Section 3.1) indicates that while the model captures the broad features of

the ocean circulation, mixed layers and transports locally deviate from observations. The

climatological nutrient field is also not accurate on the small scale due to data sparsity

and smoothing, but it is reasonable to expect that it captures the major features of the

large scale distribution of phosphate. As this method requires a consistency of the model

circulation and climatological nutrient fields, α is adjusted only on the large scale where

that consistency is possible.

This approach attributes all drift in the model to missing biogeochemical processes,

while deficiencies in the physical model may contribute to the drift. With this approach,

we do not have a direct way to distinguish between missing biogeochemistry and missing

physics.
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Table 3.2: Ocean regions for export parameter solution

Region Abbreviation Boundaries

Southern Ocean SO 80◦S to 55◦S

Subantarctic SAnt 55◦S to 35◦S

South Indian SInd 35◦S to 15◦S, 22◦E to 140◦E

North Indian NInd 15◦S to 26◦N, 38◦E to 108◦E

Subtropical South Pacific STSP 35◦S to 15◦S, 145◦E to 295◦E

Subtropical South Atlantic STSA 35◦S to 15◦S, 295◦E to 22◦E

Eastern Equatorial Pacific EEP 15◦S to 15◦N, 200◦E to 283◦E

Western Equatorial Pacific WEP 15◦S to 15◦N, 109◦E to 200◦E

Equatorial Atlantic EqAt 15◦S to 15◦N, 284◦E to 25◦E

Subtropical North Pacific STNP 15◦N to 44◦N, 105◦E to 267◦E

Subtropical North Atlantic STNA 15◦N to 44◦N, 267◦E to 354◦E

Subpolar North Pacific SPNP 45◦N to 79◦N, 115◦E to 240◦E

Subpolar North Atlantic SPNA 45◦N to 79◦N, 266◦E to 20◦E

Mediterranean Med 30◦N to 44◦N, 355◦E to 38◦E
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3.3.3 Finding α∗(x,y)

The 15 year run where αo is globally applied is used to calculate ∂P
∂t

t
and Γt (with t=15

years) and ∆α(x, y) is found via Equation 3.24 for each of the 14 regions, and the new

field α(x, y) field is α1. Two further iterations are similarly done, an extrapolation to speed

convergence of the α solution is undertaken, and then two final iterations are performed.

Extrapolation to Speed Convergence

Three 15-year iterations require a significant computational effort to complete. Although

substantial progress has been made towards improving the final year nutrient concentration

with respect to the climatology by adjusting α in this way, the α∗(x,y) solution has not

yet converged. In order to speed convergence, the terms of Equation 3.24 from iterations 1

through 3 are used to extrapolate α(x, y) toward α∗(x,y) in each region. In most regions, a

quadratic fit is used, but when a quadratic solution results only in imaginary solutions (in

SPNP, SPNA, Med), a linear fit is used.

The extrapolated α result for the Subtropical North Atlantic is rejected because lateral

transport of nutrient from the equatorial Atlantic in successive iterations causes nutrient

concentrations to increase in the Subtropical North Atlantic even though α is increasing here

(see Figure 3-14 and Table 3.3). As α is reduced in the equatorial Atlantic, phosphorus

is retained at the surface and some is transported along the Gulf Stream pathway into

the Subtropical North Atlantic. Due to this forcing, the increasing α (increasing export)

is not physically linked to increased nutrient retention in the Subtropical North Atlantic,

motivating the rejection of the extrapolation that simply correlates these processes. The α

of the third iteration is retained for the fourth iteration in the Subtropical North Atlantic.

Results from the extrapolation (giving α3) are used in a fourth iteration and then a fifth

iteration (using α4) is done to ensure convergence of the model. This final iteration allows

an additional solution (for αf ) for input to the model with which interannual variability of

CO2 and O2 air-sea fluxes is estimated. The α results in most regions do not change after the

extrapolation (see Table 3.3), indicating this approach successfully achieves convergence in

most regions. Only in the South Indian does α change significantly after the extrapolation.

In Figure 3-12, the drift of Southern Ocean mean nutrient away from the annual cli-

matology through each iteration is presented to illustrate the impact of the changing α on
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Figure 3-12: Adjustment trajectories for the Southern Ocean: timeseries of regional mean

phosphorus concentration minus regional mean climatology, averaged 0-140m. Results for

iteration 4 and 5 are indistinguishable.

regional nutrient concentration. With the spatially constant αo, the model quickly diverges

from the initialization climatology. After the first adjustment to α, the trajectory is qual-

itatively the same as the original, but the final value of global mean total P is closer to

the WOA98 climatology. The third iteration reduces the difference from the climatology

at year 15 yet again. A shift occurs with the extrapolation before iteration four, and there

is no distinguishable change between the fourth and fifth iterations as there has been no

change to α. The difference of the mean nutrient concentration from the climatology at the

end of iterations 4 and 5 is quite close to zero, as theoretically predicted (see also Figure

3-14).

Note on computational expense

Important to note is that an iterative method of this sort is computationally expensive.

With this global model at 1◦x 0.3-1◦ resolution with 32 vertical levels, a single iteration on

a dedicated 8 processor machine takes approximately 2 weeks to complete. Thus, improve-

ments in the model - data nutrient climatology agreement must be viewed in light of the

expense required to achieve them.
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Figure 3-13: Final solution to α (αf in µmol/kg/s, log scale). White lines delineate region

boundaries.

3.3.4 Results

The αf is plotted in Figure 3-13 and all α values are summarized in Table 3.3. Export

timescales are calculated with Equation 3.25 using area average WOA98 annual mean phos-

phate concentrations (Pwoa) [Conkright et al., 1998] and are presented in Table 3.4.

τ(x, y) =
Pwoa(x, y)

α(x, y)
(3.25)

The α values found after the final adjustment range from an order of magnitude smaller

to more than an order of magnitude larger than αo (2.3x10−8 µmol kg−1 s−1) and are within

the range estimated (excepting the South Indian region) from typical input parameters to a

multi-compartment ecosystem model (see Appendix A). Timescales are reduced by almost

two orders of magnitude in the subpolar North Atlantic, increased by an order of magnitude

in the South Indian region, and changed by varying degrees in other regions.

Changes to the export timescales are broadly consistent with known controls on export

in the global ocean. The shortest timescales are found in the northern subtropical gyres

and in the subpolar North Atlantic. This is consistent with the results of Takahashi et al.

[1993] who find that it is only in the North Atlantic where the winter maximum nutrient

concentration is approximately equivalent to the total photosynthetic drawdown in the
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Table 3.3: Iterative solutions for α (x108 µmol/kg/s)

Region αo α1 α2 α3 α4 αf

SO 2.3 2.7 3.0 4.6 4.6 4.6

SAnt 2.3 2.5 2.7 4.3 4.3 4.3

SInd 2.3 2.0 1.8 0.13 0.20 0.25

NInd 2.3 2.1 1.9 1.2 1.2 1.2

STSP 2.3 2.2 2.1 0.76 0.76 0.76

STSA 2.3 2.1 2.0 1.4 1.4 1.4

WEP 2.3 2.2 2.1 1.8 1.8 1.8

EEP 2.3 2.3 2.3 2.3 2.3 2.3

EqAt 2.3 2.1 1.9 1.1 1.1 1.1

STNP 2.3 2.3 2.3 2.2 2.2 2.2

STNA 2.3 2.4 2.4 2.4 2.5 2.6

SPNP 2.3 2.3 2.3 2.5 2.5 2.4

SPNA 2.3 3.0 3.7 76.5 76.9 77.2

Med 2.3 2.7 3.1 9.5 9.9 10.3
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Table 3.4: Export timescale (τ in yrs) and mean WOA98 phosphate

Region τo τ1 τ2 τ3 τ4 τf Pwoa(µmol/kg)

SO 2.6 2.2 2.0 1.3 1.3 1.3 1.9

SAnt 1.4 1.3 1.2 0.73 0.73 0.73 0.98

SInd 0.35 0.40 0.46 6.3 4.1 3.2 0.25

NInd 1.0 1.0 1.1 1.9 1.8 1.8 0.68

STSP 0.41 0.44 0.46 1.3 1.2 1.2 0.29

STSA 0.52 0.56 0.60 0.85 0.86 0.86 0.37

WEP 0.52 0.53 0.55 0.66 0.65 0.65 0.37

EEP 1.4 1.4 1.4 1.4 1.4 1.4 0.97

EqAt 0.79 0.88 1.0 1.6 1.6 1.6 0.57

STNP 0.52 0.52 0.52 0.54 0.54 0.54 0.37

STNA 0.26 0.26 0.25 0.25 0.24 0.23 0.19

SPNP 2.2 2.2 2.2 2.0 2.1 2.1 1.6

SPNA 0.94 0.71 0.58 0.03 0.03 0.03 0.67

Med 0.18 0.16 0.14 0.04 0.04 0.04 0.13
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Figure 3-14: Difference of year 15 phosphorus and climatological phosphate for each itera-

tion.

spring and summer. The complete use of nutrients indicates the North Atlantic ecosystem

is unique in its limitation by only macro nutrients and light availability. The solution for

very short export timescales (large αf ) in the North Atlantic means that export can be

very rapid when nutrients and light are in abundant supply (see Equation 3.6). In contrast,

the long export timescales in the Southern Ocean, the Eastern Equatorial Pacific, and the

Subpolar North Pacific are consistent with known HNLC regions. It is likely that the long

export timescale, which acts to restrict export in HNLC regions, is implicitly accounting

for iron limitation in the real ocean [Martin, 1990; Moore et al., 2002]. In summary, the

substantial heterogeneity of the final αf solution allows for the basic patterns of observed

export variability to be captured by the model.

Figure 3-14 illustrates the difference of the year 15 annual mean nutrient concentration

from the climatology in the 14 ocean regions for each of the 5 iterations. In all regions

except the subtropical North Atlantic, there is substantial improvement in agreement with

the nutrient climatology by the end of the fifth iteration, as is expected with more realistic

export timescales. The extrapolation after iteration 3 clearly speeds this improvement.
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Figure 3-15: Annual mean nutrient distribution, averaged over the euphotic zone (0-140m)

in year 15 of the fifth iteration.

Also notable is the overshoot of the α extrapolation in the South Indian that is partially

compensated for with the solution for α4 that is input to iteration 5.

The nutrient climatology at the end of the fifth iteration is shown in Figure 3-15. In

comparison to Figure 3-10, the improvement in the model annual mean nutrient field is most

evident in the Southern Ocean, the Indian Ocean, the South Atlantic, and the subpolar

North Atlantic.

Figure 3-16 compares the annual cycle of the fifteenth year of the fifth run to the

annual cycle fifteenth year of the run with αo, and also to the WOA98 seasonal phosphate

climatology in a selection of six open ocean regions. There is an improved agreement

with the mean WOA98 climatology with the spatially variable α4 (iteration 5) over the

spatially constant αo (iteration 1). Adjustments to α do not generally affect the shape

of the seasonal nutrient cycle, affecting only the mean, as expected from the analytical

solution in Section 3.3.2. However, in the Subpolar North Atlantic, the seasonal cycle is

significantly improved by the adjustment to α because the fallout timescale changes from

11 months (0.94 year) with αo to 1.6 weeks (0.03 year) with α4(x, y). The rapid timescale

with α4(x, y) allows export to respond quickly to changes in surface nutrient concentration

and light availability in the spring, allowing a rapid seasonal drawdown of nutrients and the

pronounced improvement seasonal cycle. In Section 4.3.1, this improvement in the seasonal
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Figure 3-16: Comparison of seasonal cycles in α adjustment regions. WOA98 seasonal

(solid), iteration 1, year 15 (dash-dot), iteration 5, year 15 (dash). Both model and data

are averaged over the euphotic zone (0-140m).
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Figure 3-17: Annual mean O2 fluxes at end of iteration 1 and iteration 5 compared to data

studies of Ganachaud [1999] and Gruber et al. [2001].

cycle of nutrients is found to be significant to estimates of the interannual variability of O2

air-sea fluxes.

Impact of export adjustment on air-sea O2 fluxes

Here, the effect of adjustments to α on the mean O2 fluxes is considered. In the central

panel of Figure 3-17, it can be seen that the global net air-sea O2 flux is drawn toward

consistency with the data studies of Ganachaud [1999] and Gruber et al. [2001] due to the

adjustment of α between iteration 1 and iteration 5.

On a regional basis, agreement with the data studies is most improved in latitudes north

of 13◦N. This is due in part to the large increase in spring and summer nutrient export in

the subpolar North Atlantic that increases net O2 release to the atmosphere. Agreement

with the data studies worsens slightly in the tropics the southern latitudes from iteration 1

to iteration 5. Low O2 influx into the high southern latitudes may be due to sluggish mixing

in the Southern Ocean. Improved agreement with nutrient climatology by adjustment to α
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cannot correct for all deficiencies in the physical model, and thus it is not unexpected that

the improved agreement with the nutrient climatology (see Figure 3-14) does not necessarily

lead to an improved air-sea O2 flux estimate in the high southern latitudes as it does in the

high northern latitudes.

3.3.5 Conclusions

Model drift from the climatological nutrient field is reduced by spatially adjusting the

nutrient export parameter over large-scale ocean regions. Resulting export timescales are

understandable in terms of known or hypothesized controls on ocean export production.

Export extremes are captured - from the slow export in HNLC regions that is consistent

with iron limitation; to the rapid export in the North Atlantic associated with the dominance

of nutrient and light limitation.

Global net air-sea O2 fluxes are improved in comparison to data studies by the spatial

adjustment of the nutrient export parameter. Regionally, significant improvement in this

comparison is found in the mid and high latitudes of the Northern Hemisphere.

Suggested improvements

While the solution for a spatially inhomogeneous export parameter is successful in improving

model agreement with the nutrient climatology, there are improvements to the method that

could be made. First, ocean regions could be redefined based on broad biogeochemical and

physical regimes instead of latitude circles. Winter mixed layers depths or mean surface

nutrient concentration could be considered as parameters upon which regional definitions

could be made. Second, the transitions between α regions could be smoothed. The lack of

smoothing in this implementation of the method creates unnaturally sharp transitions in

nutrient concentrations and air-sea gas fluxes between some regions.

3.4 Timestep and spin up of the offline model

Once the global α(x,y) is determined, the model is re-initialized with all three tracers: DIC

from Goyet et al. [2000] and P and O2 from Conkright et al. [1998]. It is run forward with

an annual climatology of the 19-year variable physical fields for model spin-up at a four
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hour timestep for 20 years. Then, model year 1980 is run once for initial adjustment in year

21, and then 1980 is repeated for the output run which then continues from year 22 to year

40. The 19-year run with interannually varying physical fields uses a two hour timestep.

Model results are presented in the following chapter.
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Chapter 4

Global Air-Sea Fluxes of Carbon

Dioxide and Oxygen

The model developed in Chapter 3 is integrated forward for the years 1980-1998. The mean

and variability of tracer concentrations and air-sea fluxes are presented in this Chapter.

