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Electricity generation is a major contributor to carbon dioxide emissions, and abatement in this sector is a key
determinant of economy-wide regulation costs. The complexity of an integrated representation of economic
and electricity systems makes simplifying assumptions appealing, but there is no evidence in the literature on
how important the pitfalls may be. The aim of this paper is to provide such evidence, drawing on numerical
simulations from a suite of partial and general equilibrium models that share common technological features
and are calibrated to the same benchmark data. We report two basic findings. First, general equilibrium inter-
sectoral effects of an economy-wide carbon policy are large. It follows that assessing abatement potentials and
price changes in the electricity sector with a partial equilibriumMarshallian demand can only provide a crude
approximation of the complex demand-side interactions. Second, we provide evidence that widely used top-
down representations of electricity technologies produce fuel substitution patterns that are inconsistent with
bottom-up cost data. This supports the view that the parametrization of substitution possibilities with highly
aggregated production functions is difficult to validate empirically. The overall picture that emerges is one of
large quantitative and even qualitative differences, highlighting the role of key structural assumptions in the
interpretation of climate policy projections.
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1. Introduction

Electricity generation is a significant contributor to carbon dioxide
(CO2) emissions, and potentially has an important role in abatement
efforts. The current research paradigm for ex-ante carbon policy
assessment mainly involves two classes of models (Hourcade et al.,
2006). On the one hand, technology-rich ‘bottom-up’ models provide
a detailed representation of generation technologies and the overall
electricity system. By construction, these models are partial equilib-
rium, and typically include no or very limited interactions with the
macroeconomic system. On the other hand, economy-wide ‘top-
down’ models represent sectoral economic activities and electricity
generation technologies through aggregate production functions.
While these models are designed to incorporate general equilibrium
effects, the use of smooth functions is not well suited to capture the
temporal and discrete nature of technology choice.1

The integration of bottom-up technology representation and
economy-wide interactions into ‘hybrid’ models is the subject of a
large literature. For example, reference is often made to ‘soft-linked’
models, where the combination of the two models either fail to
achieve overall consistency (Drouet et al., 2005; Hofman and
Jorgenson, 1976; Hogan and Weyant, 1982; Jacoby and Schäfer,
2006), or complement one type of model with a ‘reduced-form’

representation of the other, thereby lacking structural explicitness
(Bosetti et al., 2006; Manne et al., 2006; Messner and Schrattenholzer,
2000; Strachan and Kannan, 2008). An alternative and more recent
approach, referenced to as ‘hard-linked’, is to directly embed a set of
discrete generation technologies into a top-down model (Böhringer,
uction technologies can accommodate anymicroconsistent elasticity
d Rutherford, 1995), including time or regional differentiation. In
ta limitations make empirical validation of the parameters driving
ties difficult. In addition, we note that top-down representations of
r violate basic energy conservation principles away from the
n point (see Sue Wing, 2008).
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1998; Böhringer and Rutherford, 2008; Sue Wing, 2006). Under this
approach, however, the representation of technological detail signif-
icantly increases the dimensionality of the model, thus severely
constraining large-scale applications. Finally, a decomposition algo-
rithm by Böhringer and Rutherford (2009) employs an iterative
solution procedure to solve top-down and bottom-up model
components consistently. This approach is essentially a soft-linked
approach, but overcomes issues of dimensionality and consistency,
and has been employed in the context of U.S. climate policy in
Tuladhar et al. (2009).

Despite the large literature documenting efforts to reconcile top-
down and bottom-up modeling paradigms, and a tendency towards
ever more detailed models, there is no quantitative evidence on the
pitfalls of different simplifying assumptions. The objective of this
paper is to explore the implications of different structural assumptions
concerning electricity supply and demand for the assessment of
economy-wide carbon policies, thereby going beyond the usual
parametric sensitivity analysis. As it is impossible to derive general
qualitative propositions for such an issue, we employ a suite of
numerical partial equilibrium (PE) and general equilibrium (GE)
models that share common technological features and are calibrated to
the same benchmark equilibrium. Our benchmark model consistently
integrates a bottom-up technology representation of the electricity
sector within a general equilibrium setting based on the decomposi-
tion method by Böhringer and Rutherford (2009). The economy-wide
component is based on a static version of theMIT U.S. Regional Energy
Policy (USREP) model, a multi-sector multi-region numerical general
equilibrium model designed to analyze climate and energy policy in
the U.S. (Rausch et al., 2010a, b). The electricity sector is represented
by amulti-regionmodel based on a comprehensive database of electric
generators from the Energy Information Administration (EIA, 2007a),
and features detailed plant-level information on the generation costs
and capacity, fuel switching capabilities, and season-specific load
profiles.2 We assume imperfect factor mobility in the economy and
fixed capacity of electricity generation technologies, so that the
response to a policy shock is of short- to mid-term horizon.3

