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Influence of Air Quality Model Resolution on Uncertainty Associated with Health Impacts 

Tammy M. Thompson∗† and Noelle E. Selin* 

Abstract 

We evaluate the uncertainty associated with regional air quality modeling grid resolution when 
calculating the health benefits of proposed air quality regulations.  Using a regional photochemical 
model (CAMx), we ran two modeling episodes (a 2006 basecase and a 2018 attainment demonstration, 
both for Houston, Texas) at 36, 12, 4 and 2 km resolution.  The basecase model performance was 
evaluated for each resolution for both monitor-based and population-weighted calculations of daily 
maximum 8-hour averaged ozone.  Results from each resolution were more similar to each other than 
they are to actual measured values.  However, the model performance improved when population 
weighted ozone concentration was used as the metric versus the standard daily maximum ozone 
concentrations at monitor site locations.  Then population-weighted ozone concentrations were used to 
calculate the estimated health impacts of modeled ozone reduction from the basecase to the attainment 
demonstration including the 95% confidence intervals associated with each impact from concentration-
response functions.  We found that estimated avoided mortalities were not significantly different using 
coarse resolution, although 36 km resolution may over predict some potential health impacts. Given the 
cost/benefit analyses requirements of the Clean Air Act, the uncertainty associated with human health 
impacts and therefore the results reported in this study, we conclude that population weighted ozone 
concentrations obtained using regional photochemical models at 36 km resolution are meaningful 
relative to values obtained using fine (12 km or finer) resolution modeling.  This result opens up the 
possibility for uncertainty analyses on 36 km resolution air quality modeling results, which are on 
average 10 times more computationally efficient. 

Contents 

1. INTRODUCTION .......................................................................................................................................... 1 
2. METHODS .................................................................................................................................................... 4 

2.1  Comprehensive Air Quality Model with Extensions (CAMx) .............................................................. 4 
2.2  Variable Grid Performance Analysis ..................................................................................................... 5 
2.3  Health Impacts ....................................................................................................................................... 6 

3. COMPARISON OF MONITOR-BASED AND POPULATION-BASED PERFORMANCE 
EVALUATION .................................................................................................................................................. 6 

3.1  2006 Base Case: Monitor-based Analysis ............................................................................................. 6 
3.2  2006 Base Case: Population-Weighted Analysis ................................................................................... 7 
3.3  2006 Basecase vs 2018 Control Case: Population-Weighted Comparison ............................................ 8 

4. UNCERTAINTY ANALYSIS OF HEALTH IMPACTS AT VARYING MODEL RESOLUTION ......... 10 
5. ERROR ANALYSIS AND APPLICABILITY TO OTHER REGIONS ..................................................... 11 
6. CONCLUSIONS AND IMPLICATIONS FOR REGULATORY APPROACH ........................................ 11 
7. REFERENCES ............................................................................................................................................. 12 

 

1. INTRODUCTION 

Ground level ozone air pollution has been linked to adverse human health impacts (EPA 
2010a) and is regulated in the United States by the Environmental Protection Agency (EPA) with 
the goal of protecting health.  In implementing these regulations, states use results from air 
quality models to demonstrate compliance (called attainment demonstrations).  While many 
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elements of ozone concentration and impacts are uncertain (including emissions, chemistry, and 
health impacts), model resolution requirements make uncertainty analyses in attainment 
demonstrations unfeasible.  However, understanding the true projected benefits of ozone 
regulation, as the Clean Air Act also mandates, requires uncertainty analysis.  Here, we compare 
the variation associated with simulated ozone at various model resolutions with uncertainty in 
estimated human health impacts, applying population-weighted concentrations.  We use the 
results of this analysis to evaluate the potential for using coarser-scale model resolution for 
uncertainty analyses of prospective ozone regulations. 

