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How to Think About Human Influence on Climate

Chris E. Forest, Peter H. Stone and Henry D. Jacoby†

We present a pedagogical paper on the detection of climate change and
its attribution to anthropogenic influences. We attempt to separate the
key thought processes and tools that are used when making qualitative
statements about the level of human influence on climate.

Is the climate changing? And if so, are we causing it? These two simple questions raise

some of the most contentious and complicated topics in the whole climate change debate:

the detection and attribution of change. Because this is a complex topic it may help to start with

a more familiar problem. Suppose you step onto your bathroom scale some morning, and look

down to find the number is one pound higher than you expected. You then call out, “Honey, I’m

gaining weight. I’ve been eating too much!” Here is a statement about detection and attribution,

but in another context. What does it take to reach such a conclusion with any confidence?

First, how do you know your weight is actually higher? You may suspect that the accuracy

of your bathroom scale is not that great: you only paid $19.95 for it. You have also observed that

readings on your health club scale differ from those at home. So there is error in the measurement

itself: you can “detect” your weight increase only with some probability. Thus informed, you

might say, “There is a 90% probability that my weight is between 0.8 and 1.2 pounds higher

than the last time I looked!”

Second, does this measurement indicate a trend that might have some cause, like eating too

much? Here another complexity enters: your body weight may go up and down by amounts

comparable to your observed gain this day, regardless of what you eat, in response to changes

in temperature and humidity, your psychological state (your boss is on vacation for the month),

or your level of physical activity. If the magnitude of this natural variability is similar to the

change you are seeing on the bathroom scale, you should be cautious when saying that you have

detected something significant. You have a problem of sorting the “signal” of a significant

change in your body, perhaps attributible to food intake, from the “noise” of its natural

fluctuations. So a still more accurate statement might be, “There is a 70% probability that my

weight has gone up between 0.8 and 1.2 pounds for some reason other than natural variability.”

The third question that arises is, why the apparent change? Weight gain does have a basis in

physiology, and this knowledge may be supported by past experience and observation of others.

But the relationship cannot be stated precisely because it depends on many factors, such as
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adjustments in metabolism and amount of physical activity that are poorly understood.

This gives rise to a fourth question, how accurately have you recorded or recalled your food

intake, physical activity level, and other factors which you know affect your weight? In this

circumstance, the most that can be said with scientific accuracy about attribution may be

something like, “There is a 90% chance that at least 1/2 of the increase shown on this scale is

due to my eating too much.” Or, where formal analysis is missing, “Honey, the preponderance

of the evidence suggests that I’m eating too much.”

To summarize, four elements are involved in this example of detection of weight gain and its

attribution to increased food intake.

1. An estimate of the weight change and the error in measuring it,

2. Knowledge of the natural variability in your body weight,

3. An understanding of the mechanisms by which body weight responds to food intake and
other factors, and a model of the relationship, and

4. A record of food intake and its uncertainty.

Now we shift our attention to the global climate system and our (imperfect) measurements of

how climate has changed over the past century or so, our (limited) understanding of patterns of

natural climate variability, our (as yet incomplete) models of the interacting chemistry, physics, and

biology of the global system, and our (inaccurate) inventory of past climate forcings. The issue of

detection concerns the ability to say with confidence that we have seen some trend, and not just the

natural variability of climate. This task involves measurement of climate variables like temperature,

which are analogous to the reading on your bathroom scale, and analysis of the natural variability

of the system, analogous to your natural weight fluctuation. Attribution requires showing that any

change is associated with human-induced factors and not with some other cause. This additional

task requires a model of the climate system and its various influences, analogous to that for

human physiology, and also estimates of factors affecting the climate system, like increasing

concentrations of greenhouse gases. It is well known that these concentrations have been rising

due to increased human emissions, akin to your record of food intake.

The key steps for detecting change and deciding how much to attribute to human influence

can be illustrated using Figure 1. In the top panel is a temperature record for the globe for the

past 150 years (the thin line) shown as deviations from the average temperature of 1961-1990.

The early years are mostly negative and the latter years show positive deviations, suggesting a

trend over time. The thick line in this panel shows an attempt by one climate model to simulate

what the past 150 years would have been like taking account of only the natural influences.