Our results are as follows. First, we find that general equilibrium
income and substitution effects induced by an economy-wide carbon
policy are of first-order importance to evaluate the response of the
electricity sector. Changes in electricity prices and abatement
potentials are largely driven by both the slope and the location of
the demand schedule. Following the suggestion in an early and
influential article by Hogan and Manne (1977), we explore whether
price elasticities of electricity demand simulated from a GE model can
approximate general equilibrium effects in a partial equilibrium
setting. We report evidence that such a modeling strategy is not
sufficient to capture the underlying economy-wide changes, as
represented in an integrated model. For example, we calculate that
general equilibrium effectsmitigate electricity price increases by up to
20% in the case of even moderate carbon prices of around $25 per
metric ton of CO2.
2 Our database has a high resolution at the operator level, which allows us to
incorporate realistic assumptions about the market structure in the electricity sector.
To facilitate the comparison of top-down and bottom-up approaches, the present
analysis maintains the usual assumption of marginal cost-pricing and perfect
competition in the electricity sector. In a companion paper, we incorporate cost-of-
service regulation at the operator level and non-competitive (Cournot) pricing
behavior by large operators to investigate the role of non-competitive behavior for the
design of climate policies.

3 We refrain from using ad-hoc vintaging assumptions to restrict capital mobility in
the economy-wide model, or specifying some capacity expansion elasticities in the
electricity sector model, for example allowing expansion of renewable technologies
under a carbon price. Our qualitative conclusions are not affected by these
assumptions. Issues related to the structural representation of electricity demand
and supply still apply in a dynamic setting, but forward-looking responses to carbon
policy shocks is beyond the scope of our comparison exercise.
Our second set of results relates to the representation of electricity
generation technologies in general equilibrium top-down models by
means of aggregate substitution elasticities. We implement two top-
down technology specifications based on nested constant elasticity of
substitution (CES) functions (Bovenberg and Goulder, 1996; Paltsev
et al., 2009) which are widely adopted for ex-ante climate policy
assessment. Our analysis suggests that these representations produce
fuel substitutionpatterns that are inconsistentwith bottom-up cost data,
mainly because top-down representation of electricity markets implies
that thepriceof electricity reflects the total carbon content of generation.
This contrasts with real markets (and the bottom-up approach), where
the carbon price is reflected in the electricity price through the carbon
content of themarginal producer at a givenpoint in time(Stavins, 2008).
In our setup, structural assumptions about the technology representa-
tion translate into country-wide welfare costs that differ by as much as
60% for an emissions reduction target of 20%. We further observe large
heterogeneity in regional discrepancies, mostly driven by the bench-
mark shares of carbon-intensive technologies.

On amore general level, our findings demonstrate the significance of
structural assumptions embedded in top-down and bottom-up model-
ing approaches for the assessment of carbon and energy policies. While
both approaches rely on the assumption of fully rational behavior, the
structural settingmakes empirical validation of the behavioral response
in each modeling approach is difficult. Any analysis inevitably involves
simplifications fromamore complex reality, butwe usually do not know
howmisleadingassumptionsmightbewhendrawingpolicy conclusions
from quantitative analysis. By providing evidence on the magnitude of
structural assumptions, albeit in the context ofmodels also using a set of
restrictive assumptions, we believe that our investigation contributes to
an improved understanding of the theoretical andmethodological basis
for carbon policy assessment with large-scale simulation models.

The remainder of this paper proceeds as follows. Section 2 provides
an overview of the economy-wide model, describes the top-down and
bottom-up representations of the electric power sector, andpresents the
integrated model. Section 3 investigates the importance of general
equilibrium factors and the implications of top-down versus bottom-up
technology representation for carbon policy assessment. Section 4
concludes.
2. Analytical framework

This section presents the different components of our numerical
modeling framework. We first provide an overview of the economy-
wide model, and then describe the top-down and bottom-up models
of electricity generation. The final subsection describes the integrated
framework.4
2.1. The MIT U.S. Regional Energy Policy model

The economy-wide model is based on a static version of the MIT
U.S. Regional Energy Policy (USREP) model (Rausch et al. 2010a, b), a
multi-region and multi-sector general equilibrium model for the U.S.
economy. USREP is designed to assess the impacts of energy and
climate policies on regions, sectors and industries, and different
household income classes. It is built on state-level data for the year
2006 that combines economic Social Accounting Matrix (SAM) data
from the IMPLAN data set (Minnesota IMPLAN Group, 2008) with
physical energy and price data from the State Energy Data System
(EIA, 2009b). As a detailed description of the model is provided in
Rausch et al. (2010a), including a full algebraic characterization of
equilibrium conditions, we here only give a brief overview of key
model features.
4 All models are written in the GAMS software system and solved with the PATH
solver (Dirkse and Ferris, 1995) for mixed complementarity problems (MCP).