First, model mean tracer concentrations are compared to climatological and timeseries

data. Next, the 19 year mean CO2 and O2 fluxes and flux seasonal cycles are presented and

compared to data estimates where available. Then, model estimated interannual variability

in the air-sea fluxes of CO2 and O2 and the driving mechanisms of this variability are

discussed.

4.1 Tracer Concentrations Compared to Data

In Figure 4-1, mean tracer concentrations are compared to climatological estimates. The

model captures the broad pattern of the observed phosphate distribution. Model nutrients

are too high off the west coast of South America, suggesting of overly strong upwelling in

this region. The model underestimates P concentration in the subpolar North Atlantic and

in some regions of the Southern Ocean. Differences between the model surface P shown here

and that in Figure 3-15 are due to the fact that the model has been run on from the 15 year

period for which α was derived. Although the model approached equilibrium after these 15

years, mean surface nutrients continue to change as the model is spun up for an additional

6 years (21 years total), and then run for another 19 years with the varying physical forcing.
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Figure 4-1: Comparison of climatological tracer concentrations (left) to model 19-year mean

results (right). Climatological estimates are from Conkright et al. [1998] for phosphate and

O2, and from Goyet et al. [2000] for DIC. DIC results are compared at 500m as this is the

first layer of the climatology presented by the authors. It is only below the winter mixed

layer where the DIC climatology is considered reliable according to Goyet et al. [2000].
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Although model agreement with the climatology is not as good as that shown in Figure

3-15, the comparison shown in Figure 4-1 is still improved over the comparison in Figure

3-10 from before α was spatially adjusted.

The surface O2 concentration compares well to the observed climatology. Rapid air-sea

exchange of O2 means that there is a high correlation of SST with surface O2 concentration.

Therefore, the model’s faithful representation of observed SST, due in part to restoration,

aids this comparison. The region of most significant model difference from the climatology

is in the high southern latitudes at the coast of Antarctica. This is likely due to the fact

that model mean surface concentration includes periods in which sea ice blocks air-sea

exchange and maintains high surface O2 concentrations. Climatological data is also likely

to be summer biased in this region and to not include much, if any, below-ice data.

Model DIC at 500m compares well to the climatology over most of the ocean. In the

eastern equatorial Pacific, model DIC is about 50 µmol/kg too high from about 200◦E to

the coast. High nutrient concentrations against the coast of South America, likely due

to overestimation of the strength of coastal upwelling, drive excess export of particulate

carbon to depth. Aumont et al. [1999] indicate that the prediction of nutrient and carbon

concentrations in the equatorial Pacific is quite sensitive to the model circulation. The

model’s constant remineralization length scale, and the lack of an explicit dissolved organic

carbon (DOC) pool may also contribute to this model / data discrepancy [Buesseler, 1998;

Aumont et al., 1999]. Consistent with low surface nutrient concentrations in the northern

North Atlantic, model DIC at 500m is higher than the observations by approximately 50

µmol/kg .

In Figure 4-2, model surface phosphorus is compared to observed phosphate at four ocean

timeseries stations. At OWS C, the mean nutrient concentration is too low, consistent with

Figure 4-1. The amplitude of the mean cycle of nutrients is somewhat underestimated in the

model because the mean nutrient concentration in summer approaches zero. The variability

at OWS C cannot be directly compared to the data because this data were primarily

collected between 1975-1979. Nevertheless, the amplitude of the interannual variability in

model nutrient concentration is consistent with the observations.

At BATS / Hydrostation S, the model exhibits a larger seasonal cycle than the obser-

vations, and model variability is too large. At HOT, the model underestimates the mean P
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Figure 4-2: Comparison of model surface P (solid line) to observed phosphate at timeseries

stations (crosses): OWS C, BATS (crosses) / Hydrostation S (dash-dot), HOT, and KER-

FIX. The same model areas described in Figure 3-5 are used for these comparisons. The

mean seasonal cycle is shown to the left and the interannual variability around the mean

cycle is shown at right. The mean cycle and variability are plotted on different scales, both

in µmol/kg.
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concentration and has too little variability. At HOTS and BATS, the export parameteriza-

tion used in the model is clearly too simple to capture the intricacies of ecosystem dynamics

at these subtropical locations. Nitrogen fixation [Karl et al., 1997] and eddy nutrient sup-

ply [McGillicuddy et al., 1998; Oschlies and Garçon, 1998] are two of the missing processes

that are likely important to determining nutrient cycles at these locations. As discussed in

Section 3.1.1, spatial offsets in mixing regions associated with the Gulf Stream is also likely

to contribute to high mean nutrient concentrations at BATS.

At KERFIX, the model has too low mean P, but captures the amplitude of the seasonal

cycle. Due to limited data, it is difficult to compare the nutrient variability to the data

at KERFIX. Relatively minor offsets in the location of the Polar Front zone could be

responsible for the mean P difference at KERFIX. At all stations, the model exhibits less

high frequency variability than the data, due likely to the model’s lack of explicitly resolved

eddies or boundary conditions resolving high frequency storm events.

In Figure 4-3, model surface O2 is compared to observed surface O2 at the same four

ocean timeseries stations. At OWS C, O2 is low in the mean, and the amplitude of the

seasonal cycle is somewhat larger than in the data. The variability of surface O2 compares

well in amplitude to the data. Low O2 in the mean here is likely related to the overly deep

mixed layers in this region (see Figures 3-4 and 3-5).

At BATS / Hydrostation S, the model captures the mean and seasonal cycle of O2

extremely well. The model exhibits less variability in surface O2, especially in comparison

to Hydrostation S. The lack of explicitly resolved eddies is at least partially responsible for

this limited high frequency variability. The difference of high frequency variability between

Hydrostation S and BATS may be due to the fact that Hydrostation S is more than twice

as close to the island of Bermuda than is BATS, and physical conditions of the two sites

are likely to be impacted differently by the island’s topography. BATS is should be better

representative of the open ocean conditions for which the model is intended to have greater

skill.

At HOT, model O2 is somewhat low and the amplitude of the mean cycle is overrep-

resented in the model, and variability is well captured in its amplitude and some of its

features. At KERFIX, the mean is well captured in the model, but the amplitude of the

seasonal cycle is sightly too large. Model variability seems to be too small, although there
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Figure 4-3: Same as Figure 4-2 for the comparison of model surface oxygen to observations

at timeseries stations.
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is limited data with which to make this comparison.

Model overestimation of mean DIC in the low latitudes and underrepresentation of

mean DIC in the high Southern latitudes is illustrated in Figure 4-4. Normalization by

salinity changes these comparisons minimally, indicating that a freshwater offset in the

model is not responsible for the mean offsets seen here. The linear relationship of salinity

to alkalinity, which tends to overestimate alkalinity in the warm waters of the subtropics

and underestimate alkalinity in the cold waters of the high latitudes [Millero et al., 1998],

is likely to contribute to these deviations. In the subtropics, high alkalinity would drive the

ocean pCO2 to be too low, and this would cause an accumulation of excess DIC. At high

latitudes, low alkalinity would create high oceanic pCO2 and promote a loss of DIC. At

KERFIX, both low DIC and low nutrient indicate that mean export may be overestimated.

Similarly, high DIC and high nutrient concentrations at BATS are consistent with a low

mean export.

The magnitude of the seasonal cycle in DIC at BATS compares well to the data, although

this may be fortuitous when the overestimation of the annual cycle of P is also considered.

Variability at BATS is underrepresented at the high frequency, but the model does capture

longer timescale variability that appears to occur between the early and late 1990’s. At

HOT, the model overestimates the amplitude of the mean DIC cycle. Longer timescale

variability in the early 1990’s at HOT is captured to some degree in the model, but this

comparison breaks down after 1994. At KERFIX, the shape of the mean cycle is well

represented by the model, and there is too little data to make a reasonable comparison on

the variability.

In summary, model tracer concentrations compare reasonably well to climatological

estimates and timeseries observations. Significant offsets in mean concentrations for P in the

high latitudes and DIC at all latitudes do exist in the model. Low frequency variability tends

to be well captured in the model, but high frequency changes are underrepresented. High

frequencies are damped due to multiple model limitations including the lack of explicitly

resolved eddies, the simplified export parameterization, and the use of boundary conditions

which damp small scale variability. Yet, for the purpose of studying interannual anomalies

of air-sea fluxes of O2 and CO2, the model is a reasonable tool because it does capture many

features of the long-term variability in the observations.
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Figure 4-4: Same as Figure 4-2 for the comparison of model surface DIC to observations

at timeseries stations. No DIC data was collected at Ocean Weather Station C (OWS C)

or Hydrostation S. Model DIC results are presented at OWS C for consistency with the

previous two figures.
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Figure 4-5: Model mean O2 flux in mol/m2/yr . Positive flux is to the atmosphere.

4.2 Mean and Seasonal Air-Sea Fluxes

4.2.1 Mean fluxes

Oxygen

The model mean air-sea O2 flux is presented in Figure 4-5. O2 is outgassed at the cold

tongue in the eastern equatorial Pacific, and taken up into the ocean over the remainder of

the tropics. In the subtropical gyres, O2 is outgassed except in the western boundary current

regions where rapid cooling and deeper mixing occurs. In the subpolar North Atlantic, O2

is outgassed, associated with significant heat loss and deep mixing. In the Southern Ocean,

O2 is outgassed where deep mixed layers occur. The occasional sharp meridional gradients

in the O2 flux are due to the choice of distinct regional values for α(x,y). Values of α(x,y)

may change significantly between areas, thereby altering the mean biogenic export and the

mean O2 flux. While these sudden changes are unrealistic at the local scale, they allow

the model to capture large scale regional variations in biological productivity as shown in

Section 3.3. The elimination of these locally sharp gradients could be achieved by smoothing
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Figure 4-6: Model mean O2 fluxes compared to the zonal mean estimates of Ganachaud

[1999] and Gruber et al. [2001] in Tmol/yr. The error bars Ganachaud [1999] are indicated.

Fluxes are positive to the atmosphere.

the α(x,y) field before applying it to the model.

In the Northern Hemisphere, the model compares well to the mean O2 flux estimates

of Ganachaud [1999] who used World Ocean Circulation Experiment (WOCE) data and

an inverse model to estimate both the mean ocean circulation and O2 fluxes, and from

this inferred mean air-sea O2 fluxes over the period 1985-1996. The comparison of the

mean O2 flux is also close to consistency in the tropics from 30◦S to 24◦N. However, this

comparison is not good in the Southern Ocean where the model estimates a small O2

outgassing and Ganachaud [1999] estimates a large ingassing. This discrepancy in the

Southern Ocean is partly responsible for the global air-sea flux estimate (shown in the

middle panel) being significantly different from the global mean estimate of Ganachaud

[1999] which is indistinguishable from zero.

The study of Gruber et al. [2001] used a tracer inverse method related to that of

Ganachaud [1999] with an ocean general circulation model to estimate the global circu-

lation. Gruber et al. [2001] find significantly larger mean fluxes than this model estimates.

The relatively coarse resolution OGCM used by Gruber et al. [2001] may in part be respon-

sible for the discrepancy between it, the study of Ganachaud [1999], and estimates from

this study. The inverse estimate of Gruber et al. [2001] was constrained to have a global
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net zero mean O2 flux.

This model has a mean efflux of -130 Tmol/yr. The magnitude of this efflux is not

supported by the data estimate of Ganachaud [1999]. However, several coupled ocean-

atmosphere modeling studies forced with increasing greenhouse gas emissions over the in-

dustrial period indicate a net O2 outgassing from the ocean [Plattner et al., 2001; Matear

et al., 2000; Sarmiento et al., 1998]. Modeling studies find that O2 outgassing and O2

concentration decreases are primarily due to changes in ocean stratification. The Southern

Ocean is a region where the change is predicted to to be most significant. Keeling and

Garcia [2002] create an O2 flux / ocean heating relationship and apply it to recent observa-

tional estimates of surface ocean warming to estimate the magnitude of the net O2 flux in

the 1990’s. They find a 40 Tmol/yr outgassing, significantly smaller than estimated by this

model. Plattner et al. [2001] estimate a net efflux of 42 Tmol/yr in the 1990’s. Observa-

tional evidence of decreasing in-situ O2 concentrations exists in support of these estimates

in the North Pacific [Keller et al., 2002; Emerson et al., 2001].

In this model, approximately sixty-five percent (65%) of the mean O2 efflux is due to a

net loss of O2 due to model adjustment, particularly in the Southern Ocean; and thirty-five

(35%) is due to an exaggerated net biological production at depth in the tropics.

The net change of the surface to 1265m integrated concentration of O2 in the model over

the course of the 19 year model run indicates the regions responsible for this net outgassing

of the model. This analysis is performed over the regions defined by Ganachaud [1999]. It

is found that half of the net O2 loss occurs in the Southern Ocean (<30◦S). The remaining

loss is shared equally between the tropics and the two Northern Hemisphere regions.

The net biological production of O2 in the Tropics (30◦S - 24◦N) is due to excessively

large areas of anoxic respiration that act as an effective O2 source. The primary area of high

anoxic respiration is between 300 to 800 m in the eastern equatorial Pacific, and a less intense

region exists at the same depths in the Arabian Sea. Climatological analysis [Conkright

et al., 1998] indicates O2 concentrations of <4µmol/kg, the limit below which oxygen-

independent respiration occurs in the model, in similar regions, but their spatial extent is

many times larger in the model than in the climatology. The creation of anoxia is a sensitive

balance of biogeochemical and physical processes which is clearly imperfectly captured in

the model. The high surface nutrient concentrations and high DIC at 500m off the coast of
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western South America (Figure 4-1) indicates that high nutrient supply is driving excessive

nutrient export and contributing to the excessive anoxic respiration at depth. Further

improving model physics, refining the representation of particulate remineralization, and

explicitly resolving the dissolved organic pool may reduce the extent of these anoxic regions

[Aumont et al., 1999; Buesseler, 1998; Najjar et al., 1992].

In the Southern Ocean, the net outgassing of O2 in the model may be due to excessive

stratification in this region. The typically shallow model mixed layer depths in this region

(Figure 3-4) and somewhat low nutrient concentrations (Figure 4-1 and Figure 4-2) are

consistent with a reduced connection between surface and deep waters in the Southern

Ocean. There is evidence [Orr, 2001] that the Gent-McWilliams eddy parameterization

scheme in such models may lead to excessive stratification in the Southern Ocean, limiting

the connection of deeper waters to the surface, and therefore preventing net O2 uptake in

this model and promoting the net O2 loss over the region. In addition, O2 efflux in the

Southern Ocean may be due to an overestimation of particle export in the model which is

consistent with low surface phosphate concentrations (Figure 4-1).