It shows deviations from the average, but no obvious trend. On first look, then, the analysis

suggests that something other than the natural processes represented in the model was involved
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Global Temperature: Observations and Control Run
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Global Temperature: Observations and Forced Run
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Figure 1. Top: Simulated global-mean annual-mean surface air temperature (thick line) from a climate
model simulation with no applied forcings superimposed on the record of observed temperature change
for 1860-1999 (thin line, after Parker et al., 1994). The variations of annual-mean, global-mean surface air
temperature are generated by the climate model’s internal feedbacks as determined by the dynamics of
the various components of the climate system. Bottom: As in the top figure but with the response of the
climate model (thick line) to anthropogenic forcings (for one possible choice of the climate sensitivity,
rate of ocean heat uptake, and net aerosol forcing) that matches the observations well (thin line).

in determining climate over this period. The heavy line in the bottom panel is a result from the

same climate model, now simulated with known concentrations of greenhouse gases (a warming

influence) and estimates of human-caused aerosols (a cooling influence). The general pattern of

simulated climate, once these changes are included, now fits the estimated historical record much

better than that without these influences, suggesting causation. But is this causal association

enough? Is there still some significant chance that the association is coincidental?
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In order to be confident that the change is real, and to attribute it to human influence, we need

to consider several issues. First, is the estimated global temperature record accurate? Creating the

estimated record required corrections for the urban heat island effect (urban areas tend to absorb

and generate heat, so thermometers there show higher temperatures than in rural areas), and for

changes in instrumentation over a century. It also required estimating data for poorly covered

zones, such as over oceans and Siberia. Finally, the record is more sparse the farther back in

time one goes, and there is some disagreement between the surface record shown in the figure

and satellite measurements (which are only available for the last couple of decades in any case).

Despite these measurement issues, however, climate scientists generally agree that there has

been a warming of the globe by about 0.6oC over the past 150 years (National Research Council,

2000), with some uncertainty as to the precise change.

Second, what degree of natural variation is to be expected? The climate varies over time as

a result of complex interactions of phenomena involving the atmosphere, the oceans, and the

terrestrial biosphere—many not captured in even the most complex climate models. These

natural processes operate on time scales of a few years (El Niño and La Niña), a few decades

(Arctic or North Atlantic oscillations), and some (involving deep ocean circulations) of several

centuries. The temperature record shown as the thin line in Figure 1 is only a single sample of

possible global behavior over a century time scale. Any other period of similar length would

show different patterns, and perhaps larger fluctuations caused by the interaction of these natural

processes operating at different time scales.

With such system complexity a record of 150 years is simply not long enough to allow estimation

of the natural system variability. (Imagine trying to understand your own body’s natural variation if

you had access to a scale for only a few days.) The natural variability thus must be estimated from

much longer simulations using computer models of the system, with all their shortcomings. These

models necessarily must simplify a number of physical, chemical and biological phenomena, and

apply rough approximations for key processes (like the behavior of clouds) where the underlying

science is either poorly understood or too difficult to model. Therefore the particular forecast shown

in the top of Figure 1 is uncertain, as is the model-based estimate of natural variability. The question

whether the observed change is rising out of the “noise” of natural variability can only be stated

probabilistically, just as with your observed weight gain.

Even if the model-based estimate of climate change were judged to exceed the estimate of

natural variability with some high probability, the next question would be “why is it happening?”

Can the change be attributed to anthropogenic forcings? To convincingly demonstrate a human

cause is a simultaneous two-part process. First, it must be possible to reject the hypothesis that

some non-human influence, such as solar variation, could have produced the same result.

This is done by testing ranges of uncertainty in processes and parameters that are used in
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simulations like that shown by the heavy line in the top panel of Figure 1. Second, it must be

shown that the modeled effects of human factors are consistent with the observed change,

revealing the so-called human “fingerprint.” Here, one must deal with yet another uncertainty.

The historical concentrations of greenhouse gases are well known, but there is large

uncertainty in the estimated emissions of substances (mainly SOx from coal-fired powerplants)

that produce the cooling aerosols. Plus, the overall effect on climate of these aerosols remains

uncertain. So the bottom panel of Figure 1 may reflect a lucky choice of estimates of the level of

each of the modeled effects, so that they coincidentally produce agreement with the estimated

historical record. For example, a different estimate of the aerosol loading, even one well within

the range of uncertainty, could produce a very different simulated pattern of climate.