Table 1
USREP Model Details.

Sectors Regionsa Production
Factors

Industrial sectors California ISO (CA) Capital
Agriculture (AGR) Northwest Power Pool (NWPP) Labor
Services (SRV) Mountain Power Area (MOUNT) Resource factors
Energy-intensive products (EIS) Texas (ERCOT) Coal
Other industries products (OTH) Southwest Power Pool (SPP) Natural gas
Transportation (TRN) Midwest ISO (MISO) Crude oil

Final demand sectors Southeast Power Pool (SEAST) Hydro
Household demand PJM Interconnection (PJM) Nuclear
Government demand New York ISO (NY) Land
Investment demand New England ISO (NENGL)

Energy supply and conversion
Fuels production
Coal (COL)
Natural gas (GAS)
Crude oil (CRU)
Refined oil (OIL)
Electric transmission
& distribution

Notes: a Detailed regional grouping is provided in Fig. 1.
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The structure of the model is summarized in Table 1. Much of the
sectoral detail in the USREPmodel is focused on providing an accurate
representation of energy production and use as it may change under
policies that would limit greenhouse gas emissions. Here we group
economic sectors as either energy demand sectors or energy supply
and conversion sectors. Energy demand sectors include five industrial
and three final demand sectors. Each industrial sector interacts with
the rest of the economy through an input–output structure. The
model describes production and consumption sectors as nested CES
production functions.

The regional structure of themodel approximates the geographical
structure of electricity markets by grouping states into ten regions.
The resulting regional aggregation is shown in Fig. 1. This segmen-
tation is mainly driven by available transmission capacity and by the
evolving regulatory status of the electricity sector (see Joskow, 2005,
for an overview).

We differentiate three regional electricity pools that are designed
to provide an approximation of the three asynchronous interconnects
in the U.S.: the Eastern Interconnection, Western Electricity Coordi-
nating Council (WECC), and the Electric Reliability Council of Texas
(ERCOT).5 Electricity cannot be traded across these three regions.
Within each regional pool, electricity trade is modeled as an
Armington (1969) good.6
2.2. Top-down modeling of the electricity sector

The top-down approach for modeling electricity generation in
energy–environment general equilibrium models typically involves a
representative firm in each region that chooses a profit-maximizing
level of output, subject to technological, institutional and resource
constraints. In our setting, production technologies combine energy
(E), capital (K), labor (L), and material inputs Mj from other sectors
indexed by j∈{Agriculture, Services, Energy-intensive products, Other
industries products, Transportation}. Production technologies are
described by nested CES production function, and markets are
5 In terms of the regional aggregation described in Fig. 1, the Eastern Interconnec-
tion thus comprises SPP, MISO, SEAST, PJM, NY, and NENGL, and the WECC comprises
CA, NWPP, and MOUNT.

6 The Armington CES aggregator also entails small discrepancies in the physical
accounting of electricity flows away from the benchmark. While this will typically
have only minor implications for the interpretation of the results, this could motivate
the representation of electricity trade in the bottom-up module.
competitive. In the following, we describe the representation of the
nesting structure and lay out equilibrium conditions for electricity
generation. The nesting structure that we adopt and values for the free
elasticity parameters are provided in Fig. 2 and Table 2, respectively.

Electricity for end-use demand combines electricity generated
with Transmission & Distribution services, which themselves are a CES
composite of capital, labor, and material inputs. Electric current from
different sources is modeled as a homogeneous commodity and
production from Conventional Fossil, Nuclear, and Hydro is resolved at
the sub-sector level. Electricity produced from nuclear and hydro
power relies on capital, labor, and sector-specific resource, and is
assumed to be in fixed supply in order to be consistent with our
bottom-up representation.7

For fossil-based electricity, we implement two different nesting
structures widely adopted in the literature.8 The nesting structure
labeled (a) in Fig. 2 is in line with Rausch et al. (2010b), Paltsev et al.
(2009) and Böhringer et al. (2010). The nesting structure labeled (b)
is based on Bovenberg and Goulder, (1996), and has been used for
policy analysis, e.g., in Goulder et al. (2010) and Sue Wing (2006).
Elasticity values for each nesting structure are shown in Table 2.

