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Global Health and Economic Impacts of Future Ozone Pollution 

Noelle E. Selin* , Shiliang Wu†, Kyung-Min Nam‡, John M. Reilly*, Sergey Paltsev*, Ronald G. 
Prinn* and Mort D. Webster*  

Abstract 

We assess the human health and economic impacts of projected 2000-2050 changes in ozone pollution 

using the MIT Emissions Prediction and Policy Analysis-Health Effects (EPPA-HE) model, in 

combination with results from the GEOS-Chem global tropospheric chemistry model that simulated 

climate and chemistry effects of IPCC SRES emissions. We use EPPA to assess the human health 

damages (including acute mortality and morbidity outcomes) caused by ozone pollution and quantify 

their economic impacts in sixteen world regions. We compare the costs of ozone pollution under 

scenarios with 2000 and 2050 ozone precursor and greenhouse gas emissions (SRES A1B scenario). We 

estimate that health costs due to global ozone pollution above pre-industrial levels by 2050 will be $580 

billion (year 2000$) and that acute mortalities will exceed 2 million.  We find that previous 

methodologies underestimate costs of air pollution by more than a third because they do not take into 

account the long-term, compounding effects of health costs. The economic effects of emissions changes 

far exceed the influence of climate alone. 
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1. INTRODUCTION  

Tropospheric ozone is an air pollutant that causes adverse human health impacts. Increasing 

industrialization without emissions controls will increase releases of chemical precursors to 

ozone, such as nitrogen oxides (NOx) and volatile organic compounds (VOCs). Changes in 

climate, including increasing temperature and other changing meteorological variables, have a 

complex effect on ozone concentrations (Mickley, 2007). Previous studies have explored the 

impacts of future emissions and climate on surface ozone concentrations using climate and 

chemical transport models. We apply these results to an economic model to assess the potential 

future health and economic damages of ozone due to changing emissions and climate in 2050. 
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Previous research has projected the influence of both climatic change and future emissions 

under a variety of scenarios on surface ozone levels in the United States and elsewhere (Wu et 

al., 2008a,b; Hogrefe et al., 2004; Racherla and Adams, 2006; Murazaki and Hess, 2006; 

Racherla and Adams, 2009). While there is substantial variability among models of the climate 

impact of ozone, most models predict a decrease in surface ozone background due to the effect 

of water vapor, and surface ozone increases of 1-10 ppb driven primarily by temperature in 

polluted mid-latitude regions (Jacob and Winner, 2009). For example, Racherla and Adams 

(2006) used a global climate model to project a 5% decrease in the global tropospheric ozone 

burden under the Intergovernmental Panel on Climate Change (IPCC) SRES A2 scenario, but an 

increase of 1-5 ppb in some polluted regions including the eastern United States. 

Related studies have quantified the impacts of present and future ozone pollution on human 

health (Bell et al., 2007, West et al., 2007, Knowlton et al., 2004). West et al. (2007) examined 

the effects of future changes in global ozone under three different emissions scenarios on 

premature mortalities, and calculated up to 460,000 reduced mortalities with a Maximum 

Feasible Reduction (MFR) scenario compared to the SRES A2 scenario. Bell et al. (2007) 

calculated an average of 0.31% increase in cardiovascular disease mortality under the SRES A2 

scenario for the 2050s. In general, studies have projected increases in morbidity and mortality 

from tropospheric ozone (Ebi and McGregor, 2008).  

Previous efforts to estimate the potential future economic impacts of ozone-related health 

damages have multiplied concentrations by exposure-response factors to determine number of 

cases or deaths, and then imposed a cost per case calculated by a variety of methods including 

willingness-to-pay data (Bell et al., 2008). West et al. (2007), for example, calculated the global 

economic benefit of a ~1 ppb ozone decrease by multiplying the number of avoided mortalities 

by a value of a statistical life. A few recent studies have used a more detailed economic modeling 

approach to assess the feedbacks of pollution damages onto the economy (Holland et al., 1998, 

Mayeres and Van Regemorter, 2008).  