Unfortunately, it is not possible to directly separate model drift, possible parameteri-

zation deficiencies and the anoxic respiration O2 source from potential credible changes in

the ocean O2 budget and O2 air-sea flux that would allow comparisons to be made to the

observed and postulated changes in the ocean’s O2 budget and O2 flux [Keller et al., 2002;

Emerson et al., 2001; Plattner et al., 2001; Keeling and Garcia, 2002; Matear et al., 2000;

Sarmiento et al., 1998]. Therefore, for this study I consider the model mean O2 efflux to

be a model artifact and focus on examining model estimates of interannual variability in

air-sea O2 fluxes.

Carbon Dioxide

In Figure 4-7, the observed mean CO2 flux [Takahashi et al., 1997] is compared to the model

mean flux. The model does a good job of capturing the broad features and magnitudes of

the mean CO2 flux as estimated by Takahashi et al. [1997]. Net outgassing of CO2 to

the atmosphere occurs across the equatorial Pacific due to wind driven divergence and

upwelling. CO2 is taken up in the high Northern latitudes, particularly in the subpolar

North Atlantic. In the Southern Ocean, the model captures the CO2 ingassing due to the
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Figure 4-7: Model mean CO2 flux (top) compared to the 1990 mean flux estimate from

Takahashi et al. [1997] (bottom) in mol/m2/yr . Positive flux is to the atmosphere.
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Figure 4-8: Zonal average model mean CO2 flux compared to Takahashi et al. [1999] in

PgC/yr . The 1990 estimate updated from Takahashi et al. [1997] and an estimate for 1995

are presented. Positive flux is to the atmosphere.

cooling of the pole-ward flowing Agulhas current at the southern tip of Africa, but does not

capture the magnitude of the net ingassing due to a similar cooling of the Brazil current off

South America. Coastal upwelling regions are stronger sources of CO2 to the atmosphere in

the model than in the data estimate, perhaps due to overly strong upwelling in the model

as indicated by nutrients in Figure 4-1. The discrepancies in upwelling regions are further

complicated by poor resolution of the climatology in coastal areas.

In Figure 4-8, zonally averaged mean CO2 fluxes are compared to Takahashi et al. [1999],

a study updating Takahashi et al. [1997]. Zonal average mean model fluxes compare very

well to the data estimates in all regions. Net outgassing occurs in the tropics and net

ingassing occurs in the middle and high latitudes. The global mean CO2 flux of the model

is 1.79 PgC/yr into the ocean. As will be discussed in Section 4.2.3, the model exhibits a

significant trend in the global mean flux over the 19-year run that can be attributed to the

Southern Hemisphere from 50-14◦S. This trend makes it difficult to interpret the 19-year

mean CO2 flux from the model, and clearly adds significant uncertainty to the estimate.

Although mean DIC offsets have been found at timeseries stations (see Figure 4-4),

mean fluxes compare extremely well to the global data compilation. This may indicate that

the timeseries station DIC comparisons are not indicative of mean DIC offsets over large
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ocean regions, or that the magnitude of the local DIC differences are not significant to the

global CO2 flux.

Eighty-nine percent (89%) of the 19-year net air-sea influx (34 PgC) of CO2 is balanced

by inventory gain in the model domain from 0-1265m. The remaining eleven percent (11%)

of net air-sea flux is lost through the bottom boundary to the deep ocean.

4.2.2 Seasonal cycles of the hemispheric and regional O2 and CO2 flux

Over most of the ocean, the seasonal air-sea flux cycles of O2 and CO2 are comprised

of large fluxes to the ocean in winter and from the ocean in summer. These fluxes are

thermally, biologically, and/or dynamically driven. The interannual variability of net air to

sea fluxes of O2 and CO2 are small residuals of these gross seasonal fluxes, and therefore it

is important to understand the seasonal cycles of the fluxes and their driving mechanisms.

Oxygen

The O2 anomaly in the surface water is the difference of the the O2 saturation concentration

from the in-situ O2 concentration (O2−Osat
2 ), and along with wind speed, drives air-sea O2

exchange (see Equation 3.12). In Figure 4-9, the seasonal cycle of the O2 anomaly in the

model is compared to the data studies of Najjar and Keeling [1997] and Garcia and Keeling

[2001] over fourteen basin-scale regions (high latitudes, middle latitudes and tropics of each

major ocean basin). Garcia and Keeling [2001] show that their estimate of air-sea O2 fluxes

(based upon their O2 anomaly and Wanninkhof [1992], and then transported through an

atmospheric model) compares significantly better to observed seasonal cycles of atmospheric

O2/N2 than do O2 air-sea fluxes calculated from the Najjar and Keeling [1997] climatology

by Stephens et al. [1998] (and identically transported through an atmospheric model).

In general, model O2 anomaly results compare more favorably to the results of Garcia

and Keeling [2001] than to those of Najjar and Keeling [1997]. This is particularly true in

the tropical Pacific and tropical Atlantic. At high latitudes, the model faithfully represents

the shape and timing of the mean seasonal cycle of the O2 anomalies, but underestimates

its magnitude in comparison to Garcia and Keeling [2001]. It will be shown shortly that

this underestimation is best explained in most regions by a damped seasonal cycle of surface

nutrients. In the Southern Ocean, excessive stratification could contribute to the model’s

91



 -10

0

10

20
Pacific >45 N

 -10

0

10

20
Atlantic >45 N

 -10

0

10

20
Indian 15-45 N

um
ol

/k
g

 -10

0

10

20
Pacific 15-45 N

 -10

0

10

20
Atlantic 15-45 N

 -10

0

10

20
Indian 15S-15N

 -10

0

10

20
Pacific 15S-15N

 -10

0

10

20
Atlantic 15S-15N

 -10

0

10

20
Indian 15-45S

 -10

0

10

20
Pacific 15-45S

 -10

0

10

20
Atlantic 15-45S

jan      apr      jul      oct      jan      

 -10

0

10

20
Indian <45S

jan      apr      jul      oct      jan      

 -10

0

10

20
Pacific <45S

jan      apr      jul      oct      jan      

 -10

0

10

20
Atlantic <45S

um
ol

/k
g

um
ol

/k
g

um
ol

/k
g

um
ol

/k
g

Figure 4-9: Regionally averaged seasonal cycle of the modeled O2 anomaly compared to

observational estimates: Garcia and Keeling [2001] (bold solid), Najjar and Keeling [1997]

(solid), and modeled (bold dash). A positive O2 anomaly indicates oversaturation and

implies an O2 efflux from the surface ocean. Model and Najjar and Keeling [1997] seasonal

O2 anomalies occurring under model sea ice are omitted for consistency with Garcia and

Keeling [2001] who do not report values under ice.
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Figure 4-10: Northern (top) and Southern (bottom) hemisphere mean seasonal cycle of the

air-sea flux of O2 (bold dash) compared to the data-based estimate of Najjar and Keeling

[2000] (solid). Fluxes are positive to the atmosphere.

damped seasonal cycle. Overall, this comparison indicates that while the model captures

the basic features of the seasonal O2 anomaly cycle, it underrepresents the cycle magnitude

outside of the tropics. Consistent with conclusions regarding the physical variability of

the model, the finding of a damped seasonal cycle of the O2 anomaly indicates that the

interannual variability of the O2 anomaly, and thus of the O2 air-sea flux, is likely to be a

lower bound estimate.

In Figure 4-10, hemispheric-averaged model mean seasonal cycles of O2 are compared

to the estimate of Najjar and Keeling [2000], based on the O2 anomaly results of Najjar and

Keeling [1997]. The model result compares well to Najjar and Keeling [2000] in the Northern

Hemisphere, but the seasonal cycle has a smaller amplitude in the Southern Hemisphere,

consistent with the comparisons to Najjar and Keeling [1997] presented in Figure 4-9.

The model components that drive the mean cycle of O2 fluxes are presented for nine

ocean regions (extratropics and tropics, for each major ocean basin) in Figure 4-11. Here,

the change in the integrated O2 concentration (dashed line) is almost entirely due to seasonal

heat fluxes that alter O2 solubility and drive net fluxes, also known as the ”thermal flux”
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Figure 4-11: Components of the mean seasonal cycle of surface O2 fluxes in nine ocean

regions. Plotted are the impacts on the O2 concentration in the top 50m of the ocean by

advection (solid), convection (bold dash), biology (dash-dot), internal change or dO2/dt

(dash), freshwater (dotted), and air-sea flux (bold solid). Model fluxes are averaged over

regions bounded by 15◦S and 15◦N and the major land masses. Note that the Atlantic

north of 15◦N is plotted on a different scale. Air-sea fluxes are positive to the ocean.
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[Keeling et al., 1993; Najjar and Keeling, 2000]. Tropical regions exhibit a far smaller

seasonal cycle in air-sea fluxes than do the high latitudes, and are driven primarily by

thermal forcing and dynamical (convective and advective) changes. In the small region of

the Indian Ocean north of 15◦N, monsoon forcing is clearly active, with convective changes

driving the air-sea flux during the winter monsoon and advective change responsible during

the summer monsoon. There is also a thermal cycle of importance to the seasonal fluxes.

In the Pacific north of 15◦N, convective and thermal changes drive the air-sea flux seasonal

cycle. In the Atlantic north of 15◦N, biology is more important than thermal changes to the

air-sea flux. Biology can respond here and have a significant impact on the O2 flux seasonal

cycle because of the very short export timescale (τ) in the subpolar North Atlantic. In

the three regions of the Southern Ocean, the seasonal cycle is primarily thermally and

convectively controlled. There is also a relatively small biological cycle due to changes in

light availability.

Especially in the Atlantic north of 15◦N, the local balance mechanism [Bender et al.,

1996; Keeling et al., 1993] for O2 can be seen to be in operation over the seasonal cycle

in the middle and high latitudes in the model. Mean O2 ingassing occurs when convective

mixing brings up low O2 waters to the surface from the deep. The nutrients supplied with

this mixing combined with seasonal light availability provides for a biological O2 production

in the surface layer and a net outgassing. The thermal cycle reinforces this cycle to a small

degree in the North Atlantic and to a much larger degree in the North Pacific and the

Southern Ocean.

Carbon Dioxide

The relationship of CO2 fluxes to surface DIC concentration is less straightforward than

with O2 because of the reaction of CO2 with seawater. The partial pressure of CO2 in

water (pCO2) is determined by DIC concentration, temperature, alkalinity and salinity.

Atmosphere - ocean CO2 exchange (see Equation 3.13) is driven by the difference of the

atmospheric pCO2 from the surface ocean pCO2 (∆pCO2 = (pCO2 − pCOatm
2 )).

In Figure 4-12, the seasonal cycle of the modeled ∆pCO2 is compared to the obser-

vational climatology of Takahashi et al. [1997]. Here, the comparison is presented over

14 basin scale regions in order to separate regions of substantially different surface pCO2
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Figure 4-12: Regionally averaged seasonal cycle of modeled ∆pCO2 (bold dash) compared

to the observational estimate of Takahashi et al. [1997] (bold solid).
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control as indicated by Takahashi et al. [1993].

In the high latitudes, the model ∆pCO2 cycle is out of phase with the observational

climatology. Takahashi et al. [1993] indicates that the pCO2 of the high latitude ocean is

primarily controlled by DIC concentration. As will be shown in Figure 4-13, the model

indicates primary control by temperature of the pCO2 seasonal cycle at all latitudes. Only

in the Atlantic north of 45◦N does the model illustrate a pCO2 response to DIC supply by

deep winter mixing, although the temperature peak clearly still remains. In the subtropics,

Takahashi et al. [1993] finds temperature control of the seasonal cycle of pCO2, and the

model has a similar control. The model cycle is too large, however, particularly in the

Southern subtropics. In the tropics, there is little seasonal cycle of ∆pCO2 in either the

model or the observations. The low mean ∆pCO2 in the equatorial Pacific is consistent

with the SST in this region being too low by 1◦C (see Figure 3-6).

The overestimation of the model ∆pCO2 cycle in the middle and high latitudes, as

well as the underestimation of the O2 anomaly cycle, can be partially explained by an

underestimation of the seasonal nutrient cycle in regions outside the North Atlantic. This

underestimation is evidenced in the nutrient cycle comparisons at KERFIX and HOT in

Figure 4-2. The particle export parameterization developed for this model is intended to,

as accurately as possible, represent mean export. It does not capture rapid nutrient and

DIC drawdown, and O2 production, associated with the spring bloom. This lack of DIC

drawdown and O2 production which would reduce the ∆pCO2 cycle and increase the O2

anomaly cycle certainly contributes to model deviations from the observations.

In the subpolar North Atlantic, comparisons to mean nutrient and O2 cycles at OWS

C, as well as comparison to the Conkright et al. [1998] seasonal nutrient climatology (Fig-

ure 3-16), indicate that the nutrient cycle is reasonably captured in this region. This is

because of the rapid export timescale in this region that allows a spring bloom response

to nutrient and light availability. Yet, the mean export is overestimated in the subpolar

North Atlantic, as can been seen with the mean offset in nutrient concentration at OWS C.

Nutrient concentrations become so low during the summer months that biological produc-

tion becomes nutrient limited such that DIC drawdown and O2 production are significantly

reduced. Lacking the continued removal of DIC, the ∆pCO2 increases under the control of

temperature. In addition, O2 production in summer is reduced such that the O2 anomaly
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drops far faster in the model than in the observations (Figure 4-9). Thus, I conclude that

excessive mean export in the subpolar North Atlantic overdepletes surface nutrient and

slows summer export production. This allows temperature to have a dominant role in the

seasonal cycle of ∆pCO2, which is inconsistent with the observations of Takahashi et al.

[1993]. The low mean ∆pCO2 in the subpolar North Atlantic in winter can be explained

by low winter SSTs (Figure 3-6).

In the subtropical North Atlantic, comparisons to the mean nutrient cycle at BATS

(Figure 4-2) indicate that the model’s cycle is too large. Yet, it is found that seasonal

DIC drawdown and O2 production is too low. This discrepancy is consistent with findings

of export at BATS that has carbon to nutrient ratios that are substantially higher than

the Redfield ratios [Ono et al., 2001]. At BATS, substantial amounts of DIC may be

removed from the surface and O2 may be produced by ecosystems that efficiently recycle

scarce nutrients at the surface. The model, with a simple particle export scheme and the

assumption of Redfield ratios, cannot capture these dynamics.