Under the nesting structure (a), electricity produced from fossil
fuels combines materials and a capital–labor–energy composite in a
Leontief nest (σKLEM=0). Generation from coal, oil, and gas
technologies is not represented separately but is instead treated via
substitution between fuels. This implies limited substitution possibil-
ities among fuels, thus representing their unique value for peak,
intermediate, and base load.

The nesting structure (b) follows the same logic but allows for direct
substitution between all fossil fuels (Ez, z={Coal, Oil, Natural Gas}).
Moreover, the value added bundle trades off with an energy-materials
composite whereas under the nesting structure (a) capital–labor can be
substituted directly for composite energy. Another key difference
between both structures is that (b) allows for a higher degree of
substitutability between materials M and energy E, i.e. σEMN0, whereas
under (a) materials enter in fixed proportions, i.e. σKLEM=0. This implies
that if energy prices rise relative tomaterial costs, generation costswill be
higher under structure (a) compared to (b).

In equilibrium, the cost minimizing behavior and the price-taking
assumption imply that zero-profit and market clearing conditions
exhibit complementary slackness with respect to activity levels and
market prices, respectively (Mathiesen, 1985; Rutherford, 1995).
Table 3 lists the equilibrium values of the endogenous variables. Zero-
profit conditions for fossil and non-fossil electricity generation
determine the respective activity levels9:

−ΠNF≥0⊥ ELENF≥0 ð1Þ

−ΠF≥0⊥ ELEF≥0 ð2Þ

where ΠNF and ΠF denote the unit profit function for each type of
generation technology, and the ⊥ operator indicates the complementary
relationship between an equilibrium condition and the associated
variable.

Unit profit functions for electricity generation from non-fossil fuel
sources, indexed by NF={Nuclear, Hydro}, can be derived based on
7 In line with our short- to mid-term time horizon, we hold production from nuclear
and hydro sources constant so that generation from these energy sources does not
expand in the presence of a carbon price.

8 We refrain from imposing capacity bounds on the maximum output of fossil
technologies, since these constraints would not be binding under a carbon policy.

9 For notational convenience, we suppress the region index and focus on an
algebraic characterization of the production structure shown in Panel (a), Fig. 2. Also,
note that we abstract here from generation and transmission costs that we model as a
fixed coefficient technology.



Fig. 1. Regions in the integrated economic-electricity model.

Fig. 2. Top-down production structure of electricity sector.
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the dual costminimization problem of individual producers. Given the
CES nesting structure displayed in Fig. 2 these can be written as:

ΠNF = PELE−
 
θNF

PNF

θNF

 !1−σNF

+ 1−θNF
� � PK

1−θNF
� �

θNFK

 !θNFK PL

1−θNF
� �

1−θNFK
� �

 ! 1−θNFKð Þ#1−σNF
!1= 1−σNFð Þ

2
4

where θNF is the benchmark cost share of the fixed input in the non-
fossil generation technology and θKNF is the cost share of capital in the
value-added subnest.

Using a similar notation, and given the Leontief structure in the top-
nest of electricity generation, the unit profit function for electricity
generation from conventional fossil fuels is:

ΠF = PELE− θKLEPKLE + 1−θKLE
� �

∑
j
θ jP j

 !

image of Fig.�2


Table 2
Elasticity parameters for the top-down representations of electricity sector.

(a) (b)

σKLEM Capital–labor and energy-materials bundle 0 0.70
σKLE Energy and value-added 0.40 –

σE Energy inputs – 0.97
σM Material inputs 0 0.60
σEM Energy and materials bundle – 0.70
σG Coal/oil and natural gas 1.00 –

σC Coal and oil 0.30 –

σGT Generation and transmission & distribution 0 0
σTR Inputs in transmission & distribution bundle 0 0
σVA Capital and labor 1.00 1.00

Notes: Values shown in columns (a) and (b) refer to elasticity parameters used in the
nesting structures shown in Panel (a) and (b) in Table 2, and are taken from Paltsev
et al. (2009) and Bovenberg and Goulder (1996), respectively.
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where θKLE is the benchmark cost share of the capital–labor–
electricity (KLE) composite, and θj is the benchmark cost share of
commodity j. The cost of a unit of KLE is given by:

PKLE =

(
θE

PE

θE

 !1−σKLE

+ 1−θE
� �" PK

1−θE
� �

θEK

 !θEK

×
PL

1−θE
� �

1−θEK
� �

 ! 1−θEKð Þ#1−σKLE
)1= 1−σKLEð Þ

where θE is the cost share of the composite fuel cost and θKE is the cost
share of capital in the value-added subnest. The unit profit function of
the fossil-based generation is completed by the composite cost-
minimizing unit fuels costs:

PE =

(
θGAS

PGAS

θGAS

 ! 1−σGð Þ
+ 1−θGAS
� �"

θCOL
PCOL

θCOL 1−θGAS
� �

 ! 1−σCð Þ

+ 1−θCOL
� � POIL

1−θCOL
� �

1−θGAS
� �

 ! 1−σCð Þ# 1−σGð Þ
1−σCð Þ

)1= 1−σGð Þ

with respective baseline cost share parameters.
For a given region, equilibrium interactions of the electricity sector

with the rest of the economy can be fully described by a set of market
clearing conditions. We begin with the market clearing condition for
electricity:

ELEF + ∑
NF

ELENF = DELE⊥ PELE
: ð3Þ
Table 3
Equilibrium variables related to electricity in the top-down representations.

Activity variables Price variables

ELENF Electricity generation from
non-fossil technologies

PELE Price index for electricity
generation

ELEF Electricity generation from
fossil fuels

P j Price index non-energy
commodity j

DELE Demand for electricity PL Wage rate
S j, D j Supply and demand for commodity

j in non-electricity sectors
PK Rental price for capital

L, DL Labor supply and demand in
non-electricity sectors

Pz Price index for fossil fuel z

K, DK Capital supply and demand in
non-electricity sectors

PNF Price index for
technology-specific resource

Sz, Dz Supply of and demand for fuel z
in non-electricity sectors

SNF Supply of technology-specific
resource
The demand for inputs can be derived by applying the envelope
theorem (Shephard's Lemma), so that the market clearing for non-
energy commodity j is given by:

S j = D j + ELE
F ∂ΠF

∂P j
⊥ P j ð4Þ

where a variable with a bar denotes its benchmark value.
The regional labor market is in equilibrium if:

L = DL + ELE
F ∂ΠF

∂PL + ELE
NF ∑

NF

∂ΠNF

∂PL ⊥ PL
; ð5Þ

and the market clearance condition for capital is:

∑
r

Kr = ∑
r

DK
r + ELE

F
r
∂ΠF

∂PK

+ ELENF
r ∑

NF

∂ΠNF

∂PK ⊥PK
:

ð6Þ

Similarly, the market for fossil fuel z and technology-specific
resources is in balance if:

Sz = Dz + ELE
F ∂ΠF

∂Pz ⊥ Pz ð7Þ

SNF = ELENF ∂ΠNF

∂PNF ⊥ PNF
: ð8Þ

Finally, the income of the representative household is given by:

M = PKK + PLL + ∑
NF

PNFRNF + TR: ð9Þ

whereM denotes income and comprises revenues derived from capital,
labor and natural resources endowments, as well as government
transfers (TR).

2.3. Bottom-up modeling of the electricity sector

The bottom-up representation of electricity generation exhibits two
key differences as compared to the top-down approach. First, it uses a
cost-based description of discrete generation technologies to determine
the least-cost utilization thatmeets the demand. Second, the bottom-up
approach features a finer time resolution, dividing the yearly demand
into loadblocks to capture observedfluctuations of thephysical demand
for electricity.10

Our bottom-up representation of the electricity sector is based on a
high resolution dataset of more than 16,000 electricity generators that
were active in 2006 (EIA Form EIA-860, EIA, 2007a). It contains
information on the capacity, generation technology and energy
sources. Generation technologies and fuels included in the model
are listed in Table 4. Each generator is characterized by a constant
marginal generation cost and maximum output in each time period.11

The marginal cost of generators includes variable operation and
maintenance (O&M) costs (EIA, 2009a) and fuel costs. Contingent on
generator-specific technology reported in EIA Form EIA-860 (EIA,
10 This reflects the limited substitution possibilities of electricity generated at two
different times in the year, since neither the supply of electricity nor the demand for
electricity services can easily be shifted across time. First, the costs of storing electric
current are essentially prohibitive, so that electricity must be produced ‘on demand’.
Second, the demand for electricity services varies over time through stable (although
uncertain) factors, like the hours with natural light or the weather conditions.
11 For technologies with relatively low generation costs, we impute capacity factors
from data on observed output (EIA Form EIA-920, EIA, 2007b). Thus technologies
such as nuclear, hydro, wind and solar are modeled as ‘must-run’ technologies, in the
sense that they are typically used at their effective capacity in each period (Bushnell
et al., 2008).