Here, we go beyond previous analyses by applying a computable general equilibrium (CGE) 

economic modeling approach to assess damages from future health impacts of ozone, using 

results from an atmospheric chemical transport/general circulation model analysis of the effects 

of 2000-2050 emissions and climate change on global surface ozone. The CGE modeling 

approach goes beyond previous studies by taking into account that economic damages 

accumulate over time due to resource diversions for health care, including both morbidity and 

mortality due to ozone exposure, and accounting for the increasing value of lost work and leisure 

time as incomes and productivity rise. We use these results to calculate global direct and indirect 

costs of present and potential future health damages from ozone pollution.  

2. MODEL DESCRIPTION 

2.1 Atmospheric model 

We use results for 2000 and 2050 ozone concentrations from Wu et al. (2008a, 2008b), for 

which both climate and ozone precursor emissions are based on the IPCC A1B scenario (IPCC 
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2001). Climate changes are simulated by the NASA/GISS GCM 3 (Rind et al., 2007) and are 

used to drive the GEOS-Chem Chemical Transport Model (CTM) as described by Wu et al. 

(2007). In the A1B scenario, emissions of fossil fuel NOx decrease in developed countries (-40% 

in the United States) but increase by 90% globally.  Detailed emissions for other ozone 

precursors from both anthropogenic and natural sources are given in Wu et al. (2008a). Annual 

mean afternoon (1300-1700h local time) ozone, a metric comparable to daily maximum 8-hour 

average ozone, is archived for three-year climatic periods. Four cases are used: (1) year 2000 

ozone precursor emissions and climate; (2) 2000 precursor emissions and 2050 climate; (3) 2050 

precursor emissions and 2000 climate; and (4) 2050 precursor emissions and 2050 climate. This 

scenario design allows diagnosis of ozone changes due to only precursor emission changes, only 

climate change, and combined changes as the difference between these simulations.  

2.2 Human health and economic model 

We use the MIT Emissions Prediction and Policy Analysis (EPPA) model (Paltsev et al., 

2005) with extensions to value health impacts of ozone (EPPA-Health Effects or EPPA-HE) 

(Matus et al., 2008). EPPA is a CGE model of the world economy. EPPA-HE has previously 

been applied to assess the benefits of the U.S. Clean Air Act (Matus et al., 2008), the costs of 

historical air pollution in China (Matus, 2005), and the costs of air pollution and potential 

benefits of regulation in the European Union (Nam et al., 2009).   

Briefly, the model calculates health impacts and related costs to the economy (lost labor, 

services, and leisure time) for a given mean concentration of pollutant in each of sixteen world 

regions (Figure 1). The model takes as input the population-weighted concentration in each 

region, and calculates cases and associated costs using a five-year time step. Resources devoted 

to health care become unavailable to the rest of the economy, and labor and leisure time lost as a 

result of illness or death is valued at prevailing wage rates. A full description of the economic 

assumptions of the EPPA-HE model is presented by Matus et al. (2008). The EPPA reference 

scenario, used here for economic analysis, is consistent with an economy that produces global 

greenhouse gas emissions within 15% of A1B emissions to 2050.  

Table 1 shows the exposure-response functions used to link ozone concentrations to health 

outcomes in EPPA-HE, and related economic costs in Europe and in China. Following Bickel 

and Friedrich (2005), we specify these functions and related costs in (year 2000) $ for the 

European region. For other developed regions, costs are adjusted using purchasing power parity 

(PPP) (Heston et al., 2002) For developing regions, we use cost estimates developed for China 

(Matus 2005) and adjust costs for other developing country regions based on PPP relative to 

China. All endpoints are considered linear without a threshold, consistent with data from Bell et 

al. (2006) that even low levels of ozone are associated with increased risk of mortality. For 

mortality from acute exposure, the exposure response function is given as an elevation of the 

baseline mortality rate. We use baseline mortality rates from the World Bank Global Burden of 

Disease study (Lopez et al., 2006), for high income (for developed regions) and low-middle 
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Figure 1. EPPA-HE Regions, based on EPPA4 (Paltsev et al., 2005). 

Table 1. Exposure-response functions and costs for Europe region. Sources: Bickel and 

Friedrich (2005); Holland et al. (1998); Holland et al. (2005); Matus (2005). 

Outcome Exposure-

response 

function 

95% confidence 

interval2 

Cost 

EUR 

($2000) 

Std. 