Air quality modeling is applied extensively in the U.S. to assess implementation of air quality 
standards. Many U.S. counties are in non-attainment of the 2008 EPA National Ambient Air 
Quality Standards (NAAQS) standard of 75 ppb. Many more will be designated non-attainment 
if the standard is decreased in 2011, as planned.  Non-attainment means that the three year 
average of the fourth highest 8-hour average ozone concentration (called a “design value”) at any 
monitor is greater than the standard.  Where non-attainment occurs, states are charged with 
developing an attainment demonstration to show how they plan to meet the standard.  Because 
the formation of ozone occurs in complex, non-linear chemical reactions between nitrogen 
oxides (NOx) and volatile organic compounds (VOCs), attainment demonstrations require air 
quality modeling to help develop and evaluate pollution control strategies. At a minimum, EPA 
requires a resolution of 12 km by 12 km or smaller for attainment demonstrations using approved 
air quality models (with coarse resolution grid cells extending over all potentially contributing 
sources), but recommends that each case be evaluated independently to identify the potential 
model prediction improvements associated with finer scale resolution.  

Extensive analyses in the atmospheric chemistry literature have evaluated the impact of model 
resolution on ozone production (Arunachalam et al., 2006; Cohen et al., 2006; Jang et al., 1995; 
Tie et al., 2010; Valari & Menut, 2008). Eulerian photochemical air quality models instantly and 
homogeneously disperse low level emissions (including ozone precursors NOx and VOCs) 
throughout the grid cell.  This spatial averaging impacts the chemistry by smoothing 
concentration gradients of precursors over large areas, which in some cases has shown to reduce 
modeled ozone titration effects and ozone formation hotspots.  As a result, many studies have 
found that larger scale resolution (> 12 km grid cells) leads to an under-prediction of daily 
maximum 8 hour ozone averages, and an over-prediction of daily minimum 8 hour ozone 
averages (Jang et al., 1995; Arunachalam et al., 2006; Tie et al., 2010). Some studies indicate 
that 12 km resolution is often not fine enough to capture sharp ozone concentration gradients that 
can occur near large sources of precursors, like power plants or dense urban areas with a lot of 
traffic (Valeri & Menut, 2008; Kumar & Russell, 1995). 

While previous studies have assessed the errors in predicted ozone versus monitor 
concentrations, it is unclear what the impact of resolution-based errors are on predicted benefits 
of regulation. Section 812 of the Clean Air Act (CAA) requires the EPA to conduct a cost/benefit 
analysis of the impact of that act (EPA, 2011). As part of the latest periodic assessment, EPA 
conducted an uncertainty analysis on the CAA and the latest standards by comparing estimated 
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human health impacts of ozone and particulate matter concentrations in 2020 under the 
environmental regulation mandated by the CAA, versus likely concentrations of those two 
pollutants if the CAA were not implemented.  While the uncertainty analysis addressed relative 
potential impacts of many uncertainties, probability distributions were included only for 
concentration response functions. With respect to atmospheric uncertainties, the EPA argued that 
errors in ozone benefits using a 12 km grid are likely minor, but primarily because the benefits 
are far outweighed by PM reductions; they did not quantitatively compare resolution. These 
types of analyses are not assessed during attainment demonstrations; previously, Wesson et al. 
(2010) noted this disconnect and argue that multi-pollutant strategies are more effective than 
traditional attainment strategies at reducing population risk. The National Research Council 
(NRC) has also criticized the lack of comprehensive uncertainty analyses in the evaluation of 
environmental policy options, calling for probabilistic multi-source uncertainty analyses (NRC, 
2002). 

A growing literature has used regional modeling to assess the potential impacts of global 
climate change and future emissions on ozone concentrations (Selin et al., 2009; Chang et al., 
2010; Bell et al., 2007; West et al., 2007; Tagaris et al., 2009; Knowlton et al. 2004). Bell et al. 
(2007) calculated a 0.11% to 0.27% increase (the 95% confidence interval) in percent change in 
mortality across 31 cities in the U.S. based on the difference between modeled maximum daily 
ozone concentrations in five summers each around 2050 and the 1990s.  Similarly, Knowlton et 
al. (2004) projected a 4.5% increase on average in acute mortality in New York State in 2050 
due to climate change.  Tagaris et al. (2009) evaluated the uncertainty associated with 
meteorological conditions based on the range of temperature and humidity values modeled by 
several global change models, concluding that uncertainty due to meteorology was larger than 
uncertainty associated with human health impacts.  All of these studies used resolution of 36 km 
or coarser from climate models. Given the stochastic nature of the climate system, ensemble 
analyses of future projected ozone changes, incorporating uncertainties, would be beneficial to 
produce probabilistic information for decision-making (NRC, 2002). 