Table 4
Generation technologies and fuel mapping between economy-wide and electricity
sector model.

Technologies
Combined cycle, combustion turbine, hydraulic turbine, internal combustion
engine, photovoltaic, steam turbine, wind turbine

Fuels
Coal:

Anthracite and bituminous coal (BIT), lignite coal (LIG), coal-based synfuel (SC),
sub-bituminous coal (SUB), waste and other coal (WC)

Natural Gas:
Blast furnace gas (BFG), natural gas (NG), other gas (OG), gaseous propane (PG)

Oil:
Distillate fuel oil (DFO), jet fuel (JF), kerosene (KER), residual fuel oil (RFO)

Exogenous:
Agricultural crop (AB), other biomass (gas, liquids, solids) (OB), black liquor
(BLQ), geothermal (GEO), landfill gas (LFG), municipal solid waste (MSW),
nuclear fission (NUC), petroleum coke (PC), other wastes (OWH), solar (SUN),
wood and wood waste (WDS), wind (WND), hydroelectric (WAT)

Table 6
Observed (sz) and predicted (ŝz) fuel mix (% of total regional electricity output).

Regions Coal Natural gas Nuclear Hydro Other

sz ŝz sz ŝz sz ŝz sz ŝz sz ŝz

CA 7.2 8.4 46.6 46.4 13.8 14.3 20.9 20.8 11.4 10.1
ERCOT 31.7 32.7 53.5 53.7 11.8 10.7 0.2 0.1 2.8 2.8
MISO 68.6 69.0 5.3 5.1 22.6 21.4 1.6 1.8 1.9 2.7
MOUNT 56.6 56.3 26.7 26.4 11.2 12.5 4.2 4.1 1.2 0.8
NENGL 14.8 15.2 39.8 40.5 27.8 27.6 7.1 6.6 10.5 10.0
NWPP 34.5 34.8 14.5 14.4 2.9 3.0 45.4 44.6 2.7 3.2
NY 14.7 14.0 29.4 31.5 29.5 29.0 19.1 18.4 7.2 7.1
PJM 64.9 63.8 6.7 6.6 25.0 23.7 1.4 1.1 2.1 4.8
SEAST 50.8 48.0 19.2 19.7 22.5 22.6 2.5 2.7 5.0 7.1
SPP 59.7 59.3 24.4 25.4 12.9 12.4 0.7 1.0 2.4 1.9
US 49.1 48.2 20.4 20.9 19.4 18.9 7.1 7.0 3.9 5.0

12 The explicit representation of rents as the complementarity variable to the
capacity constraint can be interpreted as profits earned by the submarginal generators.
In the integrated model, these profits are incorporated in the income balance equation.
13 As a formal goodness of fit measure, we compute the coefficient of determination

R2 = 1−∑i yi−ŷið Þ2
∑i yi−yð Þ2

, where yi is observed outcome, ŷi is the prediction from the

model, and y is average observed outcome. The R2 with respect to the predicted output
by fuel and by region yields is above 95%, and around 90% for the regional output per
generation technologies.
14 As alreadymentioned, we do notmodel capacity expansion, and low cost carbon-free
technologies that are typically used at capacity in the benchmark cannot expand. We
therefore focus on changes in the relative prices of different fossil generation technologies,
which are not operated at capacity both in the benchmark and in policy counterfactual.

Table 5
Equilibrium variables related to electricity in the bottom-up model.

Activity variables Price variables

eletg, z Electricity generation for
generator g, fuel z and
load block t

pt
ws Wholesale price of electricity

generation in load block t
pele Consumer price for electricity

generationdt
ele Electricity demand in load

block t pz Price of fuel z
dz Demand for fuel z μtg Fixed capacity rents for generator

g and load block t
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2007a), generators can use up to three different fuels. The choice of
fuel depends on the relative fuel costs, including state-level fuel prices
for 2006 (EIA, 2009c) and carbon intensity (EIA, 2008). Fuel costs are
also determined by the efficiency of the plant based on EIA Form EIA-
920 (EIA, 2007b).

In the benchmark, the electricity demand by region (in MWh) is
directly taken from the augmented SAMdata that underlies the USREP
model. We share out the demand across three seasons (summer,
winter and fall/spring) and into three load blocks (peak, intermediate
and base-load) with region and season-specific load distribution data
(EIA Form EIA-920, EIA, 2007b; EIA, 2009a).

As in the top-down representation, we assume that generators in
each region and time period are price-takers. The market value of
electricity generated, or wholesale price (net of transmission and
distribution costs), varies by region, season and load block according
to the generation costs of the marginal producer.