Error 

Cost4 

Cost 

China 

($2000) 

Acute mortality 0.03%5 ( 0.01%, 0.04%) 23000 3100 690 

Respiratory hospital 

admission (adults 

>65 years) 1.25E-5  (-5.0E-6, 3.0E-5) 1800 570 290 

Respiratory 
symptom day 3.30E-2 ( 5.7E-3, 6.3E-2) 35 11 <1 

Minor restricted 

activity day 1.15E-2 ( 4.4E-3, 1.9E-2) 35 11 <1 

Asthma attack 4.29E-3 ( 3.3E-4, 8.3E-3) 49 16  4.6 

Bronchodilator 

usage 7.30E-2 (-2.6E-2, 1.6E-1) <1 <1 <1 

Lower respiratory 

symptoms 

(wheeze) in 

children 1.60E-2 (-4.3E-2, 8.1E-2) 35  11 <1 
1 Units are cases yr-1 person-1 μg-1 m3  
2 Normal distributions applied for symmetric confidence intervals, and beta distributions applied for 

asymmetric confidence intervals. Confidence intervals are cut off at zero and negative values are 

not assessed.  
3 Converted from 2000 using exchange rate $1= 1.085 (mean for year 2000)  
4 Normal distributions applied for costs.  
5 Units are annual mortality rate μg-1 m3 
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income countries (for developing regions). Population distributions are applied separately for 

developing and developed regions (United Nations, 2007). We assess the economic impacts of 

ozone pollution by calculating the change in economic welfare (defined as macroeconomic 

consumption plus the value of leisure time).   

We assess the uncertainties in calculated mortalities and costs resulting from both the 

uncertainties in exposure-response functions and economic valuation, using a probabilistic 

approach with Monte Carlo sampling. We conduct our uncertainty analysis similarly to the 

methodology used by Webster et al. (2008). We construct probability distributions of exposure-

response functions and associated costs, based on probabilistic ranges from Bickel and Friedrich 

(2005) and Holland et al. (2005) (Table 1). We assume that exposure-response functions are 

correlated (details in Table A1) and that costs are correlated at r=0.9.  Using Latin Hypercube 

sampling, we select 400 sets of inputs for each case, with exposure-response functions and 

associated costs varying, and simulate resulting welfare change for each case using EPPA-HE.  

3. POPULATION-WEIGHTED OZONE CONCENTRATIONS 

For input to EPPA, we calculate population-weighted annual average afternoon ozone 

concentrations for each region, for scenarios with and without climate and emissions changes as 

specified by Wu et al. (2008a). We use the gridded population distribution for 2000 from the 

Center for International Earth Science Information Network (CIESIN, 2005), and apply region-

specific growth rates to 2050 for each EPPA region (United Nations, 2007). We assume that the 

distribution of population within each region will remain constant as total regional population 

increases in the period 2000-2050 so that we use the same within-region weighting factors for 

2000 and 2050.  

Table 2 presents population-weighted average regional ozone concentrations for each EPPA 

region for both the year 2000 and projected 2050 concentrations with changed precursor 

emissions and climate. Also shown are changes in ozone due to climate alone, diagnosed from a 

model simulation with 2050 climate and 2000 precursor emissions, and due to emissions alone, 

from a simulation with 2050 precursor emissions and 2000 climate. The net 2000-2050 ozone 

change is equal to the sum of these two contributions, indicating they are independent of each 

other in these simulations. 

Population-weighted concentrations generally change more due to 2000-2050 precursor 

emissions changes than climate change. In most developing regions, precursor emissions 

increases result in population-weighted ozone increases. Climate change can have a positive or 

negative effect on population-weighted ozone in different regions.  

In contrast to previous findings of an increased trend of ozone with climate change in urban, 

high-ozone areas (Jacob and Winner, 2009), we find that average population-weighted ozone 

changes due to climate are very small. Consistent with previous studies, ozone increases on the 

order of a few ppb are present in many urban regions in the model simulation of Wu et al. 