Here, we address the disconnect between methodologies for attainment demonstrations and 
for impacts analysis. We evaluate the impact on modeled potential ozone exposure and 
calculated human health response uncertainty resulting from the temporal and spatial smoothing 
seen in coarse grid domains (Jang et al., 1995; Arunachalam et al., 2006; Tie et al., 2010) due to 
the spatial smoothing of ozone precursors, which can eliminate NOx titration and hot spot 
formation.  We focus on comparing the relative uncertainty associated with model resolution and 
resulting predicted ambient concentrations, with uncertainty associated with projected human 
health impacts. We use this comparison to identify a resolution appropriate for impacts analysis 
uncertainty, taking into account relative errors and computational limitations.  
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2. METHODS 

2.1 Comprehensive Air Quality Model with Extensions (CAMx) 

We use CAMx (www.camx.com), an EPA-approved regional air quality model (EPA, 2007).  
We use a well-documented air quality episode developed in part during the Texas Air Quality 
Study II (TexAQSII) (TCEQ, 2006; TCEQ, 2010b). The episode was created for the 
Houston/Galveston/Brazoria (HGB) non-attainment area and includes a 2006 basecase and a 
2018 attainment demonstration scenario.  Emissions inventories were speciated, and spatially 
and temporally processed using the Emissions Preprocessing System (EPS3).  The 2006 basecase 
inventory represents actual 2006 emissions, while the 2018 emissions inventories were created to 
demonstrate HGB attainment with the 1997 ozone standard and includes proposed controls on 
ozone precursors (TCEQ, 2010a).  Resolution of the original episode includes a coarse parent 
grid at 36 km, and three nested grids at 12 km, 4 km, and 2 km (Figure 1). Meteorological inputs 
are consistent in both scenarios and were developed using the fifth generation Penn State/NCAR 
mesoscale model MM5 (Grell et al., 1994) for August 13-September 15, 2006; for the 2 km 
domain, meteorological data is interpolated by CAMx from 4 km. A detailed description of the 
episode is provided by the Texas Commission on Environmental Quality TCEQ (2010a). 
Performance of the episode was evaluated previously (TCEQ, 2010a), and met EPA criteria (+-
15% for bias and error as described below for 1 hour ozone concentrations with a 60 ppb 
threshold). 
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Figure 1.  CAMx Modeling domain. For each resolution only the modeling results within 

the area covered by the 2 km domain (the HGB area), shown above, are used.  

2.2   Variable Grid Performance Analysis 

We focus here on the HGB area (Figure 1, red square). We conduct four simulations each for 
the two cases (2006 basecase and 2018 control case), with increasingly coarse resolution over the 
HGB area (2 km, 4 km, 12 km, and 36 km). We evaluate the performance of the 2006 basecase 
in reproducing daily maximum 8 hour averaged ozone concentrations at air quality monitors in 
the region.  This metric is selected for evaluation because it determines attainment and it is 
necessary for input into concentration-response functions for impact analysis; this metric is not 
required by EPA performance evaluation. We use the statistical measures Mean Normalized Bias 
(MNB) and Mean Normalized Gross Error (MNGE) as shown in Equation 1 and Equation 2 
respectively.   

( )
%100*

1

1
∑ 







 −=
N

Obs

ObsModel

N
MNB                     (1) 

 

%100*
1

1
∑ 









 −
=

N

Obs

ObsModel

N
MNGE          (2) 



 
 

6 
 

2.3 Health Impacts 

For our analysis of health impacts and potential benefits, we use maximum daily population 
weighted concentrations (MPop) as a surrogate for exposure for both model and measurement 
calculated using Equation 3.   