We now lay out the equilibrium conditions for the bottom-up
representation of the electricity sector. Endogenous variables are
listed in Table 5, where we use lower case variables to indicate the
correspondence with variables in the top-down representation.
Electricity output at each generator g and load block t exhibits
complementarity slackness with the zero profit condition:

−πg;z
t ≥ 0⊥ eleg;zt ≥ 0: ð10Þ

The unit profit function is given by:

πg;z
t = pws

t −cg−pzγg−μg
t

where cg denotes variable O&M costs of generation and γg is a
measure of the fuel requirements per unit of output.

The wholesale price of electricity in each load block is the
complementary variable to the market clearance equation:

∑
g;z

eleg;zt = delet ⊥ pws
t : ð11Þ

All submarginal generators earn scarcity rents μtg measuring the
value of the installed generation capacity per unit of output. The rents
are the multiplier associated with the per period capacity con-
straints:

κg
t ≥ ∑

z
eleg;zt ⊥ μg

t ≥ 0 ð12Þ
where κtg is the maximum output of generator g in a given time
period.12

The bottom-up model finds the optimal utilization of available
capacity in order to meet the electricity demand, and the benchmark
output elet

g;z and price pws
t are determined by simultaneously solving

Eqs. (10)–(12), given benchmark demand d
ele
t and fuel prices pz. The

regional fuel mix predicted by the model (ŝz) is reported in Table 6
and closely matches observed values (sz).13

The response of the model to a carbon policy is driven by three
mechanisms.14 First, fuel costs increase according to their carbon
content. Second, we add structure on the electricity demand response.
Since a wide majority of electricity consumers are charged a near
constant annual retail price (despite substantial time variations on the
wholesale market), we assume that the generation costs passed
forward to the consumers are an output-weighted yearly average of
the wholesale price in each load block t:

pele =
1

∑
g;z;t

eleg;zt
∑
g;z;t

pws
t eleg;zt : ð13Þ

The demand schedule features a constant price elasticity and is
calibrated to the benchmark quantities (pele, d

ele
):

delet = delet
pele

pele

 !
�

ð14Þ



Table 7
Regional price elasticities for fuel supply and electricity demand.

Region Electricity demand elasticities Fuel supply elasticities:
simulated values b

Estimated a Simulated b Coal Natural gas

(�̂r) (�̃r) ( 1=η̃ coal
r ) (1=η̃natural gas

r )

CA −0.25 −0.47 0.01 0.02
ERCOT −0.15 −0.43 0.01 0.04
MISO −0.14 −0.24 0.03 0.01
MOUNT −0.20 −0.37 0.01 0.02
NENGL −0.19 −0.72 0.01 0.01
NWPP −0.23 −0.43 0.09 0.01
NY −0.10 −0.17 0.01 0.01
PJM −0.22 −0.23 0.04 0.01
SEAST −0.25 −0.32 0.05 0.01
SPP −0.15 −0.50 0.01 0.01

Notes: a Econometric estimates from Bernstein and Griffin (2005), point estimates
averaged across end-use demands. b Simulated values from the USREP model.
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where �b0 is the regional price elasticity of demand. Values for
elasticity parameters are shown in Table 7. Besides regional
econometric estimates from Bernstein and Griffin (2005), we use
elasticities simulated from the USREP model to provide a local
approximation of the general equilibrium demand response.15

The third response occurs through changes on the markets for coal
and natural gas.16 Defining the demand for fuel z as:

dz = ∑
g;t

γgeleg;zt ; ð15Þ

we assume a set of constant elasticity supply schedules calibrated to
the benchmark fuel price and demand:

pz = pz
dz

d
z

� � 1
ηz ð16Þ

where ηrzN0 is the regional supply price elasticity for fuel z. The local
price elasticities are simulated from the economy-wide model and
reported in Table 7.17 Overall, the change in the demand from regional
electricity sectors has a relatively small impact on the market price for
coal, and an even smaller impact on the natural gas market. This
reflects the small market share of each region in the national markets
for coal and natural gas.18