The apparent overestimation of the ∆pCO2 seasonal cycle by the model is due in large

part to deficiencies in the biogenic export scheme, but may also be impacted by the sparsity

of data in the observational climatology of Takahashi et al. [1997]. This is particularly true

in the Southern Hemisphere where data is quite sparse. Data density is increased at all

latitudes in the seasonal ∆pCO2 climatology of Takahashi et al. [1999], and the comparisons

presented here may be notably different if that data estimate were used.

Following Takahashi et al. [1993], the effects on pCO2 of surface DIC concentration,

temperature, alkalinity and salinity may be written as:

dpCO2

dt
=

δpCO2

δDIC

dDIC

dt
+

δpCO2

δT

dT

dt
+

δpCO2

δALK

dALK

dt
+

δpCO2

δS

dS

dt
(4.1)

In Figure 4-13, the components driving the seasonal cycle of surface pCO2 in nine

ocean regions are shown. As previously discussed, the seasonal cycle of total change in

pCO2 is primarily thermally driven over all regions. The surface DIC concentration damps

the thermally driven pCO2 cycle, but the comparisons in Figure 4-12 indicate that this

process is not sufficiently strong in the high latitudes of the model. In the North Atlantic,

it can be seen that if there were a continued DIC drawdown in the summer months, the

temperature forcing would be strongly opposed and the pCO2 maximum in summer would
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Figure 4-13: Components of the mean seasonal cycle of ocean pCO2 in nine ocean

regions. Plotted are the impacts on the pCO2 in the surface 50m of the ocean by

(δpCO2/δDIC)(dDIC/dt) (solid), (δpCO2/δT)(dT/dt) (dash), (δpCO2/δALK)(dALK/dt)

(dash-dot), and dpCO2/dt (bold solid). Model pCO2 is averaged over regions bounded by

15◦S and 15◦N and the major land masses. The impact of salinity on the pCO2 seasonal

cycle is negligible and is not presented.
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be substantially damped. If this were the case, the model cycle of ∆pCO2 would be far

more similar to that of Takahashi et al. [1997]. Alkalinity changes are only significantly

important in the tropical and northern Indian Ocean, where they tend to cancel the impact

of DIC changes. Overall, the model’s seasonal cycle of the air-sea CO2 flux is primarily

thermally forced.

Changes in model pCO2 drive the cycle of CO2 air-sea flux with a lag due to the

buffering of CO2 by reaction with seawater. In Figure 4-14, the balance for the surface DIC

concentration is shown, including the impact of the air-sea flux. In general, the seasonal

cycle of surface DIC concentration is determined by a combination of the thermally-driven

air-sea CO2 flux and convection. In some regions, advection, biology, and/or freshwater

fluxes are also significant. The limitation on summertime biological DIC drawdown in

the extratropical North Atlantic is clear in this figure. In all regions, the seasonal cycle

of surface DIC concentration acts to damp the primarily thermally driven pCO2 seasonal

cycle (Figure 4-13). As previously discussed, DIC damping is too weak in the North Atlantic

because of excessive mean export that results in summertime nutrient limitation, and in

other extratropical regions, the DIC component of the pCO2 cycle is too weak because of

weak seasonal nutrient cycling.

4.2.3 Calculation of interannual flux anomalies

The seasonal cycle of the air-sea fluxes is removed from the 19 year flux timeseries so that

the interannual variability can be considered. This is accomplished by subtracting from each

10-day flux distribution the 19-year mean flux for the respective 10 day interval. However,

before considering flux interannual variability, the model trend must be addressed.

In Figure 4-15, the global air-sea flux anomalies are presented. Both the O2 and CO2

flux have non-negligible trends. As will be explained below, the trend is due in large part

to model drift. Evidence for real long-term trends in the O2 and CO2 fluxes does exist, but

for this it is not possible to distinguish any real trends from model-induced trends.

Oxygen

The trend of the undetrended model results toward a weaker O2 outgassing over the 19-

year period is due both to a net cooling of the physical model and to continuing model
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Figure 4-14: Components of the mean seasonal cycle of DIC in nine ocean regions. Plotted

are the impacts on the DIC concentration in the top 50m of the ocean by advection (solid),

convection (bold dash), biology (dash-dot), internal change or dDIC/dt (dash), freshwater

(dotted), and air-sea flux (bold solid). Model fluxes are averaged over regions bounded by

15◦S and 15◦N and the major land masses. Note that the Atlantic north of 15◦N is plotted

on a different scale. Air-sea fluxes are positive to the ocean.
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Figure 4-15: Undetrended global mean net air-sea fluxes for the 19 year model run. O2 flux

in Tmol/yr (top) and CO2 flux in PgC/yr (bottom). The timeseries has been smoothed to

remove timescales shorter than one year. Positive fluxes are to the atmosphere.
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adjustment.

The temporal trend is calculated by a linear fit to the deseasonalized data at each point

in space. When globally averaged, the linear trend results in the final model year having a

mean outgassing that is 53 Tmol/yr less than in year 1. This trend results in a total of 477

Tmol less efflux over the course of the 19 model years than if there were no trend.

Approximately 70% of this trend is due to model adjustment in relation to the boundary

conditions of the model via upwelling and mixing with deep waters that are still impacted

by initial and boundary conditions. This adjustment occurs mostly in the Southern Ocean

at latitudes <30◦S. The physical model also has drift, evidenced by the necessity for salinity

restoration

The upper 250m of the model ocean cools by 0.28◦K over the 19 year model run. Man-

ning [2001] find that the temperature dependence of O2 solubility is -5.8x10−6 molkg−1◦K−1

following Weiss [1970]. If it is assumed that the top 250m of the ocean can equilibrate with

the atmosphere over the 19 year run, then the solubility reduction due to the 0.28◦K model

cooling results in an influx of 145 Tmol, or 7.7 Tmol/yr. This is approximately 30% of the

trend in the O2 flux.

Trends in the ocean O2 budget in the recent decades due to warming and stratification

change may occur along with global-warming induced changes to the ocean O2 budget

[Keller et al., 2002; Emerson et al., 2001; Plattner et al., 2001; Keeling and Garcia, 2002;

Matear et al., 2000; Sarmiento et al., 1998]. It is possible that some of the trend in the model

is due to such forcing, but, as with the model mean, it is not possible to directly separate

model drift and an actual signal. Further, the fact that this model cools in the surface ocean

instead of warms would make the detection of any real trend extremely difficult. Therefore,

for discussions of the interannual variability in air-sea fluxes of O2, the linear trend has

been removed.

Carbon Dioxide

The model indicates a significant trend toward less CO2 uptake into the oceans toward the

end of the model run, or a positive anomaly compared to the 1980-1998 mean (Figure 4-15).

The work of the Intergovernmental Panel on Climate Change (IPCC) [Prentice et al., 2001]

indicates that the CO2 sink into the oceans in the 1990’s was 0.2 PgC/yr smaller than in
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the 1980’s. However, Plattner et al. [2001] suggest that, due to net O2 outgassing, the IPCC

estimate for the 1990’s [Manning, 2001] should be revised upward such that ocean takes

up 0.7 PgC/yr more in the 1990’s than in the 1980’s. Clearly, the temporal change in the

actual ocean CO2 sink over the period of the model run is an issue of active debate. There

is not clear evidence to support the magnitude of the CO2 flux trend in these results. In

fact, the long-term trend can be shown to be due primarily to model adjustment with the

initial conditions.

The model trend is calculated by a linear fit to the deseasonalized data at each point in

space. When globally averaged, it results in the final model year having a mean influx that

is 1.3 PgC/yr less than in year 1, or a total of 11.7 PgC less influx over the course of the 19

model years. The trend is due to a reduction in the rate of CO2 storage in the model over

the 19 year run, most likely due to model adjustment away from initial conditions. Most of

the reduction in CO2 storage rate occurs in the Southern Subtropics between 50-14◦S.

If the physical model were not cooling, the long-term change in the model would be

larger. A flux sensitivity to temperature (-3x10−13 molkg−1s−1◦K−1) for carbon is calcu-

lated following Wanninkhof [1992], and assuming an average wind speed of 7.4 m/s. Applied

to the cooling of 0.28◦K over the 19 model years in the upper 250m of the ocean, this in-

dicates that approximately 2.1 PgC was ingassed to the model due to the surface cooling.

Thus, it is estimated that the model trend would have been approximately 20% larger if

the model was not cooling at the surface.

For the following discussions of the interannual variability in air-sea fluxes of CO2 and

for the calculation of the land and ocean CO2 sinks in Chapter 6, the linear trend is removed

from the flux estimates.

Sensitivity to initial conditions

Although it is possible to calculate, explain, and remove trends from the flux timeseries,

the existence of the trend raises questions about the reliability of the interannual air-sea

flux estimates due to dependence on initial conditions. In order to begin to answer this

question, the 19-year varying model run was restarted at 1980 using the end of 1998 from

the original model run as the initial condition. This run was continued through 1985. After

the first three years (1980-1982), the interannual variability of O2 and CO2 fluxes from the
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repeated model run is practically identical to the original run, once the trend calculated

with the original run is removed. Thus, the flux variability early in the time-varying run is

sensitive to the initial conditions, but this sensitivity is dissipated after approximately three

years. Therefore, model flux variability estimates for the first three years of the model run

are considered to be less reliable than estimates from later in the run.

4.3 Interannual Variability in Air-Sea Fluxes of O2 and CO2

The detrended timeseries of interannual variability in air-sea O2 and CO2 fluxes is presented

in Figure 4-16. Interannual variability in the air-sea O2 flux has interannual extremes of -70

to +100 Tmol/yr, with a root-mean-square (RMS) of 35 Tmol/yr. I note the appearance

of a biennial cycle in the O2 flux variability. I can offer no explanation for this feature,

in large part because the dominant regional fluxes presented in Figure 4-17 are controlled

by processes that do not, to my knowledge, have a biennial cycle. For CO2, the flux has

extremes of ±0.5 PgC/yr, and RMS of 0.28 PgC/yr.

While this model estimate of CO2 flux interannual variability agrees qualitatively with

the ocean GCM results of LeQuéré et al. [2000], it is notably larger in magnitude. LeQuéré

et al. [2001] update the work of LeQuéré et al. [2000] by replacing their particle export

scheme with a multi-compartment ecosystem model in their OGCM, but find only a small

increase in air-sea flux interannual variability due to increased biological variability. The

MITgcm estimate has approximately the same interannual extremes as does LeQuéré et al.

[2001].

In both LeQuéré et al. [2000, 2001], the temperature and salinity of the OGCM is

relaxed toward climatological observations below the mixed layer to the north of 10◦N and

south of 10◦S with a timescale of 1 month. Their semidiagnostic model is likely to damp

physical variability at the high latitudes, such as variability in mode water formation. The

model used for this study is fully prognostic, and therefore is likely to have greater physical

variability outside the 10◦S to 10◦N band than the model used in LeQuéré et al. [2000]

and LeQuéré et al. [2001]. This greater physical variability is likely to be responsible for

the larger global average air-sea CO2 flux interannual variability in this model than in

LeQuéré et al. [2000]. Nevertheless, it was illustrated in Section 3.1 that this model does
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Figure 4-16: Global mean net air-sea fluxes for the 19 year model run (bold solid). O2 flux

in Tmol/yr (top) and CO2 flux in PgC/yr (bottom). The CO2 flux is compared to the

atmospheric data inversions of Rayner et al. [1999] and Francey et al. [2001] and the ocean

GCM estimates of LeQuéré et al. [2000] and LeQuéré et al. [2001]. The mean seasonal

cycle and the long term trend have been removed from the model. All timeseries have been

smoothed to remove timescales shorter than one year.
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underrepresent the observed physical variability of the global ocean, and therefore all model

estimates may still be lower bounds.

The work of LeQuéré et al. [2001] indicates that if a multi-compartment ecosystem model

were implemented in the MITgcm, only a slight increase in the air-sea flux variability would

result. It can be expected that qualitative changes in the results would be minimal.

Rayner et al. [1999] and Francey et al. [2001] use atmospheric observations of δ13C and

CO2, with O2/N2 as a long-term constraint, to estimate the interannual variability in the

land and ocean sinks of CO2. The study of Francey et al. [2001] is an update of Rayner et al.

[1999] that includes (1) a recalibration of the Cape Grim δ13C record; (2) re-smoothing of

the NOAA CO2 data and Cape Grim δ13C to account for their northern hemisphere and

southern hemisphere biases, respectively; and (3) better estimates of the gross CO2 flux

due to different response times of surface exchange to atmospheric perturbations in 12C and
13C (R. Francey, personal communication). These adjustments of the data processing and

gross flux estimates result in the smaller estimate for the ocean air-sea CO2 flux variability.

In summary, the model estimate of the interannual variability in the global CO2 flux

has a larger variability than the model of LeQuéré et al. [2000], and a similar magnitude

variability of as LeQuéré et al. [2001]. Concurrent work on atmospheric inversions estimates

of the land and ocean CO2 sinks [Francey et al., 2001] gives smaller estimates than older

efforts [Rayner et al., 1999] for the ocean air-sea flux variability of CO2, and has extremes

similar in magnitude to this model estimate.

It can be concluded that the model estimate of the global air-sea flux variability of CO2

is reasonable in comparison to the other available studies. This author is not aware of any

studies for comparison to the model’s O2 flux variability estimate.

4.3.1 Mechanisms of regional flux variability

In this section, the regions dominating the global air-sea flux variability of O2 and CO2 are

described. Then, the driving mechanisms are illustrated and discussed. The regions for this

discussion are the same as used previously: the major ocean basins and the latitude lines

of >15◦S and >15◦N.

A regional breakdown of the annual anomalies in O2 and CO2 fluxes (Figure 4-17) illus-

trates that the global flux variability of both gases is strongly influenced by the equatorial
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Figure 4-17: Regional breakdown of O2 (left) and CO2 (right) fluxes. Regions are separated

by the major land masses (Pacific, solid; Atlantic, dash-dot; Indian, dash), and at 15◦S and

15◦N.
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Pacific. For O2, the North Atlantic is also particularly important to the global flux inter-

annual variability. Despite significant physical variability in the North Atlantic, CO2 flux

variability is not significant in this region because carbonate reactions in seawater damp its

air-sea exchange. Other regions of the globe have significant contributions to the global net

interannual variability in some years, notable is the Pacific region of the Southern Ocean for

both O2 and CO2. The dominance of the equatorial Pacific to global integrated CO2 flux

variability agrees with the previous modeling studies of LeQuéré et al. [2000] and Winguth

et al. [1994].

In the following sections, the mechanisms driving the regional flux variability are pre-

sented. These are provided in units of mol/m2/yr, as opposed to the spatially integrated

units of Tmol/yr and PgC/yr used for previous flux estimates. Therefore, in Figures 4-18

through 4-26, an area of large fluxes may have only a weak impact on global air-sea fluxes

because of its small area. Since the consideration is the balance of the tracers in the top

50m of the ocean, here positive fluxes are into the ocean.