 

MPop= 

{ }
∑

∑

g
g

g
gg

p

cp max

                (3)  

where pg is the population in grid cell g, and cg is the maximum 8 hour ozone concentration in 
grid cell g. Population distribution is from U.S. Census data, mapped using Geographical 
Information System (GIS) software. For the base case, year 2007 is used, and for the 2018 policy 
case, projected 2015 population is applied.  For population-weighted analysis for monitor data, 
only those grid cells with monitors located in them are used in the calculation. This metric 
represents a rough but best available and commonly-used estimate for the potential for human 
exposure. In reality, exposure depends not only on the ambient concentration of pollutants at any 
given time and location, but also on the daily patterns of people being exposed: when, where and 
how they travel to and from activities and their initial health (EPA, 2010b). The potential 
impacts on human health of changes in ozone concentrations are calculated by multiplying 
population-weighted concentrations by concentration response functions for acute mortality, 
respiratory hospital admissions (adults over 65 yrs), respiratory symptom days, minor restricted 
activity day, asthma attacks, and bronchodilator usage.  We use the survey of Bickel and 
Friedrich (2005) to specify these functions and related 95% confidence intervals, assuming a 
linear relationship between daily maximum 8 hour ozone concentrations and impacts, and no 
minimum health impact threshold. For baseline mortality rate, we used the average rate for 
developed countries from Lopez et al. (2006) 

3. COMPARISON OF MONITOR-BASED AND POPULATION-BASED 
PERFORMANCE EVALUATION 

3.1 2006 Basecase: Monitor-based Analysis 

We first evaluated the performance of the 2006 basecase episode on the daily maximum 8 
hour ozone concentrations modeled for each of the air quality monitors located in the HGB 
domain for each of the four spatial resolution runs. Figure 2a shows the error (Equation 2) in 
comparing monitor values to simulated concentrations in the grid cell containing the monitor (at 
each resolution).  Error increases from 25% to 74% as model resolution increases from 2 km to 
36 km.  Figure 2b compares the difference between the three coarser resolutions relative to the 2 
km fine scale modeling result; the difference in predicted ozone between coarser and finer scale 
resolution ranges from 1%-15%.  We conclude from this comparison that results from the 
different resolutions are more similar to each other than they are to actual measured values. 
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Figure 2. (a): Model Data vs. Measured Data: Model error comparing CAMx results for four 

grid resolution runs for the 2006 basecase to measured concentrations at all air quality 

monitor sites in the 2 km domain. Bias and error results are approximately the same 

due to a high bias of the model, so only error is shown in Figure 2a. (b): “Coarse” 

Model Data vs. “Fine” Model Data: Model Error for modeled “coarse” resolution ozone 

concentrations compared with modeled 2k “fine” resolution ozone concentrations. 

3.2 2006 Base Case: Population-weighted Analysis 

To assess a metric more relevant to health impacts, we compared the ability of different 
model resolution to reproduce population-weighted concentration. Figure 3 shows the impact of 
resolution on the population-weighted concentrations as modeled using the 2006 basecase.  
These results are compared to the measured concentrations at the monitors within the HGB 
domain.  Higher-resolution modeling (4 or 2 km) exhibits no clear benefit in comparison with 12 
km resolution when considering population-weighted concentrations. The 36 km simulation is 
biased high (by 3 ppb resolution relative to finer scale model results); however, on average 
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across all monitor locations, modeled concentrations are 10 ppb higher than measured 
concentrations. 

Figure 3. Population-weighted maximum ozone concentration for each resolution from the 

2006 episode compared to the population-weighted maximum ozone concentration 

calculated from the measured values at the monitors using the 2 km resolution. 

The 2006 basecase episode over-estimates the population weighted ozone concentrations on 
most days (Figure 3).  This bias is consistent with the monitor-based results presented in Section 
3.1 above. Additionally, the model is not able to consistently capture the daily variability of the 
measured results.  However, the results are improved over the standard performance evaluation 
statistics for 12 km and 36 km resolution as presented in Figure 2.  The mean normalized error of 
the population weighted daily maximum 8 hour ozone concentrations modeled using the 2006 
basecase (and only cells containing monitors) compared to population weighted measured 
concentrations at air quality monitors average across the episode is 26%, 27%, 24% and 32% for 
2 km, 4 km, 12 km, and 36 km resolution respectively.   