So how can the attribution issue be stated in a way that takes account of all these

considerations? One useful way to illuminate the question is to represent explicitly the main

uncertain processes in our analysis of the climate system, modeling them as a set of uncertain

parameters. Then, using statistical methods and an estimate of the natural variability of the

system, rule out those combinations of parameters that are inconsistent (at some level of

confidence) with the historical record. What results is a map of the likelihood that different

levels of temperature change would have been observed over the period, given the human

forcing. This result can then be used to say, with some level of probability, that a particular

fraction of the observed change has been due to human influence.

This type of “fingerprint” description can be constructed from results obtained by Forest et al.

(2000a,b) using the climate component of the Integrated Global System Model (IGSM)

developed by the MIT Joint Program on the Science and Policy of Global Change (Sokolov and

Stone, 1998; Prinn et al., 1999). Given an estimate of human factors affecting climate over some

historical period, a single simulation of this model would yield an estimate like the one shown in

the lower half of Figure 1. Fortunately, the atmosphere-ocean component of the IGSM has been

designed to allow study of uncertainty in key climate processes. One is the climate sensitivity,

which is a measure of feedbacks in the atmosphere which tend to multiply the effects of the

direct radiative forcing by greenhouse gases. The second is a measure of the effect of ocean

circulations, which determines both the rate of heat storage in the deep ocean and the rate of

ocean uptake of CO2. The historical period can be simulated many times, assuming ranges of

values for these uncertain parameters. By systematically adjusting these inputs and comparing

the model response with observations, standard statistical methods can be used to identify a set

of simulations (corresponding to particular sets of model parameters) that are consistent with the

observations at some level of confidence. Furthermore, this confidence level can be used to

quantify climate-change statements equivalent to: “There is a 90% chance that at least 1/2 of the

increase shown on this scale is due to my over-eating.”
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Before constructing an illustrative example of this calculation, it is important to summarize

the underlying assumptions:

• Our estimate of the long-term natural variability of climate is based on simulation results
from the Hadley Centre’s HadCM2 model (Johns et al. 1997). The ability to verify that
such an estimate is correct remains a difficult problem.

• We apply the temperature record as if there were no measurement or sampling errors,
when in fact there are.

• This illustrative example does not include the possible effects of the change of solar
irradiance over the analysis period, nor do we include the well-known cooling effect of
particles from volcanic eruptions.

• We assume that the estimates of the climate forcings are known with certainty, when in
fact the net effect of aerosols on climate is subject to substantial uncertainty.

The possible influence of these assumptions on the results shown here will be discussed below.

We consider the observed global warming between two averaging periods: 1946-1955 to

1986-1995. Over these two periods, the obervational record shows a global warming of 0.33oC.

How much of this change should we think is due to human factors? The results are shown in

Figure 2. Using the ocean-atmosphere component of the IGSM, and an estimate of

anthropogenic climate forcings over this period, we have simulated the climate change over

the period for the combinations of climate sensitivity and ocean response indicated by the “+”

symbols in the figure. Based on these calculations, we can identify a set of the parameter

combinations that are consistent with the observations at a given level of confidence, shown by

different levels of shading in the figure. The completely unshaded region represents an 80%

confidence interval (that is, the true values of these parameters are only 20% likely to lie outside

this region, with 10% above and 10% below). Then there are three degrees of shading. Adding

the light shaded area extends the confidence interval to 95%, and the middle level of shading

extends it to 99%. Thus there is less than a 1% chance that the (unknown) true values of the

parameters lie in the region of most rapid temperature change, the darkest region with the

combination of a high sensitivity and a slow ocean.