Oxygen

As was found for the North Atlantic in Chapter 2, convective changes drive the air-sea flux

variability of O2 at first order across the global oceans (Figures 4-18 to 4-20). Advective

changes are also of significant importance in the equatorial Pacific (Figure 4-19), where they

tend to have the same sign as the convective flux. It is the ENSO cycle that drives these

significant changes in both vertical advection and mixing in this region (see Section 4.3.2).

In the North Atlantic (Figure 4-20), variability in export production by biology in the

subpolar North Atlantic, a region with a very short export timescale (τ), reduces the net

air-sea O2 flux variability by countering the effects of convective variability. When increased

convection brings up waters both low in O2 and high in nutrients, the increased nutrient

supply rapidly leads to increased O2 production. The biological production of O2 to some

degree counters the supply of low O2 water to the surface by convection. In the period

1985-1987, this positive biological flux successfully counters the negative convective flux

and there is almost no net air-sea flux anomaly. Generally, the biology is not able to fully

compensate, and air-sea flux anomalies occur in response to convective variability.
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Figure 4-18: Components of the interannual variability around the mean cycle (Figure 4-

11) in the O2 air-sea flux in the Indian Ocean: >15◦N (top), 15◦S-15 ◦N (middle), and

<15◦S (bottom). Components, integrated over 0 to 50m, are advection (solid), convection

(bold dash), biology (dash-dot), internal change or dO2/dt (dash), freshwater (dotted),

and undetrended air-sea flux (bold solid). The timeseries have been smoothed to remove

timescales shorter than 1 year. Fluxes are positive to the ocean.
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Figure 4-19: Same as Figure 4-18 for O2 in the Pacific Ocean.
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Figure 4-20: Same as Figure 4-18 for O2 in the Atlantic Ocean. Note that the region >15◦N

has been plotted on a different scale than the other panels in this series.
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Carbon Dioxide

Variability in ocean surface pCO2 drives CO2 flux variability. Thus, I begin this section

with an evaluation of the regional mechanisms driving pCO2 variability around the globe.

After finding that the surface DIC concentration is a primary driver for pCO2 variability, I

continue by considering the regional mechanisms determining the surface DIC concentration.

In Figure 4-21, it can be seen that in the North and tropical Indian Ocean interannual

variability in the ocean pCO2 is driven by a combination of DIC, temperature and alkalinity.

Alkalinity and temperature changes counter DIC changes and together create relatively

small pCO2 change despite large individual variability of DIC, temperature, and alkalinity

in these regions.

Figures 4-22 and 4-23 illustrate that DIC drives pCO2 variability in the North Pacific

and North Atlantic regions, although at some points, temperature and / or alkalinity are

also of first order importance to determining the surface pCO2 . In the tropical Pacific, DIC

variability determines pCO2 variability, and temperature counters the effect of DIC with

about half the magnitude of impact. Alkalinity variability is of minor importance. These

findings in the tropical Pacific are consistent with the work of LeQuéré et al. [2000]. In

the tropical Atlantic, the effect of temperature variability on pCO2 has approximately an

equal effect as does the variability of DIC. Alkalinity also has a smaller role, but is more

important to the overall balance than in the tropical Pacific.

In the Southern Ocean for all three basins (Figures 4-21 to 4-23), the control of pCO2

is based on a mix of temperature and DIC dominance. In some regions and time periods,

temperature dominates, in others DIC dominates. Alkalinity is generally of secondary

importance to the determination of pCO2 variability in the Southern Ocean.

It is noted that the linear relationship of alkalinity to salinity used in this model [Camp-

bell, 1983] should damp alkalinity variability. Such damping is likely to be more important

to air-sea CO2 flux variability in the high latitudes where alkalinity variability is relatively

more important to determining pCO2 variations. However, since there is still only a small

importance of alkalinity variability to the determination of pCO2 variability in most regions,

the inclusion of prognostic alkalinity would be unlikely to fundamentally change model re-

sults for CO2 flux variability on the global scale.

The control of DIC on the surface ocean pCO2 in most regions makes the surface balance
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Figure 4-21: Components of the interannual variability around the mean cycle (Figure 4-

13) of ocean pCO2 in the Indian Ocean: >15◦N (top), 15◦S-15 ◦N (middle), and <15◦S

(bottom). Components, integrated over 0 to 50m, are (δpCO2/δDIC)(dDIC/dt) (solid),

(δpCO2/δT)(dT/dt) (dash), (δpCO2/δALK)(dALK/dt) (dash-dot), and dpCO2/dt (bold

solid). The timeseries are smoothed to remove timescales <1 year. Fluxes are positive to

the ocean. The regions 15◦S-15◦N and >15◦N are plotted on a different scale than the other

panels in this series.
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Figure 4-22: Same as Figure 4-21 for pCO2 in the Pacific Ocean. Note that the region

15◦S-15◦N has been plotted on a different scale than the other panels in this series.
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Figure 4-23: Same as Figure 4-21 for pCO2 in the Atlantic Ocean.
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Figure 4-24: Components of the interannual variability around the mean cycle (Figure 4-14)

in the surface DIC concentration in the Indian Ocean: >15◦N (top), 15◦S-15 ◦N (middle),

and <15◦S (bottom). Components, integrated over 0 to 50m, are advection (solid), con-

vection (bold dash), biology (dash-dot), internal change or dDIC/dt (dash), freshwater

(dotted), and undetrended air-sea flux (bold solid). The timeseries have been smoothed to

remove timescales shorter than 1 year. Fluxes are positive to the ocean.
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Figure 4-25: Same as Figure 4-24 for DIC in the Pacific Ocean.
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Figure 4-26: Same as Figure 4-24 for DIC in the Atlantic Ocean.
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of DIC important to analyze further. Controls on temperature will be considered in relation

to the ENSO and NAO cycles in the following section. Figures 4-24 through 4-26 show that

DIC is primarily dynamically controlled (convection and advection) in all regions of the

global ocean. In the North Indian and Tropical regions, variability in the freshwater flux is

of some importance. Figure 4-25 indicates that the air-sea flux is of significant importance

to the surface DIC balance in the Equatorial Pacific. Biology is important in the North

Atlantic (Figure 4-26) where, as seen with O2, it counters the convective supply of high DIC

waters with the biological export of carbon. However, the slow air-sea exchange timescale

for CO2 allows the biological export more time to address the DIC excess and the impact

on the air-sea flux via pCO2 changes is ultimately small. Though biogenic export counters

anomalies of surface O2 and pCO2 on the same timescale, the air-sea flux responses of

the two gases are different. The rapid O2 exchange timescale allows a gas flux response

to convective anomalies, but the slow CO2 exchange timescale prevents a significant flux

response.

As discussed before, the air-sea CO2 flux trend is largest in Southern Ocean. As illus-

trated in Figure 4-25, the trend is driven by changes in the convective supply of DIC which

are, in turn, due to model adjustment.

4.3.2 Dominant regions

In this Section, air-sea fluxes in the equatorial Pacific and the North Atlantic are considered

in greater detail because these are the regions most important to determining the global

air-sea flux variability of O2 and CO2 in the model. In particular, flux variability related

to the dominant modes of basin-scale variability in physical conditions of these regions, El

Nino / Southern Oscillation (ENSO) and North Atlantic Oscillation (NAO), is examined.

The first EOFs of the air-sea fluxes of CO2 and O2 in these dominant regions are

presented in Figure 4-27. High correlations of the normalized principle components (PC1)

with the SOI and NAO indices demonstrate that the ENSO and NAO cycles drive flux

interannual variability.

EOF1 for CO2 in the equatorial Pacific explains 50% of the interannual variance. The

corresponding PC1 has maximum correlation with the SOI at (r = 0.84) when the flux lags

by 1 or 2 months. The maximum correlation occurs with a lag because carbonate chemistry
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Figure 4-27: First Empirical Orthogonal Functions in mol/m2/yr (EOF1, left) and the

principle component normalized by the standard deviation (PC1) v. climate indices (right)

for the regions dominant to the CO2 and O2 flux variability: the equatorial Pacific for CO2

(top) and O2 (middle), and the North Atlantic for O2 (bottom). Climate indices are the

Southern Oscillation Index (SOI) [Trenberth, 1984] and North Atlantic Oscillation (NAO)

[Hurrell, 1995]. Air-sea fluxes are positive to the atmosphere.
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Figure 4-28: Mean DIC (solid contours and shading) with σθ (dash-dot contours) along the

Equator in the equatorial Pacific.

in seawater slows the CO2 air-sea exchange response to ENSO forcing. With no lag, the

correlation is r = 0.82.

For O2 in the equatorial Pacific, EOF1 explains 73% of the interannual variance. PC1

has a maximum correlation with the SOI (r = 0.80) when the flux leads by 2 or 3 months.

The rapid air-sea exchange timescale for O2 allows it to respond immediately to changes

in the physical state of the equatorial Pacific, even before the atmospheric response is

established and becomes evident in the SOI. Even with no lag, the correlation remains high

(r = 0.69).

In the North Atlantic, EOF1 explains 28% of the interannual O2 flux variance. The

maximum correlation of the PC1 with the NAO (r = 0.73) occurs when there is no lag

between the flux and the index.
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Equatorial Pacific

ENSO impacts air-sea fluxes of O2 and CO2 primarily by changes in upwelling strength

and the depth of low O2 and high DIC waters below the thermocline (Figure 4-28). Under

normal conditions in the equatorial Pacific, the thermocline shallows from west to east and

strong upwelling occurs due to Ekman divergence at the equator. [McPhaden et al., 1998]

This supplies high DIC and low oxygen waters to the surface, resulting in net influx of O2

and efflux of CO2 as seen in Figures 4-5 and 4-7. [Feely et al., 1987, 1995, 1999; Chavez

et al., 1999; Radenac et al., 2001]

In the El Niño phase shown in Figure 4-29, the thermocline in the east is depressed

by eastward propagating Kelvin waves generated by anomalous westerly wind bursts in

the western Pacific. [Webster and Palmer, 1997; McPhaden et al., 1998] This downward

displacement of the thermocline moves the supply of high DIC (and also low O2) waters

further away from the surface. At the same time, the atmospheric response to El Niño

causes slackening of the trade winds and reduced Ekman divergence at the equator. This

results in reduced upwelling at the equator which also reduces the supply of high DIC (and

low O2 ) to the surface.

The combined effects of a depressed thermocline and reduced upwelling are to signif-

icantly alter the amount of high DIC (and low O2) waters exposed to contact with the

atmosphere. Air-sea gas fluxes of CO2 fluxes experience a negative anomaly (less CO2

outgassed to the atmosphere) and O2 has a positive anomaly (less O2 removed from the

atmosphere), as seen in Figure 4-27. The response of CO2 to El Niño has been previously

documented based on in-situ observations by Feely et al. [1987, 1995]; Chavez et al. [1999];

Feely et al. [1999].

In the La Niña phase, the upward slope of the thermocline to the east is enhanced, both

bringing high DIC and low O2 waters closer to the surface and increasing the efficiency of

divergence-driven upwelling along the equator. This results in a positive CO2 flux anomaly

and a negative O2 flux anomaly.

As seen in Figure 4-22, the ENSO cycle also impacts temperature in such a way as to

oppose DIC changes to pCO2. Decreased DIC supply during El Niño reduces pCO2, but

the warm SST anomaly increases it. The opposite is true during La Niña when increased

DIC supply drives up pCO2 and the cold SST anomaly reduces it.
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Figure 4-29: DIC anomalies (solid contours and shading) with σθ (dash-dot contours) along

the Equator in the equatorial Pacific in the El Niño (top) and La Niña (bottom) phases

of the ENSO cycle. The El Niño (La Niña) phase plot is a composite of all model months

from 1980-1998 when the SST anomaly in the Niño 3.4 region (5◦N - 5◦S, 120◦- 150◦W)

exceeds 0.4◦C (falls below -0.4◦C) [Trenberth, 1997]. Contours are every 4 µmol/kg, with

dashed contours being negative.
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Although not evident in this composite figure, it is important to mention that each

El Niño and La Niña is different in its strength and in the consequent changes to air-sea

gas fluxes [Feely et al., 1999]. The El Niño events of 1982-1983 and 1997-1998 were far

stronger than the 1991-1994 series of weak events. Impacts of variability in the strength of

El Niño are particularly evident in the O2 flux anomalies of the tropical Pacific presented

in Figure 4-17.

In summary, I note that differences in surface DIC and vertical displacement of isotherms

between extremes of the ENSO cycle are apparently small (<50 µmol/kg, ≈50m) and

confined to the upper few hundred of the eastern equatorial Pacific (Figure 4-29). Yet,

these small changes are responsible for the bulk of global air-sea CO2 flux variability in the

model.

North Atlantic

As shown in Figure 4-20, convection is the dominant forcing for O2 flux variability in this

region. Changes in air-sea heat fluxes and storm tracks with the NAO [Hurrell, 1995;

Cayan, 1992] alter convective mixing in the North Atlantic region. The response in terms

of the O2 flux is essentially an imbalance in the local balance mechanism which proposes

an annual balance between biological O2 production in the summer months and wintertime

drawdown of O2 due to convective supply of low O2 waters to the surface [Bender et al.,

1996; Keeling et al., 1993]. It is clearly seen in Figure 4-20 that convective variability is

not completely balanced by the biological flux as postulated by this mechanism, and net

interannual variability in the O2 air-sea flux results. This same result was found using the

North Atlantic regional model described in Chapter 2.

For CO2 in the North Atlantic, it can be seen in Figure 4-23 that temperature and DIC

changes generally oppose each other in the creation of surface pCO2 anomalies. This is

consistent with NAO forcing where enhanced cooling in the high phase of the NAO drives

more mixing and supplies more DIC to the surface ocean, increasing pCO2. At the same

time, the cooling decreases pCO2. This counterbalancing of pCO2 tendencies, along with

the slow air-sea exchange timescale of CO2 that allows the biological response to counter

convective DIC fluxes (Figure 4-20), combine to cause the low air-sea flux variability of CO2

in the North Atlantic.
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4.3.3 Summary

Using an offline biogeochemical ocean model, I find that physical variability primarily de-

termines variability in surface concentrations of O2 and DIC, and is therefore the primary

driver for interannual variability of global CO2 and O2 air-sea fluxes. Variability in surface

pCO2 is also significantly influenced by temperature variations in some regions of the globe.

Physical variability in the equatorial Pacific associated with ENSO is the primary driver

of global air-sea flux variability of O2 and CO2. Alterations to the slope of the thermocline

across the equatorial Pacific and changes to the efficiency of upwelling significantly alter

the supply of DIC and O2 to the surface over a large ocean area. These changes drive the

substantial flux variability.