(2008a), but in most cases they are offset by decreases in other highly-populated regions, leading 

to a net change near zero.  
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Figure 2 shows an illustration of this for Asia. Figure 2a shows O3 concentrations in Asia 

from Wu et al. (2008a) in 2050 climate, with constant (year 2000) ozone precursor emissions, 

while Figure 2b shows the changes in O3 due to climate change from present-day conditions 

(year 2000 climate and precursor emissions). Figure 2c and 2d show the total population in areas 

where O3 decreases and increases, respectively, due to climatic changes. As shown in these 

figures, the total population is roughly equal (1.5x109 people) in areas where ozone is increasing 

and decreasing. Areas of high population where ozone is projected to increase due to climate 

include northern India and eastern China, where ozone levels (2a) are particularly high. The 

population-weighted totals thus indicate a 0.1 ppb decrease due to climate change in China, and a 

0.4 ppb climate-driven increase in India. This suggests a strong subregional variation in the 

effects of climate on ozone in urban areas, which could be further explored with regional 

atmospheric and economic modeling. 

Population-weighted annual average 8-hour maximum ozone concentrations calculated from 

Wu et al. (2008a) by region (ranging from 29.5 – 61.0 ppb, see Table 2) vary more than those 

calculated by West et al. (2007) using the LMDz-INCA chemistry-climate model for the year 

2000, which range from a low of 39.3 ppb in Asia to a high of 46.4 in North America. In 

developing regions, surface ozone concentration measurements are not available; thus, model 

predictions are difficult to validate. We use the estimates of West et al. (2007) (Table A2) as a 

sensitivity test to assess the influence of atmospheric model and emissions scenario uncertainty 

on our results, discussed further below. 

Table 2. Population-weighted ozone concentrations by EPPA region, and change in ozone 

due to climate, emissions, and net change 2000-2050. Ozone concentrations from Wu et al. 
(2008b). 

Region 2000 [O3]  2050 [O3] O3 climate O3 emissions O3 (2050-2000) 

AFR 33.2 43.2 -0.2 10.3 10.1 

ANZ 31.3 30.4  0.0 -0.9 -0.9 

ASI 41.4 53.4  0.1 11.9 12.0 

CAN 41.7 37.3  0.2 -4.6 -4.4 

CHN 47.7 55.7 -0.1 8.2  8.1 

EET 43.2 43.5 -1.1 1.3  0.2 

EUR 43.5 45.2  0.2 1.5  1.7 

FSU 40.4 39.3 -0.9 -0.2 -1.1 

IDZ 29.5 44.0 -1.2 15.7 14.4 

IND 61.0 85.4  0.4 24.0 24.4 

JPN 50.9 48.4  0.9 -3.4 -2.5 

LAM 28.3 39.5  0.3 10.9 11.2 

MES 48.4 58.8 -0.5 10.9 10.4 

MEX 46.3 53.4 -1.6 8.6  7.1 

ROW 48.4 60.1 -0.2 12.0 11.8 

USA 50.1 45.2  0.2 -5.1 -4.9 
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Figure 2. Model simulated O3 change in Asia relative to population. (a) shows O3 
concentrations for 2050 climate and 2000 precursor emissions (data from Wu et al. 

(2008a)). (b) shows the overall projected change in ozone due to climate (data from 

Wu et al. (2008a)). (c) shows total population (total=1.5x109 people) in areas where 
ozone decreases due to climate, and (d) shows total population (total=1.5x109 

people)  in areas where ozone increases due to climate. 

4. HEALTH OUTCOMES 

Figure 3 shows the change in acute mortalities due to ozone concentration changes, 

separating the influence of changing climate alone (3a), emissions changes alone (3b), and 

climate and emissions changes together (3c). We also calculate the number of mortalities in 2050 

that result from ozone exposure above pre-industrial levels (a mean population-weighted 

exposure of 10 ppb for each region) (3d). The total number of acute mortalities in each of 16 

regions is calculated by EPPA-HE. For Figure 3, we spatially distribute mortalities within each 

region according to the projected change in O3 concentrations between present-day and in 2050 

(3a, b and c), and change in 2050 relative to the pre-industrial (10 ppb) level (3c).  