3.3 2006 Basecase vs 2018 Control Case: Population-weighted Comparison 

We compared population-weighted ozone changes between the 2006 basecase with the 2018 
control case, to identify the variation in concentration between different resolutions for benefits 
analysis. Figure 4 shows the maximum population-weighted concentration (Equation 3) 
calculated for each day of both the 2006 and 2018 episodes, using the fine resolution (2 km) 
modeling runs. Also shown are the population-weighted concentrations using measured monitor 
data and the HGB domain.  
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Figure 4. Population weighted daily maximum 8 hour averaged ozone concentrations using 

fine scale 2 km population and concentration data from monitors, and modeled values 

from each of the runs. 

Figure 5 shows the change in population weighted 8 hour ozone concentrations from base 
case 2006 model data to control case 2018 model data.  Based on these results, the control 
scenarios as proposed by the TCEQ in the 2018 episode clearly impact the modeled ozone 
concentrations, with an average 10 ppb decrease in both population weighted concentrations and 
maximum daily 8 hour ozone concentration from 2006 basecase results.  The calculated ozone 
decrease differs depending on what model resolution is used:  the average decrease is 8 ppb for 
both the 2 km and 4 km model resolutions, 10 ppb for the 12 km model resolution, and 12 ppb 
for the 36 km resolution. For comparison, the average change in the fourth highest daily 
maximum 8 hour ozone at all monitor locations only is 8 ppb, 7 ppb, 7 ppb and 6 ppb 
respectively. 
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Figure 5.  Impact of 2018 control strategy (2018 Control case – 2006 Base case) on daily 

maximum 8 hour ozone population weighted ozone concentration by resolution. 

4. UNCERTAINTY ANALYSIS OF HEALTH IMPACTS AT VARYING MODEL 
RESOLUTION 

We use the change in population weighted daily maximum 8 hour ozone shown above in 
Figure 5, averaged across all days of the episode, to calculate the expected health benefits from 
the Houston attainment demonstration. We use these values to compare the estimated benefits 
that would be calculated based on concentrations predicted at the four resolutions, and 
concentration-response functions and 95% confidence intervals as described above. 

Table 1 shows the calculated change in mortalities and morbidities between 2006-2018, based 
on concentration information from the four different modeling resolutions. Also shown are the 
total number of cases in 2006 calculated using data from air quality monitors.  The mean (5) and 
95% confidence interval (2-7) for the change in mortalities is identical up to 12 km.  For 36 km 
resolution, the mean is 7 and 95% confidence interval 2-9.  Basecase (2006) mortality is 
calculated to be between 15 and 58 deaths per ozone month (May-September) due to acute 
exposure, with a mean at 44.  

For avoided respiratory hospital admissions (adults >65 years of age) and avoided 
bronchodilator usage, health benefits estimated using the 36 km resolution ozone modeling 
results fully contain the 95% confidence interval calculated using finer scale modeling results.  
However, for changes in respiratory symptom days, minor restricted activity days and asthma 
attacks, the 36 km 95% confidence interval does not fully contain the confidence intervals for the 
finer scale resolution results. For these endpoints, an analysis done at 36 km resolution could 
potentially over-estimate the benefits due to modeled ozone reductions.  However, the EPA has 
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found that most of the monetary benefits associated with health improvements comes from 
reduction in mortalities due to the high value of a statistical life (EPA, 2011).   

 

Table 1.  Change in human health impacts due to the control scenarios proposed as part of 

the 2018 Houston Attainment Demonstration.  The top row shows baseline human health 

impacts due to ozone measured at monitors in 2006. 

 

5. ERROR ANALYSIS AND APPLICABILITY TO OTHER REGIONS 

As a first test of whether our results may be applicable to other regions, we use the CAMx 
Process Analysis (PA) tool to calculate individual contributions from each physical and chemical 
process within the model, to the final concentration of ozone. This allows us to better understand 
the cause of the resolution-dependent differences in our study. We used PA and the python based 
Process Analysis (pyPA) post-processing tool, developed by Henderson et al. (2011) to analyze 
results for September 12th because that day had the largest difference between the 2006 basecase 
and the 2018 control case (Figure 5). Our results indicate that the resolution difference is due to 
chemistry: ozone production due to chemistry in the fine resolution model is twice that of the 
coarse resolution model during the hours of 10AM to 12PM (12 ppb per hour vs. 6 ppb per 
hour).  As chemistry processes are consistent across different regions, this suggests that our 
analysis may be valid beyond the Houston area; however, further studies could address other 
regions as episodes are developed.  