In the North Atlantic, changes to biogenic export counter flux tendencies created by

convective variability associated with the NAO. The rapid air-sea exchange timescale of

O2 allows for a 3-way balance between convection, export, and air-sea exchange, and the

result is significant O2 flux variability. However, the slowing of CO2 air-sea exchange by

carbonate reactions means that the balance for CO2 is essentially between convection and

export, resulting in little CO2 air-sea flux variability from this region.

For the period 1980-1998, the global air-sea flux variability of O2 is found to have

interannual extremes of -70 to +100 Tmol/yr (RMS = 35 Tmol/yr), and the CO2 flux has

extremes of ± 0.5 PgC/yr (RMS = 0.28 PgC/yr). The magnitude of the CO2 flux variability

is consistent with other recent estimates from both ocean models and atmospheric data

inversions.
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Chapter 5

Air-Sea Flux Variability from the

Model Constrained with Altimetry

In this chapter, an additional modeling experiment is described. Here, the physical output

from a experimental version of the MITgcm constrained with TOPEX/Poseidon satellite

altimetry was used to force the biogeochemical model and estimate air-sea fluxes of O2 and

CO2 for 1997-1998.

It has been shown in the previous section that physical variability is the primary forcing

for O2 and CO2 air-sea flux interannual variability in the model. The objective of this effort

is to understand whether the physical state of the constrained model is significantly altered,

and if so, how this impacts gas fluxes.

For the purpose of the following discussion, the model used to estimate air-sea fluxes of

O2 and CO2 for 1980-1998 in the previous sections will be referred to as ’unconstrained’ to

distinguish it from the ’constrained’ run for 1997-1998.

5.1 Model Description

The MITgcm model version used in this experiment is the same as described previously

except that it has been constrained with satellite altimetry over the period 1993-1998. To

accomplish this data assimilation, three steps are used: (1) an approximate Kalman filter

model run; (2) a smoothing procedure; and (3) a forward run with forced with the wind

field resulting from the smoothing.
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First, as the model is run, the Kalman filter is used to periodically adjust barotropic

velocity, which acts to displace horizontal isolines adiabatically in order to bring the model

SSH toward agreement with the satellite data. Below the mixed layer, this adjustment

is essentially equivalent to changing the surface wind stress. [Fukumori, 2000; Fukumori

et al., 1999] Next, a smoothing is applied in order to make physical changes from the

Kalman filter adjustments consistent with model physics. Finally, the model is run in

forward mode, forced by the wind stress field resulting from the previous two steps. (D.

Menemenlis, personal communication)

In this section, a model run using physical results from the forward model forced with

Kalman-filter derived winds is described. Model results for 1997-1998 are used to force the

biogeochemical model. This run was initialized at the end of 1996 from a test run that used

the unsmoothed Kalman filter model results.

5.2 Change to the Physical Model Variability

It has been shown that the Equatorial Pacific is the primary driver for the global net

variability of air-sea fluxes of both O2 and CO2 . Therefore, physical changes in this region

should be most important to changes in air-sea gas flux variability.

In Figure 5-1, it can be seen that the alteration of the wind field via the assimilation pro-

cedure does significantly improve the model’s representation of the observed SSH variability.

The high SSH associated with the strong El Niño of 1997-1998 is significantly stronger in

the constrained model than in the unconstrained. The low of the 1998 La Niña is also more

realistically captured due to the constraint.

However, Figure 5-2 illustrates that the differences between the physical state at depth of

the unconstrained and constrained model are actually quite small in the Equatorial Pacific.

The unconstrained model already does a good job of capturing the changes to the depth

of the 20◦C isotherm (D20) as the Equatorial Pacific shifts from an El Niño to La Niña

regime. The constrained model only improves this representation to a small degree at some

points, and to the same degree worsens the comparison at other times.

In Figure 5-3, timeseries mixed layer depths at four locations across the globe are shown.

The SSH constraint makes little difference to the model physical state at these locations.
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Figure 5-1: Time-longitude diagram for 1997-1998 of the SSH anomaly at the equator

between 50◦E and 260◦E in the unconstrained model (left), the constrained model (mid-

dle), and TOPEX/Poseidon satellite altimetry (right). Dashed contours indicate a negative

anomaly.
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Figure 5-2: The depth of the 20◦C isotherm (D20) for 1997-1998 in the unconstrained model

(dash), constrained model (bold dash), and TAO moorings (solid) [McPhaden et al., 1998]

at the equator and 250◦E, 235◦E, 220◦E, and 205◦E.
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Figure 5-3: Mixed layer depths for 1997-1998 in the unconstrained model (dash), constrained

model (bold dash), and at timeseries stations (solid): (a) BATS, (b) OWS C, (c) HOT, and

(d) KERFIX.
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Mixed layer depth comparisons for the entire length of the unconstrained model run are

presented and discussed in Section 3.1.1.

In addition, analysis of the global SSH variance in the unsmoothed Kalman filter result

for 1993-1998 indicates that the constrained model captures only 40% of the variance ob-

served by TOPEX/Poseidon. It was shown in Section 3.1.1 that the unconstrained model

already captures approximately 35% of the observed SSH variance. Thus, despite the sig-

nificant improvement seen in Figure 5-1, the global change in total SSH variance is actually

relatively small between the unconstrained and constrained model.

5.3 Comparison of Interannual Variability in Air-Sea Fluxes

Figure 5-4 illustrates that the change to air-sea flux variability is quite small. This is not

unexpected given the lack of significant physical change in the model interior.

The regional breakdown of the O2 and CO2 fluxes shown in Figure 5-5 indicates that

there are no significant changes to the location of the fluxes due to the SSH constraint.

Both O2 and CO2 fluxes are slightly different in magnitude in the Equatorial Pacific, likely

due to slight changes in the model behavior as it switches from the El Niño to the La Niña

state in this time period. The constrained model illustrates some shifts of mixing regions

in the Southern Ocean that alters the magnitude of anomalies in the Indian and Pacific

sectors, but these changes are cancellatory for both O2 and CO2. Overall, changes are very

small, particularly in comparison to the magnitude of the anomalies over the 1980-1998

period from the unconstrained run (Figures 4-16 and 4-17).

5.4 Summary

No significant change to interannual variability in air-sea fluxes of O2 and CO2 is found due

to the constraint of the physical model with TOPEX/Poseidon satellite altimetry.

However, these results should be considered preliminary for several reasons. First, the

method of constraining the physical model with the satellite data is still under development.

In addition, the basic physical model continues to be improved in its capacity to represent

of the ocean’s mean state. It is believed that these changes will allow the SSH constraint

to more effectively impact the model’s interior. (D. Menemenlis, personal communication)
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Figure 5-4: Global average fluxes from the 1997-1998 constrained model run (bold solid)

compared to the unconstrained model (solid): O2 flux (top) and CO2 flux (bottom). The

mean seasonal cycle and the trend from the unconstrained model (1980-1998) have been

removed from the timeseries, and smoothing to remove timescales shorter than one year

has been performed.

133



97.5 98 98.5

 -60

 -40 

 -20

0

20

40

60
T

m
ol

/y
r

97.5 98 98.5

 -60

 -40

 -20

0

20

40

60

T
m

ol
/y

r

97.5 98 98.5

 -60

 -40

 -20

0

20

40

60

T
m

ol
/y

r

97.5 98 98.5

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

P
gC

/y
r

97.5 98 98.5
 

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

P
gC

/y
r

97.5 98 98.5
 

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

P
gC

/y
r

>15N >15N

<15S <15S

15S-15N 15S-15N

Figure 5-5: Regional breakdown of O2 (left) and CO2 (right) fluxes in the Pacific (solid),

Atlantic (dash-dot), and Indian (dash). The constrained model is shown in bold and the

unconstrained model is not bolded.
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In addition, the run presented here is too short to draw any profound conclusions. More

effort is clearly needed to explore the potential for improving this type of biogeochemical

ocean models with data assimilation.
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Chapter 6

Interannual Variability of Land and

Ocean Sinks of Carbon Dioxide

When determining the global sinks of CO2 , the global budget for atmospheric CO2 can be

estimated by:

∆CO2 = F − O − B (6.1)

The observed global change in the atmospheric CO2 concentration (∆CO2) is measured at

sites across the globe. The global source of CO2 due from the burning of fossil fuels (F)

is known from industry data [Marland et al., 2001]. O is the ocean sink of CO2, and B is

the sink of CO2 into the terrestrial biosphere. Evidently, one of these two sinks needs to be

known in order to solve Equation 6.1 for the other sink.

In Figure 6-1, the solution of Equation 6.1 for the land CO2 sink is shown graphically.

Here, the ocean sink is taken from the offline biogeochemical model for 1980-1998. In the

atmospheric O2/N2 method, the observed atmospheric change in O2 is used to estimate the

land CO2 sink, and then Equation 6.1 is used to find the ocean sink. Despite valiant efforts

to quantify global CO2 sinks using these and other methods, the combination of sparse data

and many simplifying assumptions has resulted in a wide range of CO2 sink estimates with

large error bars. Estimates for the mean land sink range from from 0.4 ± 1.1 PgC/yr for

1977-1985 [Battle et al., 1996] to 3.3 ± 1.6 PgC/yr [Bender et al., 1996] for 1991 to 1994;

and for the mean ocean sink from <1.0 PgC/yr [Tans et al., 1990] for 1981 to 1987 to 2.3

137



± 0.7 PgC/yr [Langenfelds et al., 1999] for April 1978 - January 1997.

In the coming sections, estimates of O2 and CO2 air-sea flux variability generated from

the MITgcm are used with Equation 6.1 to provide new estimates of the land and ocean

CO2 sinks. Using the atmospheric O2/N2 method, estimates of the mean and interannual

variability of CO2 sinks are made that, for the first time, include an estimate of the in-

terannual variability in air-sea O2 fluxes. These sink estimates are compared to the model

estimates of ocean CO2 flux variability and the inferred land sink variability. All estimates

are compared to the recent atmospheric data inversion of Francey et al. [2001].

6.1 Impact of Variability in the Air-Sea Flux of O2 on O2/N2

Sink Estimates

The sinks of CO2 in the ocean and land biosphere can be estimated based on atmospheric

observations of O2/N2 and CO2 by taking advantage of the differing characteristics of O2

and CO2 exchange with the ocean [Keeling et al., 1996; Bender et al., 1996; Battle et al.,

2000; Manning, 2001]. In this method, it is assumed that over the time period of data

averaging, there is no net flux of O2 into or out of the global ocean. The solubility of CO2

in seawater allows a net CO2 exchange with the ocean. Fossil fuel burning is assumed to

increase atmospheric CO2 and decrease atmospheric O2 in a fixed ratio. Similarly, terrestrial

photosynthesis is assumed to use atmospheric CO2 and generate atmospheric O2 in a fixed

ratio. Equation 6.1 is used for the global budget for atmospheric CO2. Following Keeling

et al. [1996], Bender et al. [1996], Battle et al. [2000] and Manning [2001], the global budget

for atmospheric O2 can be estimated by:

∆O2 = αF F − αBB (6.2)

Here, ∆O2 is the observed global change in the atmospheric O2 concentration, F is the

global source of CO2 due to the burning of fossil fuels, O is the sink of CO2 in the ocean,

and B is the sink of CO2 into the terrestrial biosphere. The factors αF and αB are the

O2:C molar ratios describing O2 utilization with fossil fuel burning and O2 production with

terrestrial photosynthesis, respectively. Based on previous works, Manning [2001] estimates

αF = -1.39±0.04 and αB = -1.1±0.05. ∆O2 is measured as O2/N2 in the atmosphere, and
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Figure 6-1: Estimating interannual variability in land and ocean CO2 sinks using Equa-

tion 6.1: Fossil fuel emissions (F, solid), observed atmospheric CO2 trend (∆CO2, dash),

ocean sink (O, dash-dot), and land sink (B, dot). The observed atmospheric CO2 change

presented is SIO flask data from Barrow, Mauna Loa and South Pole [Keeling and Whorf,

2001] for 1980-1999, and Cape Grim data from Conway et al. [1994a] for 1985-1992 and

from the NOAA/CMDL network for July 1991 to 1999 (Andrew Manning, personal com-

munication). Fossil fuel data is from Marland et al. [2001]. The ocean sink is taken from

the model.
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translated to an atmospheric O2 concentration by the factor (0.027 per meg O2/N2 )/(1

Tmol O2).

It is stressed that in Equation 6.2, there is no term for the ocean interaction with O2.

This is because it is assumed that over the time period these equations are applied, there

is no net air-sea O2 flux. Yet, it has been shown in Chapter 4 that there is a quantifiable

interannual variability of O2 fluxes across the global ocean. These fluxes are due primarily

to the ENSO and NAO phenomena. To account for this variability in the estimates of CO2

sinks, Equation 6.2 can be rewritten as:

∆O2 = αF F − αBB − O2
′ (6.3)

Where O2
′ is the model-estimated interannual variability of the air-sea flux of O2 shown

in the top panel of Figure 4-16. The interannual variability in the air-sea flux of N2 is

assumed negligibly small [Keeling et al., 1998; Garcia and Keeling, 2001].

In Figure 6-2, the land and ocean sinks calculated with and without interannual vari-

ability in the air-sea flux of O2 are shown. For this calculation, fossil fuel data (F) is from

Marland et al. [2001], and CO2 and O2/N2 atmospheric data are from NOAA/CMDL data

at Alert, La Jolla, and Cape Grim (Andrew Manning, personal communication). All data

and model O2 flux estimates are averaged over 12 months, centered on April 1 and October

1 of each year.

The impact of CO2 data sparsity on the error of these results is estimated by com-

paring the global CO2 trend estimates using different combinations of stations from the

NOAA/CMDL network for the period 1984-1990 [Conway et al., 1994a]. In each combina-

tion of data sources, equal numbers of stations from the Northern and Southern Hemispheres

are used. Between 10 stations (5 each hemisphere) and 2 stations (1 each hemisphere) are

used in various combinations. It is found that the estimates of the interannual variability in

the global CO2 trend differ by 0.2 to 0.3 ppm/yr, which translates into an error of approxi-

mately 0.5 PgC/yr. This error estimate, combined with the error estimates for αF (±0.04),

αB(±0.05), and fossil fuel burning (±0.38) found in Table 2.5 of Manning [2001], allow the

calculation of the error bars shown as the bold solid vertical lines in Figure 6-2 (Land = ±

0.63 PgC/yr ; Ocean = ± 0.81 PgC/yr).

While there are only minor differences between the two estimates of land and ocean
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Figure 6-2: Land (top) and ocean (bottom) sinks of CO2 for October 1991 to April 1998.