Overall, EPPA-HE predicts 5,000 fewer acute mortalities due to O3 in 2050 relative to 2000 

when taking into account climate change alone (constant 2000 precursor emissions). However, as 

shown in Figure 3, climate change leads to mortality increases in some regions and decreases in 

others. Specifically, the eastern U.S., parts of Europe, east Africa, north India, and eastern China 

are areas where mortalities will increase; this pattern follows the pattern of ozone changes due to 

climate. Overall, EPPA-HE predicts a net increase in mortalities in seven regions (USA, high- 
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Figure 3. Change in acute mortalities due to (a) climatic change (with 2000 precursors) 
(Total=-5000); (b) emission changes (under 2050 climate) (Total=817,000); (c) 

climate and precursor changes in 2050 (Total=812,000); and (d) ozone enhancements 

in 2050 above pre-industrial exposures (10 ppb) (Total=2.6x106). Acute mortality 
data is calculated for 16 world regions by EPPA-HE using population-weighted ozone 

concentrations from Wu et al. (2008a). Mortalities are distributed regionally based on 

ozone changes in each scenario. Note difference in scale for (d). Color scales are 
saturated at highest and lowest values.  

income Asia, Canada, Europe, India, Japan, and Latin America) and net decreases in others. 

Detailed results for each region are presented in Table A3. 

As expected from the ozone changes (Figure 2), the increased mortality from emissions 

changes far outweighs the climate impact. EPPA-HE projects an increase of 817,000 acute 

mortalities under 2050 A1B ozone precursor emissions (with constant climate). All regions 

except the U.S. (in which emissions decrease substantially in the A1B scenario) show net 

increases in mortalities. Thus, the net effect of climate and precursor emissions (Figure 3b) is to 

increase mortalities by 812,000 globally, with increases virtually everywhere except for the 

eastern U.S. Our Monte Carlo analysis indicates a 95% confidence interval of 350,000-2,300,000 

mortalities for this scenario, taking into account uncertainty in exposure-response functions. The 

difference in acute mortalities between projected 2050 levels (including climate and precursor 
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emissions changes) and a pre-industrial exposure level of 10 ppb is estimated to exceed 2 million 

acute mortalities, with a 95% confidence interval of 560,000-3,600,000 (Figure 3d). 

West et al. (2007) previously assessed potential changes in global acute mortalities using four 

different scenarios. Under their MFR scenario, they calculate that emissions reductions could 

reduce global acute mortalities by about 460,000 relative to ozone predicted by their application 

of the SRES A2 scenario in 2030. To compare our results to their approach, we ran EPPA-HE to 

2030 with the population-weighted concentrations reported in their study. For the same scenario, 

we project a larger number of avoided mortalities (780,000), about 70% higher but within their 

uncertainty range using different exposure-response functions. We also project a decrease of 

130,000 mortalities under maximum feasible reduction relative to current legislation (lower 

concentrations than A2), which is less than the 267,000 predicted by West et al. (2007), but 

again within their uncertainty bounds. In contrast to West et al. (2007), who assumed a log-linear 

response function and a threshold of 25 ppb for health effects, we assume a linear response 

without threshold and a higher exposure-response function, as described above. Log-linear 

curves have a steeper response at lower concentrations, and less response at higher 

concentrations, consistent with the comparison here. 

5. ECONOMIC COSTS OF HEALTH IMPACTS 

Figure 4 shows the economic (welfare) losses (including leisure losses) due to ozone-related 

health impacts from climate change alone (4a), precursor emissions changes alone (4b), climate 

and precursor emissions together (4c), and excess ozone greater than 10 ppb (4d). Welfare losses 

are calculated for each region from EPPA-HE; for presentation in Figure 4, data are distributed 

within each region based on population.  

As shown in Figure 4a, climate change results in an annual global net loss of welfare of $790 

million by 2050 (in year 2000$), undiscounted. While some regions show net welfare gains (due 

to decreased ozone), these gains are outweighed by loss of welfare due to ozone increases in 

high-income regions (United States, Europe and Japan).  

Similar to the results for mortalities alone, the change in welfare due to emissions changes in 

the A1B scenario far exceeds the difference due to climate change alone. We calculate an annual 

welfare loss of $120 billion in 2050 due to emissions changes, and thus a net cost of $120.8 

billion due to climate and emissions changes. In Figure 4c, we show the total cost of ozone 

pollution above pre-industrial background, which is $580 billion in 2050. As shown in the figure, 

welfare losses occur in all regions.  Detailed results are presented in Table A4. 