Also shown in Figure 2 are lines that show the simulated change in global temperature over

the period that results from the various parameter combinations. The observed change, 0.33oC is

indicated by a dashed line, and it can be seen that this change over the 40-year period might have

been the result of a high sensitivity (S = 4oC) and an ocean that rapidly stores heat (fraction of

warming = 0.55), or of a lower sensitivity (S = 2.5oC) and an ocean that takes up heat slowly

(fraction of warming = 0.15), or indeed by any other point along the dashed line. Where the limit

lies as one proceeds to the northeast in the figure depends on information which is not available

in this analysis.
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Figure 2. The dependency of modeled temperature change on two model characteristics: climate sensitivity
(vertical axis) and the rate of heat uptake by the deep ocean (horizontal axis). Together, these two
characteristics determine the model’s response to the applied climate forcings, which, in this case, are
historical changes in the concentrations of greenhouse gases, sulfate aerosols, and stratospheric ozone.
The temperature change shown is the decadal mean for 1986-1995 minus that for 1946-1955. The
observed change is shown by the dashed line. The shaded regions are rejected at 20%, 5%, and 1% level
of significance (from light to dark respectively) as producing simulations inconsistent with observations
(after Forest et al., 2000a,b). The noisiness of the temperature contours and shaded regions results from
natural variability in the modeled climate change. (Here, the rate of heat uptake is measured by the
fraction of surface warming which has penetrated to a depth of 580m in the ocean for a particular
scenario, climate sensitivity, and time. The fraction was calculated for a scenario in which CO2 increases
1% per year, for a climate sensitivity of 2.5 K, and at the time when the CO2 concentration has doubled.)

Now, we come to the extraction of a statement about attribution from this analysis. Note that

the 0.20oC line lies very near the lower boundary of the 80% confidence region. This means that

there is only a 10% probability that the modeled effect of the human influences on climate is less

than 0.20oC over the 40-year period. Put another way, there is a 90% probability that at least

0.20oC, or approximately 60% of the observed 0.33oC warming, can be attributed to the

anthropogenic forcings applied to the climate model. Because of natural variations on decadal and

longer timescales, this statement will vary depending on the period of record chosen.

As an example, one might consider how this statement would change if the size of the confidence

region (white region) were to be reduced (i.e., higher confidence). In that case, the temperature

contours would remain fixed and a higher fraction of the observed warming would be attributed at

the 90% confidence level or the same fraction would have a higher confidence level.

So what are we led to conclude from this result? How are the four elements of the detection

and attribution issue combined? First, we have used the climate model to define the relationship
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between radiative climate forcings and temperature changes. Second, the strength of this

response is varied systematically by alternative settings of the model parameters and results are

chosen to be acceptable or unacceptable when compared with the observations. Third, the natural

variability, as estimated by the HadCM2 climate model, is directly included in these comparisons

to determine the confidence regions. Finally, the errors in the observations are assumed to be

small when compared with the natural variability.

Each of these steps involves uncertain assumptions. For example, the uncertain strength of

the aerosol forcing could alter both the acceptable region of parameters and temperature changes.

Also, we have not included the possible effects of a change in the solar energy reaching the earth

nor have we included the well-known cooling effect of dust particles from volcanic eruptions.

Each of these effects contributes to natural variability of climate and could decrease the fraction

of explained warming by our simulations by widening the range of acceptable model parameters

or changing the modeled temperatures. Additionally, the HadCM2 estimate of natural variability

should itself have an associated uncertainty which has not been determined. When combined, these

uncertainties will alter our conclusions, and most of the components that are inadequately modeled

tend to reduce the fraction of the observed warming that can be attributed to human influence with

any particular level of confidence. Further, if this method were applied to models other than the

MIT IGSM, somewhat different results might be obtained, reflecting the structural uncertainty

among models, in contrast to the parameter uncertainty in the MIT model explored here.

It is because of these difficulties that scientists who try to summarize available knowledge

about detection and attribution resort to statements such as, “the preponderance of the evidence

indicates that …,” or “it is likely that a significant (or major, or substantial) portion of the

observed warming is attributable to human influence.” The words “preponderance” or

“significant” or “substantial” can take on implicit probabilistic significance among scientists

(for example, in the IPCC drafting groups) who spend many hours debating them, although there

is evidence their meaning can vary dramatically even among technical experts in the same field

unless assigned quantitative values (Morgan, 1998). They are open to almost unlimited

interpretation by lay people who only have the final text (or worse, a summary of it) to go by.

Our calculations illustrate one way to make these statements more precise. We hope that this

analysis of what lies behind these words may help avoid the too frequent leap to one of two

extreme positions: that because of the uncertainty we know nothing, or that scientists have

“proven” that we are responsible for temperature changes of the recent past.
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