Shown are sinks estimated by the O2/N2 method based on Equations 6.1 and 6.2 (bold

dashed), and the O2/N2 method with model-estimated interannual variability in the air-sea

O2 flux (bold solid) (i.e. Equations 6.1 and 6.3). The error bar for the O2/N2 method does

not include error for the neglect of air-sea O2 flux variability (bold solid vertical line).
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Table 6.1: Mean CO2 sinks calculated with and without O2
′

Mean CO2 Sink Estimates for October 1991 to April 1998 (PgC/yr)

- Land Sink Ocean Sink

without O2
′ 1.71 ± 0.63 1.53 ± 0.81

with O2
′ 1.70 ± 0.63 1.54 ± 0.81

sinks shown in Figure 6-2 over most of October 1991 to April 1998, there is a significant

difference during 1997-1998 when both the equatorial Pacific was in a period of a strong El

Niño, reducing O2 influx into the ocean, and the low phase of the NAO reduced convection,

also reducing the influx of O2 into the global ocean. Together, these phenomena created a

large positive (to the atmosphere) O2 flux anomaly. When the air-sea O2 flux variability

was assumed negligible, this source of O2 to the atmosphere was attributed to the land

biosphere, and a proportional land sink of CO2 was inferred. With the inclusion of the

model O2 flux variability, this O2 flux is accounted for as a net ocean O2 efflux, and this

results in an estimate for the land CO2 sink that is approximately 1 PgC/yr smaller and

an ocean sink estimate that is larger by the same amount. Thus, for estimates of the

interannual variability in CO2 sinks using the atmospheric O2/N2 method, the interannual

variability in air-sea flux of O2 should not be neglected. The error in these estimates should

be largest during periods when the NAO and ENSO cycles create O2 flux anomalies of the

same sign. The RMS error in the interannual sink estimate is 0.38 PgC/yrdue to O2 air-sea

flux variability.

In Table 6.1, it is shown that when the calculations illustrated in the Figure 6-2 are

performed using mean values for October 1991 to April 1998 for all variables, there is little

difference in the sink magnitude estimates. This indicates that while there is significant

error in estimates of the interannual variability in CO2 sinks using the O2/N2 method and

not accounting for air-sea O2 flux variability, the O2/N2 method does not appear have a

significant error due to O2 flux variability when it is used to estimate the mean sinks over

from October 1991 to April 1998.
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Admittedly, I have removed the long-term change in the O2 flux as part of the air-sea

flux trend because it was not possible to separate from model drift (see Section 4.2.3).

This prevents this work from estimating the impact of such trends on CO2 sink estimates.

Plattner et al. [2001] and Keeling and Garcia [2002] indicate that O2 outgassing induced by

ocean warming may significantly change estimates of mean CO2 sinks in the 1990’s.

6.2 Sink Estimates Using CO2 Data and Model Results

An alternative method for the calculation of variability of the land sink of CO2 is to use

Equation 6.1 with the model CO2 sink variability as the estimate for O (Figure 6-3). Despite

error in this mean estimate due to the temporal trend in the model estimate of the 19-

year mean CO2 sink, it is retained because of its close comparison to the data estimate of

Takahashi et al. [1999]. The same atmospheric data for CO2 (∆CO2) and fossil fuel burning

(F) data are used as in the previous calculation.

The study of Francey et al. [2001] shown in Figure 6-3 is an update of the work of

Rayner et al. [1999] that uses atmospheric observations of δ13C and CO2, with O2/N2 as a

long-term constraint, to estimate the land and ocean CO2 sinks (see Section 4.3). The error

of the Francey et al. [2001] result is estimated to be ±1 PgC/yr (Roger Francey, personal

communication).

The comparison of several sink estimates in Figure 6-3 illustrates a general agreement in

that the land sink has a larger variability than does the ocean sink. The O2/N2 estimates

estimate a significantly larger variability in the ocean CO2 sink than do the direct ocean

model estimate or the atmospheric inversion of Francey et al. [2001]. However, the large

error bars, particularly for the ocean sink, means that these estimates are essentially indis-

tinguishable. Additionally, considering that the model underrepresents physical variability

and therefore likely provides lower bound estimates of O2 flux variability, the additional

error in the O2/N2 method due to O2 flux variability may actually be larger than estimated

here. Some of the land sink variability clearly lies outside the error bars, and there is evi-

dence of coherent multi-year trends in the land sink variability that are captured by all the

estimates.

In Figure 6-4, the CO2 sinks estimate for the entire model period is shown. As indicated
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Figure 6-3: Land (top) and ocean (bottom) sinks of CO2 for 1992-1998. As in Figure 6-2,

shown are sinks estimated by the O2/N2 method without (bold dashed), and with model-

estimated O2 flux interannual variability (bold solid). In addition, this model’s CO2 ocean

sink variability estimate and the land sink inferred from Equation 6.1 (solid), and the result

of Francey et al. [2001] (bold dash-dot) are shown.
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Figure 6-4: Land (top) and ocean (bottom) sinks of CO2 for 1980-1998. This model’s CO2

ocean sink variability estimate (solid). The land sink is inferred from Equation 6.1 with

the observed CO2 trend from Alert, La Jolla, and Cape Grim in the 1990’s (solid); and

from the data source quoted in Figure 6-1 (dash). The result of Francey et al. [2001] (bold

dash-dot) for both the land and ocean sinks is also shown.
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in the caption, different data source for the atmospheric CO2 trend was used since Alert,

La Jolla and Cape Grim CO2 data is not available for the entire 1980-1998 time period. For

1980-1998, the model indicates a mean CO2 ocean sink of 1.79 PgC/yr with interannual

extremes of ±0.5 PgC/yr . The land sink is estimated to be 0.95 PgC/yr with interannual

extremes of ±1.9 PgC/yr.

Here, it is important to note the impact of the different CO2 data sources in the land

sink estimates for the 1990’s. The only difference between the solid and dashed line in the

land sink estimate in Figure 6-4 is the atmospheric CO2 data used. The error is larger

at some points than the ±0.5 error estimated when considering data sparsity only in the

NOAA/CMDL network, indicating potentially significant calibration differences between

the different networks (Roger Francey, personal communication). Caution is clearly needed

when using atmospheric CO2 data and when comparing sink estimates based on different

subsets of atmospheric data sources.

Figure 6-4 illustrates that the model-derived land sink estimate compares well to the

atmospheric inversion study of Francey et al. [2001] over the period July 1982 to April 1998.

Model error bars are difficult to estimate, but are likely to be at least as large as the ±1

PgC/yr estimated by Francey et al. [2001] when combined with error in the atmospheric

CO2. Given these large error bars, the estimates for both the land and ocean sinks are

indistinguishable.

6.3 Summary

A convergence of estimates of the magnitude of the land and ocean sink variability between

the most recent atmospheric inversions and ocean model estimates is found. Both ocean

model and atmosphere inversion studies find that the land sink variability is approximately

±2 PgC/yr, and ocean sink variability is less than ±1 PgC/yr. The temporal structure of

the ocean sink variability differs significantly between methods, and error bars remain large,

indicating that much work remains to be done to more precisely estimate the variability of

these sinks.

Given the likelihood that the MITgcm underestimates O2 flux variability, it is possible

that CO2 sink estimates using the atmospheric O2/N2 method under the assumption of
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negligible air-sea O2 flux variability have a larger error than estimated here. These results

indicate that this error is likely to be more significant on shorter timescales, and to be

reduced when atmospheric O2/N2 is used as a long-term constraint on sink estimates.
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Chapter 7

Conclusions

Using a modestly high-resolution ocean general circulation model, I investigate mechanisms

driving interannual variability in air-sea fluxes of CO2 and O2. This work indicates that

convective and advective processes are the primary drivers of air-sea flux variability for both

O2 and CO2.

In the global model, variability in the global air-sea O2 flux is primarily forced by

temporal changes in ocean circulation and mixing associated with the ENSO cycle in the

equatorial Pacific. Changes to the east-west slope of the thermocline and to wind-driven

upwelling alter the supply of low O2 waters from the thermocline to a large area of the

surface equatorial Pacific. El Niño reduces this supply and promotes a large reduction in

the net O2 ingassing in this region; La Niña has the opposite effect.

In addition, both the regional and global modeling studies presented here suggest that

there is significant air-sea O2 flux variability in the North Atlantic sector. Variability is

forced primarily by convective anomalies, typically associated with the NAO, that alter the

supply of low O2 waters from the deep ocean to the surface. These variations are counter-

balanced to some degree by changes in biogenic export which respond to nutrient variability

driven by the same convective forcing. Nevertheless, the rapid O2 air-sea exchange timescale

allows a net air-sea flux anomaly to occur before anomalies in biogenic export can remove

the entire O2 flux anomaly.

Model results suggest that the interannual variability in the air-sea flux of O2 has ex-

tremes of -70 to +100 Tmol/yr in the period 1980-1998. This variability implies a significant

error of up to ± 1 PgC/yr (RMS = 0.38 PgC/yr) in estimates of the interannual variability
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of land and ocean CO2 sinks using atmospheric O2/N2 under the assumption of negligible

air-sea O2 flux variability. The error is greatest in periods when extremes of the ENSO

and NAO cycles create O2 flux anomalies of the same sign, as occurred in 1997-1998. How-

ever, when estimates of mean CO2 sinks between October 1991 and April 1998 are made

using atmospheric O2/N2, the explicit inclusion of this model estimate of air-sea O2 flux

variability has a negligible impact on results.

Variability in modeled global CO2 air-sea fluxes is forced primarily by changes in sur-

face DIC due to variations in thermocline depth and upwelling associated with the ENSO

cycle in the equatorial Pacific. Temperature variability also due to ENSO damps CO2 flux

variability. Despite significant physical variability in the North Atlantic associated with the

NAO, CO2 flux variability is minimal in this region. Damping of CO2 air-sea exchange by

carbonate chemistry allows biogenic export to remove convectively-generated DIC anomalies

before significant air-sea flux anomalies occur.

The model estimates interannual extremes in the CO2 sink to be ±0.5 PgC/yr over

the period 1980-1998. Combining this estimate with observations of atmospheric CO2 and

fossil fuel emissions data allows the estimate of interannual extremes in the sinks into the

terrestrial biota of ± 1.9 PgC/yr for the same period. The magnitude and pattern of the

land sinks compare well to the recent atmosphere inversion estimate of Francey et al. [2001].

This work was undertaken in part because previous ocean general circulation models

were apparently unable to capture extratropical variability in the air-sea CO2 flux because

of coarse resolution or strong physical restoring below the mixed layer in the middle and

high latitudes [Winguth et al., 1994; LeQuéré et al., 2000]. Yet, I find, as do the previous

modeling studies, that the equatorial Pacific is the region dominant in the variability of

the air-sea CO2 flux. Improvement to model physical variability in the high latitudes with

this model does not substantially change the global air-sea CO2 flux variability from that

of LeQuéré et al. [2000], and, overall, there is only slightly more variability in the global

flux estimate from this model. However, both this model and almost certainly the model of

LeQuéré et al. [2000] substantially underestimate the physical variability of the real ocean,

and thus both may still underestimate air-sea flux gas variability. On the other hand, it

may be that additional large scale variability and the ocean’s small scale variability are not

first order controls on the air-sea flux variability of CO2.
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In parallel with this work, Francey et al. [2001] have been refining their method for

the inversion of atmospheric CO2, δ13C and O2/N2 for CO2 sinks. Through their inde-

pendent work, they find a much smaller ocean sink variability than their previous estimate

[Rayner et al., 1999]. Together with this work, there is the indication that ocean mod-

els and atmospheric data studies are converging toward agreement upon a relatively small

variability of the ocean CO2 sink of ± 0.5 to 1 PgC/yr, and a larger land sink variability

of approximately ± 2 PgC/yr. This convergence indicates that neither method is likely to

be missing processes essential to the CO2 sink variability in the real ocean. Yet, despite

agreeing on the amplitude of the sink variability the two estimates are quite different in

their temporal structure (Figure 6-4). There are many improvements to be made to both

ocean biogeochemical models and the atmospheric inversion techniques.

7.1 Key Model Issues

There is a significant underestimation of variability at the large scale in the physical model

used in this study. It is shown in Section 3.1 that the model captures only 35% of the

variance of sea surface height as measured by the TOPEX/Poseidon satellite altimeter and

averaged to 2◦x2◦. This estimate does not account for the upper ocean physical variability

that occurs due to mesoscale eddies which the model does not explicitly resolve, although

the 0.3◦x1◦ resolution in the tropics is eddy-permitting. Thus, the high frequency variability

of the physical model is little like the real ocean. It is unclear how much this underrep-

resentation, either at the large or small scale, impacts air-sea gas flux estimates. Yet, the

convergence of the model estimated air-sea CO2 flux variability with the atmospheric inver-

sion estimate of Francey et al. [2001] provides some confidence in the capacity of the model

to capture the key mechanisms driving air-sea flux interannual variability. These model

results indicate that the gas flux variability responds primarily to the large-scale physical

phenomena such as ENSO, and it is these features that the model does capture reasonably

well.

In the high latitudes of the North Atlantic, deep mixing in the model is too great, which

may lead to an overestimate of the net CO2 and O2 fluxes. In addition, mean export is

overrepresented in the North Atlantic which may contributes to overestimates of mean gas
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fluxes. The fact that the model estimates of the mean fluxes in this region agree with

independent data-based estimates is encouraging, but given the large areas over which both

model and data estimates are made, there is potential for the compensation of errors.

The export parameterization of this model is highly idealized. Comparisons of the mean

seasonal cycle of the O2 anomaly and ∆pCO2 indicate that seasonal nutrient cycles are un-

derrepresented by the model across most of the ocean. An explicit ecosystem model should

improve nutrient cycling, and may lead to better estimates of air-sea gas flux interannual

variability. However, the fact that LeQuéré et al. [2001] find that an explicit ecosystem

only slightly increases CO2 air-sea flux variability in the model of LeQuéré et al. [2000] may

indicate that the underrepresentation of annual nutrient cycles is not crucial to capturing

interannual variability of air-sea fluxes. Clearly, it will be important to explicitly test the

impact of improved representation of model nutrient cycles, and presumably of O2 anomaly

and ∆pCO2 cycles, on air-sea flux variability.