Using EPPA-HE, we can calculate the compounding effect of ozone pollution between 2000-

2049 on the 2050 economy. Economic effects in earlier years reduce the overall level of the 

economy and savings and investment in those years that then lead to a lower stock of capital in 

succeeding years. We calculate this effect in EPPA-HE by the difference between our simulation 

in 2050, and a simulation with pre-industrial ozone in 2050 (10 ppb). From this scenario, we 

calculate that ~40% of economic losses ($240 billion) result from the accumulated economic  
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Figure 4. Change in economic welfare (consumption+leisure) from ozone-related health 

impacts due to (a) climatic change (with 2000 emissions) (Total=$7.9x108); (b) 
precursor changes (2050 climate) (Total=$1.2x1011); (c) climate and precursor 

changes in 2050(Total=$1.2x1011); and (d) ozone enhancements in 2050 above pre-

industrial exposures (10 ppb) (Total=$5.8x1011). Welfare change is calculated for 16 
world regions by EPPA-HE using population-weighted ozone concentrations from Wu et 

al. (2008b). Welfare is regionally distributed based on population. All values are in 
year 2000$. Note difference in scale for (d). Color scales are saturated at highest and 

lowest values. 

burden of previous ozone concentrations (2000-2049). This is not taken into account in most 

economic calculations of environmental health impacts.  

We also calculate the potential welfare gains under the West et al. (2007) MFR scenario 

relative to SRES A2 for 2030, and with concentration trends linearly extrapolated to 2050. We 

estimate that changes projected under this scenario would lead to a global welfare increase of  

$66 billion by 2030, and $170 billion by 2050. This suggests that emissions changes to 2050 

have the potential to affect ozone-related health damages with losses ranging from $120-170 

billion.  

We apply Monte Carlo analysis to assess the influence of both exposure-response and 

economic uncertainty on our welfare results. Figure 5 shows the difference in welfare between  
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Figure 5. Uncertainty in total global loss in economic welfare (consumption+leisure) from 

ozone-related health impacts due to (first row) climate and emission changes in 2050 
relative to 2000, and (second row) ozone enhancements in 2050 above pre-industrial 

exposure (10 ppb), based on a 400 sample Monte Carlo simulation. Left column shows 

median (solid), 67% (dash-dot) and 95% (dashed) confidence intervals. Right column 
shows frequency distribution of welfare loss for year 2050. All values are in year 

2000$. 

the scenario with climate and emission changes to 2050 and 2000 ozone levels (first row), and 

between 2050 and the pre-industrial background (second row). We calculate a 95% confidence 

interval of $12.8 billion-$186 billion for the annual welfare loss due to climate and emissions 

changes from 2000-2050. For the total cost of ozone pollution above pre-industrial background,  

the 95% confidence interval is $101 billion-$1.53 trillion. These uncertainties only take into 

account the uncertainties in the exposure-response factors and the economic valuation of 

impacts, and do not take into account additional uncertainties in future emissions and climate.  

6. POLICY IMPLICATIONS AND CONCLUSIONS 

 We assessed the human health and related economic impacts of present and future (2050) air 

pollution due to ozone, using the EPPA-HE model applied to results a GEOS-Chem global 3-D 
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tropospheric chemistry simulation for the IPCC A1B scenario. We find that ozone changes due 

to climate and precursor emission changes lead in 2050 to 817,000 additional acute mortalities 

[95% confidence interval of 350,000-2,300,000], and welfare losses of $120 billion [95% range 

of 12.8 billion-186 billion]; and that climate change contributes only $790 million to the median  

loss. We further calculate that ozone pollution above pre-industrial background leads to >2 

million [95% range of 560,000-3,600,000] acute mortalities in 2050, and welfare costs of $580 

billion [95% range of $101 billion-$1.53 trillion]. For comparison, our 2050 GDP projection in 

the U.S. for the case with 2050 climate and precursor emissions is $41 trillion ($2000), and for 

the world is $149 trillion. Thus, $580 billion is 0.4% of world GDP and 1.3% of U.S. GDP. We 

estimate that 40% of the median 2050 cost reflects the accumulated economic burden of previous 

elevated ozone. 

Though ozone concentration changes due to climate change vary in sign and magnitude in 

different regions, we nevertheless calculate a net global welfare loss due to climate-related ozone 

changes under the A1B scenario. The magnitude of changes due to emissions trajectories, 

however, far exceeds the climate signal, suggesting that future analyses could consider the 

effects of different emissions projections. Our analysis suggests that potential reductions in 

ozone emissions precursors such as NOx and VOCs could have substantial economic benefits 

due to human health improvements.  
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APPENDIX A 

Table A1. Correlations between exposure-response functions used in uncertainty analysis.  