6. CONCLUSIONS AND IMPLICATIONS FOR REGULATORY APPROACH 

To evaluate the uncertainty associated with air quality modeling resolution for calculating 
health benefits of proposed regulations, we ran two modeling episodes (a basecase and an 
attainment demonstration, both for Houston, Texas) at 36, 12, 4 and 2 km resolution.  We 
evaluated basecase model performance for each resolution for both monitor-based and 
population-weighted calculations of 8-hour maximum ozone.  We then used population-weighted 
ozone concentrations to calculate the estimated health impacts of ozone reduction from the 
basecase to the attainment demonstration including the 95% confidence intervals associated with 
each impact from concentration-response functions.  We found that estimated avoided mortalities 

Mean with 95% 
Confidence 

Interval

Change in 
Mortality (# of 
deaths in area)

Respiratory 
Hospital 

Admissions 
Adults >65 

yrs

Respiratory Symptom 
Day

Minor Restricted 
Activity Day

Asthma Attack Bronchodilator usage

06 Monitor Data 44 (15,58) 207 (-83,497) 546442 (94385,1043208) 190427 (72859,314618) 71037 (5464,137438) 1208796 (-430530,2649416)

Model 2k 5 (2,7) 25 (-10,60) 65466 (11308,124980) 22814 (8729,37692) 8511 (655,16466) 144818 (-51579,317409)
Model 4k 5 (2,7) 24 (-10,59) 64601 (11158,123330) 22513 (8613,37195) 8398 (646,16248) 142906 (-50898,313218)
Model 12k 5 (2,7) 23 (-9,56) 61302 (10589,117031) 21363 (8174,35295) 7969 (613,15418) 135607 (-48299,297222)
Model 36k 7 (2,9) 32 (-13,76) 83552 (14432,159508) 29117 (11140,48106) 10862 (836,21015) 184827 (-65829,405101)

Values Calculated Using Population Weighted Concentrations as Measured by Air Quality Monitors in 2006

Change (Decrease) in Metrics between the 2006 Modeled Basecase and the 2018 Modeled Control Case
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were not significantly different using coarse resolution, although 3 km resolution may over 
predict some potential health impacts.  

We evaluated the performance of the 2006 basecase with respect to monitor-based and 
population-weighted 8-hour maximum ozone. Results from each resolution were more similar to 
each other than they are to actual measured values.  However, the model performance improved 
when population weighted ozone concentration was used as the metric versus the standard daily 
maximum ozone concentrations. 

We compared the difference in the population weighted ozone concentrations between 
resolutions and between the 2006 base case and the 2018 control case.  The coarse scale 
resolution (36 km) showed the largest decrease from basecase to attainment demonstration case.  
The average change in daily maximum 8 hour ozone population weighted concentrations are 10 
ppb, 7 ppb, 8 ppb and 8 ppb for 36 km, 12 km, 4 km, and 2 km resolution respectively.   

We used the population-weighted ozone concentration difference to calculate acute mortality, 
respiratory hospital admissions (adults over 65 yrs), respiratory symptom days, minor restricted 
activity day, asthma attacks, and bronchodilator usage. The confidence interval of the mortality 
predicted by the coarse scale resolution completely contains the confidence interval of the 
mortality predicted by the fine scale results.  

Given the cost/benefit analyses requirements of the Clean Air Act, the uncertainty associated 
with human health impacts and therefore the results reported in Table 1, we conclude that 
population weighted ozone concentrations obtained using regional photochemical models at 36 
km resolution are meaningful relative to values obtained using fine (12 km or finer) resolution 
modeling.  This result opens up the possibility for uncertainty analyses on 36 km resolution air 
quality modeling results, which are on average 10 times more computationally efficient.   
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