There is a significant trend in the model flux estimates for both O2 and CO2 and a

significant mean O2 efflux, although the mean CO2 flux influx compares well to Takahashi

et al. [1997, 1999]. The difference of the mean comparisons may be explained by Stephens

et al. [1998] who indicate that O2 fluxes are more sensitive to the properties of an ocean

general circulation model than are CO2 fluxes. This sensitivity arises because biological and

temperature drivers for air-sea fluxes are typically in sync over the annual cycle for O2, but

out of phase for CO2. This means that errors in model processes that drive O2 fluxes are

likely to be cumulative, while errors in CO2 fluxes are likely to be damped. Flux errors for

CO2 are further damped by a slow air-sea exchange timescale. For this work, the 19-year

mean O2 flux at each point is simply subtracted away, and air-sea flux trends are removed by

a linear fit in time at each point in space. These features may be better addressed in future

work by a longer model spin-up and improved representation of Southern Ocean physics.

Also desirable would be to further study the impact of parameterizations for export, anoxic

respiration, and remineralization on these fluxes and to improve the performance of these

parameterizations. As computational power grows, these options will become increasingly

feasible and should be explored.
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7.2 Next Steps

In Chapter 5, it is shown that an offline model run for 1997-1998 that was forced with

physical results from a model constrained with altimetric data exhibited little difference in

air-sea gas flux variability in comparison to the unconstrained run presented in Chapters

3 and 4. This is because the physical changes at the surface of the model caused by the

constraint do not propagate significantly into the interior and improve the structure of the

mean thermocline or its variability. The reasons for this problem and possible solutions

are active areas of research at the present time. The use of satellite altimetry to constrain

physical models and increase their physical variability is an important direction for future

work.

When the export parameterization described in Section 3.3 is used in future studies,

it should be improved by choosing regions based on biogeochemical or dynamical regimes,

instead of latitude bands. Smoothing of the transitions between the α regions would ame-

liorate the sharp gradients in mean gas fluxes, though this would be largely a cosmetic

improvement and should not significantly alter the mean or variability of the gas fluxes

estimated by the model.

As previously indicated, an explicit ecosystem model should help to improve nutrient

cycling and, therefore, seasonal O2 and CO2 air-sea fluxes. It is possible that improving

seasonal cycles of gas fluxes will have important implications for interannual variability in

air-sea gas fluxes. The addition of iron limitation to an explicit ecosystem model may be

crucial for the representation of nutrient cycling, especially in the equatorial Pacific and the

Southern Ocean [Moore et al., 2002]. With either a particle export scheme or an ecosystem

model, an explicit alkalinity pool would likely increase ∆pCO2 variability, particularly at

high latitudes, and also improve model surface DIC concentrations. Along with improve-

ments to model physics in the equatorial Pacific, the addition of a DOC pool may help to

reduce the region of deep anoxia in the model that contributes to an overestimate of the

global mean O2 flux [Aumont et al., 1999]. Finally, an ecosystem model that allows for

long-term ecosystem change due to shifts in dominant species, nitrogen fixation, and other

processes, although still on the scientific horizon, would likely be useful in this application

for improving our understanding of the observed phenomena.
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These results indicate a dominance of the equatorial Pacific to global air-sea flux vari-

ability of both CO2 and O2. Air-sea gas flux variability and its driving mechanisms in this

region could be analyzed further and compared to available data. A regional model with

greater resolution could be used to determine whether the resolution of this global model

is adequate to capture regional dynamics [Aumont et al., 1999], and to estimate the full

extent of air-sea gas flux variability in the equatorial Pacific. Additional study could also

be done to better understand how the different air-sea exchange timescales for O2 and CO2

interact with ocean physics to make the O2 flux timeseries lead the SOI index while the

CO2 flux lags.

The impact of the physics and biogeochemistry of the Southern Ocean on O2 and CO2

air-sea flux variability is an important future direction. It is not fully clear if the Gent-

McWilliams eddy parameterization in the model is damping mean fluxes and variability.

Additional experiments with and more analysis of this model could be undertaken to un-

derstand the impacts of model physics in the Southern Ocean on air-sea gas fluxes. Bio-

geochemical variability, which is damped in this model, may become more realistic with

the use of an ecosystem model that includes biological iron limitation and geochemical iron

cycling [Parekh et al., 2002]. Being such a large sector of the global ocean, the Southern

Ocean may have a significant impact on gas flux variability that is perhaps only hinted at

(Figure 4-17), but not fully captured, in this work. Thus, the physics and biogeochemistry

of the Southern Ocean provides a fertile ground for future work.

Finally, there is a pressing need for additional data. Measurements of atmospheric

CO2 and O2/N2 are sparse, imparting significant error to atmospheric inversion efforts and

complicating efforts to verify model results. If the O2/N2 method is to reliably estimate

interannual variability in the land and ocean CO2 sinks, error due to interannual variability

in air-sea O2 fluxes needs to be addressed. With appropriate measurements, particularly

in the equatorial Pacific and North Atlantic, these model results indicate that there is a

possibility of quantifying the bulk of the O2 flux variability and constraining CO2 fluxes

using the atmospheric O2/N2 method on interannual timescales. The continuous O2 ana-

lyzer of Manning [2001] could be used to expand the network of O2/N2 methods across the

globe, and accomplish such quantification. Model estimates such as the one presented here

might also be used to help interpret O2/N2 measurements on interannual timescales, but
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they themselves have significant error that is difficult to quantify.

Ocean/atmosphere ∆pCO2 measurements are also needed. Results from this model

could be used to improve understanding of uncertainty due to data sparsity and interpolation

in the ∆pCO2 climatology of Takahashi et al. [1997, 1999], and could help to guide additional

data collection. The ∆pCO2 surveys discussed by Chavez et al. [1999] in the equatorial

Pacific during various stages of the ENSO cycle have been highly informative and the

continuation and expansion of this work is important. Physical and biogeochemical data

from the Southern Ocean is particularly lacking despite indications that the region may

be very important to many pieces of the global climate puzzle. Measurement campaigns

designed to significantly increase the spatial and temporal density of the Southern Ocean

observations should be seriously considered.
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Appendix A

NPZD Model

In this appendix, I illustrate that an NPZ model similar in form to that of Dutkiewicz

et al. [2001] can be reduced to the biological sink term in Equation 3.6 when a steady state

assumption is made. There is evidence that the steady state approximation, although often

made, may not be sufficient to capture the mean state of ocean biogeochemistry due to the

influence of mesoscale eddies (G. Flierl, personal communication). I proceed acknowledging

that important controls on export may be omitted.

In the below equations, four compartments are represented: inorganic phosphorus (P),

dissolved organic phosphorus (DOP), phytoplankton (PHY) and zooplankton (Z). S is the

supply of inorganic phosphorus; µP is the growth rate for phytoplankton on inorganic

phosphorus; Po and PHYo are half-saturation constants; r is the rate of regeneration of

DOP; g is the grazing rate of Z on PHY; e is the excretion rate of DOP; and m is the

mortality of zooplankton. All dead zooplankton fall out of the surface layer, and thus mZ

is the export rate.

dP

dt
= −µP · PHY · P

P + Po
+ rDOP + S (A.1)

dPHY

dt
= µP · PHY · P

P + Po
− gZ

PHY

PHY + PHY o
(A.2)

dDOP

dt
= −rDOP + eZ (A.3)
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dZ

dt
= gZ

PHY

PHY + PHY o
− eZ − mZ (A.4)

Assuming steady state and summing Equations A.1 to A.4, we find:

S = mZ (A.5)

Or that export production and supply must be equal in steady state. From Equation A.1

in steady state:

S = µP · PHY · P

P + Po
− rDOP (A.6)

Equating A.5 and A.6:

Z =
1
m

(µP · PHY · P

P + Po
− rDOP ) (A.7)

From equation A.2 in steady state:

µP
P

P + Po
= gZ

1
PHY + PHY o

(A.8)

Substituting A.7 in A.8:

µP
P

P + Po
=

g

m
(µP

P

P + Po
− rDOP

PHY
) · PHY

PHY + PHY o
(A.9)

I estimate recycled production as the rate of DOP remineralization normalized by the

phytoplankton concentration, and thus can define the ratio of new (total - regenerated

production) to total production:

f =
µP

P
P+Po − rDOP

PHY

µP
P

P+Po

(A.10)

Substituting this definition into Equation A.9, we find the steady state phytoplankton

concentration:

PHY =
1

g·f
m − 1

· PHY o (A.11)

With Equation A.11 and the definition of µP = µo
I

I+Io , a constant export parameter

modified by light availability, Equation A.6 now becomes:
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S =
µo

g·f
m − 1

· PHY o · I

I + Io
· P

P + Po
(A.12)

and thus:

α =
µo

g·f
m − 1

· PHY o (A.13)

and

S = α · I

I + Io
· P

P + Po
(A.14)

Where S = export as shown above.

Below we present values from the literature for the NPZ model inputs that are required

to solve Equation A.13. These values are found in the literature review of Dutkiewicz et al.

[2001], Six and Maier-Reimer [1996] and Sarmiento et al. [1993].

Range of NPZ parameters for α calculation

parameter symbol range units

phytoplankton maximum growth rate µo 0.5 - 4 d−1

zooplankton mortality rate m 0.02 - 0.05 d−1

zooplankton grazing rate g 0.625 - 1.0 d−1

f-ratio f 0.1 - 1.0

half-saturation for phytoplankton PHYo 0.03 - 0.05 µmol PO4 kg−1

Given these values, a theoretical range for α is 4x10−9 to 1x10−5 µmol PO4 kg−1 s−1.

For the solution of a globally heterogeneous export parameter (Section 3.3, I make a

rough calculation of a starting value for α given an average surface phosphate concentration

of 0.5 µmol PO4 kg−1 from the WOA98 climatology and a global fallout timescale of 9

months, and find an initial α = 2.3x10−8 µmol PO4 kg−1 s−1. This α is clearly consistent

with the range suggested by this analysis.
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LeQuéré, C., O. Aumont, P. Monfray, and J. C. Orr, Climate-induced variability of ocean
stratification, marine biology, and CO2 during 1979 to 1999, submitted to J. Geophys.
Res., 2001.

Levitus, S., and T. Boyer, World Ocean Atlas 1994 Volume 4: Temperature, Tech. Rep. 4,
NOAA Atlas NESDIS, Washington D.C., 1994.

Lewis, M., N. Kuring, and C. Yentsch, Global patterns of ocean transparency: Implications
for the new production of the open ocean, J. Geophys. Res, 93, 6847–6856, 1988.

Mahlman, J., Science and nonscience concerning human-caused climate warming, Annual
Review: Energy Environment, 23, 83–105, 1998.

Maier-Reimer, E., Geochemical cycles in an ocean general circulation model. Preindustrial
tracer distributions, Global Biogeochem. Cycles, 7(3), 645–677, 1993.

Manabe, S., and R. Wetherald, Thermal equilibrium of the atmosphere with a given distri-
bution of relative humidity, J. Atmos. Sci, 24, 241–259, 1967.

Manning, A. C., Temporal variability of atmospheric oxygen from both continuous measure-
ments and a flask sampling network: Tools for studying the global carbon cycle, Ph.D.
thesis, University of California, San Diego, 2001.

Marland, G., T. Boden, and R. Andres, Global, Regional, and National Annual CO2 Emis-
sions from Fossil-Fuel Burning, Cement Production, and Gas Flaring: 1751-1998. In
Trends: A Compendium of Data on Global Change, Tech. rep., Carbon Dioxide Informa-
tion Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak
Ridge, Tenn. USA, 2001.

Marshall, J., and F. Molteni, Toward a dynamical understanding of planetary-scale flow
regimes, J. Atmos. Sci., 50(12), 1792–1818, 1993.

Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C.Heisey, A finite volume, incompressible
Navier-Stokes model for studies of the ocean on parallel computers, J. Geophys. Res, 102,
5753–5766, 1997a.

Marshall, J., C. Hill, L. Perelman, and A. Adcroft, Hydrostatic, quasi-hydrostatic and
non-hydrostatic ocean modeling, J. Geophys. Res, 102, 5733–5752, 1997b.

165



Martin, J. H., Glacial-interglacial CO2 change: The iron hypothesis, Paleoceanography, 5(1),
1–13, 1990.

Matear, R., A. Hirst, and B. McNeil, Changes in dissolved oxygen in the Southen Ocean
with climate change, Geochem. Geophys. Geosyst., 1(Paper no. 2000GC000086), 2000.

McGillicuddy, D., A. Robinson, D. Seigel, H. Jannasch, R. Johnson, T. Dickey, J. Mc-
Neil, A. Michaels, and A. Knap, Influence of mesoscale eddies on new production in the
Sargasso Sea, Nature, 394, 263–266, 1998.

McKinley, G. A., M. J. Follows, and J. C. Marshall, Interannual variability of the air-sea
flux of oxygen in the North Atlantic, Geophys. Res. Let., 27(18), 2933–2936, 2000.

McPhaden, M. J., et al., The Tropical Ocean-Global Atmosphere observing system: A
decade of progress, J. Geophys. Res., 103(C7), 14,169–14,240, 1998.

Melillo, J. M., A. D. McGuire, D. W. Kicklighter, B. Moore III, C. J. Vorosmarty, and A. L.
Schloss, Global climate change and terrestrial net primary production, Nature, 363, 1993.

Millero, F. J., K. Lee, and M. Roche, Distribution of alkalinity in the surface waters of the
major oceans, Mar. Chem., 60, 111–130, 1998.

Moore, J., S. Doney, J. Kleypas, D. Glover, and I. Fung, An intermediate complexity marine
ecosystem model for the global domain, Deep-Sea Res. II, 49(1-3), 403–462, 2002.

Morel, A., Available, usable, and stored radiant energy in relation to marine photosynthesis,
Deep-Sea Res., 25, 673–68, 1978.

Najjar, R., and R. Keeling, Analysis of the mean annual cycle of the dissolved oxygen
anomaly in the World Ocean, J. Mar. Res., 55, 117–151, 1997.

Najjar, R., and R. Keeling, Mean annual cycle of the air-sea oxygen flux: A global view,
Global Biogeochem. Cycles, 14(2), 573–584, 2000.

Najjar, R. G., J. L. Sarmiento, and J. Toggweiler, Downward transport and fate of organic
matter i the ocean: Simulations with a general circulation model, Global Biogeochem.
Cycles, 6(1), 45–76, 1992.

North, G., R. Cahalan, and J. Coakley, Energy balance climate models, Rev. of Geophys.
and Space Phys., 19, 91–121, 1981.

Ono, S., A. Ennyu, R. Najjar, and N. Bates, Shallow remineralization in the Sargasso Sea
estimated from seasonal variations in oxygen, dissolved inorganic carbon and nitrate,
Deep-Sea Res. II, 48, 1567–1582, 2001.

Orr, J., OCMIP evaluation of deep ocean circulation, Research GAIM, 4(2), 5, 2001.

Orr, J., R. Najjar, C. Sabine, and F. Joos, Ocean Carbon-Cycle Model Intercomparison
Project 2: Abiotic-HOWTO (http://www.ipsl.jussieu.fr/OCMIP/), 2000.
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