Outcome  AM RHA RSD MRD AA BDU LRS 

Acute mortality (AM) X       

Respiratory hospital admission (RHA) 

(adults >65 years) 0.4 X      

Respiratory symptom day (RSD) 0.4 0.4 X     

Minor restricted activity day (MRD) 0.4 0.4 0.8 X    

Asthma attack (AA) 0.4 0.4 0.8 0.8 X   

Bronchodilator usage (BDU) 0.4 0.4 0.8 0.8 0.9 X  

Lower respiratory symptoms (wheeze) in 

children (LRS) 0.0 0.0 0.0 0.0 0.0 0.0 X 

 

Table A2. Ozone concentrations (ppb) by EPPA region, based on West et al. (2007) for 
sensitivity analysis. A2 refers to IPCC A2 scenario; CLE is current legislation, and MFR is 

maximum feasible reduction scenario. 

Region 2000 A2 2030 CLE 2030 MFR 2030 

AFR 39.3 48.5 42.0 36.9 

ANZ 42.4 48.3 43.5 36.6 

ASI 33.5 42.1 37.7 29.5 

CAN 46.4 52.1 48.0 40.9 

CHN 44.9 53.0 46.7 38.5 

EET 41.2 47.5 43.0 36.9 

EUR 40.4 45.1 42.2 37.3 

FSU 41.2 47.5 43.0 36.9 

IDZ 33.5 42.1 37.7 29.5 

IND 45.5 60.3 54.4 39.3 

JPN 42.4 48.3 43.5 36.6 

LAM 35.9 44.5 36.7 31.0 

MES 45.7 56.1 49.4 39.3 

MEX 35.9 44.5 36.7 31.0 

ROW 41.9 51.1 45.3 36.7 

USA 46.4 52.1 48.0 40.9 
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Table A3. Acute mortalities from ozone due to climate and precursor emission changes for 

each EPPA region. 

Region 

Mortalities 

Climate 

Mortalities 

Precursor 
Emissions 

Mortalities 

Climate+ 

precursors 

Excess 

mortalities 

O3>10ppb 

AFR -2640 130000 127000 391000 

ANZ -1 585 584 3980 

ASI 135 44500 44600 98500 

CAN 45 190 235 6810 

CHN -564 90500 89900 403000 

EET -489 1560 1070 16200 

EUR 297 5210 5500 66000 

FSU -1260 4890 3630 47400 

IDZ -2140 27400 25200 61800 

IND 3740 317000 321000 770000 

JPN 534 1280 1820 24300 

LAM 1190 46100 47300 114000 

MES -1250 33800 32600 127000 

MEX -1300 7940 6640 38000 

ROW -1360 108000 107000 362000 

USA 444 -2470 -2030 79800 

Total -4640 817000 813000 2610000 
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Table A4. Welfare change from ozone-related air pollution health impacts due to climate 

and emission changes for each EPPA region (in 109 year 2000$). 

Region 

Welfare 

Climate 

Welfare 

Precursor 
Emissions 

Welfare 

Climate+ 
precursors 

Welfare (2050) 

O3>10ppb 

AFR 0.083 -4.5 -4.4 -8.4 

ANZ 0 -1.5 -1.4 -6.4 

ASI -0.012 -1.9 -2 -1.8 

CAN -0.092 -0.59 -0.47 -13 

CHN 0.11 -17 -17  -57 

EET 0.51 -2.2 -1.6 -14 

EUR -0.53 -9.9 -9.1 -96 

FSU 1  -5.5 -4.3 -33 

IDZ 0.13 -1.8 -1.7 -1.9 

IND -0.76 -56 -60 -80 

JPN -1.8 -3.6 -4.3 -73 

LAM -0.04 -1.5 -1.6 -1.9 

MES 0.042 -1.6 -1.6 -4.5 

MEX 1.4 -10 -8.5 -28 

ROW 0.075 -6.3 -6.3 -13 

USA -0.91  2.2   4.8 -150 

Total -0.79 -120 -120 580 
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