2.4. Formulation of the integrated model

The integrated framework comprises the following two sub-models:
(1) the economy-wide USREP model with exogenous electricity
generation that is parameterized with the benchmark input demand
from the bottom-up model, and (2) the bottom-up electricity model
with electricitydemandand fuel supply functions locally calibratedwith
15 Simulating demand elasticities involves exogenously increasing the electricity
price in a region and solving the USREP model, repeating the procedure for each region
sequentially. The change in electricity demanded in each region is the basis to measure
regional elasticities, which by construction includes all categories of customers
(residential, commercial and industrial).
16 For all other fuels, the electricity sector is assumed to be a price-taker.
17 We simulate the inverse of the supply elasticity by increasing the demand for fuels
in each regional electricity sector and solving for the fuel price increase in the USREP
model, repeating the procedure for each region in a sequential manner.
18 We emphasize that the objective of simulating fuel supply elasticities is to
approximate the response of the USREP model at the regional level. Thus these
elasticities should not be compared to econometric estimates of supply price
elasticities that measure an aggregate supply response to a change in fuel prices.
Note also that USREP model only features one type of coal, so that the same elasticity
applies to the different types of coal in the electricity sector model.
top-down quantities and prices.We use an iterative algorithm based on
Böhringer and Rutherford (2009) to solve the twomodels consistently.
The key insight from Böhringer and Rutherford (2009) is that a linear
Marshallian demand can be used as a local representation of general
equilibrium demand, and that rapid convergence is observed as the
electricity sector is small relative to the rest of the economy. In this
setting, income effects from changes in the electricity sector are small
and do not affect the location of the demand schedule. Moreover, our
computational experience with this model suggests that including an
approximation of how fuel prices respond to changes of production in
the regional electricity sectors in the bottom-up module increases
convergence speed. Intuitively, fuel price schedule in the bottom-up
model approximates general equilibrium adjustments, so that technol-
ogy choice in the bottom-up model moves quicker towards their
equilibrium value. A more detailed description of the algorithm is
provided in the working paper version of this article (Lanz and Rausch,
2011).19

We now provide an algebraic description of the integrated model.
Let n=1, …, N denote an iteration index and consider first the
economy-wide component. Since electricity supply is exogenous, the
zero-profit conditions for the electricity generation activities and
resource-specific market clearance are dropped (Eqs. (1), (2) and
(8)). The least-cost input requirement determined by solving the
bottom-up model in iteration (n-1) is used to parameterize the
economy-wide model in (n), replacing Eqs. (3)–(7) with a set of
modified market clearance conditions:

∑
g;z;t

eleg;zt
n−1ð Þ

= DELE nð Þ⊥ PELE nð Þ ð3′Þ

S j nð Þ
= D j nð Þ

+ ∑
g;z;t

ϕj
gc

g eleg;zt
n−1ð Þ⊥ P j nð Þ

;∀ j ð4′Þ

L
nð Þ

= DL nð Þ
+ ∑

g;z;t
ϕL
gc

geleg;zðn−1Þ
t ⊥ PL nð Þ ð5′Þ

∑
r

KðnÞr = ∑
r

DK
r
nð Þ

+ ∑
g;z;t

ϕK
g c

geleg;zðn−1Þ
t

 !
⊥ PK nð Þ ð6′Þ

Sz
nð Þ

= Dz nð Þ
+ dz

n−1ð Þ⊥ Pz nð Þ ð7′Þ

where ϕ's denote the benchmark value share of capital, labor, and
materials of variable O&M costs.20 In addition, we modify the income
balance (Eq. (9)) to account for capacity rents μg n−1ð Þ

t :

MðnÞ = PK nð Þ
K + PL nð Þ

L + ∑
g;z;t

eleg;zðn−1Þ
t

�
PELE nð Þ

pws
t

n−1ð Þ

−cgPc nð Þ− pzPz nð Þ
γg
� ð9′Þ

where the price of fuel z is defined using the mapping shown in
Table 4, and the price for variable O&M costs is a composite index

defined as Pc nð Þ
= ∑jϕ

jPj nð Þ
+ ϕLPL nð Þ

+ ϕKPK nð Þ
. Note that in this

approach the electricity-sector output and inputs are valued at market
19 Before applying the algorithm, it is necessary to calibrate the two models to a
consistent benchmark. Initial agreement in the benchmark is achieved if bottom-up
electricity sector outputs and inputs over all regions and generators are consistent
with the aggregate representation of the electricity sector in the SAM data that
underlies the general equilibrium framework. Violation of this initial condition means
that any simulated policy would be confounded with adjustments due to initial data
inconsistencies. See Appendix B in Lanz and Rausch (2011) for a description of the
calibration procedure.
20 Transmission and distribution costs are assumed to add in a Leontief fashion to the
marginal value of electricity (PELE) as determined by Eq. (3′).



Table 8
Integrated model: emissions reductions and price impacts (% change from BAU).

Tax level $25 $50 $75 $100

CO2 emissions reduction
Benchmark
emissions (mmt)

Agriculture 58.3 −18.0 −24.1 −28.1 −31.4
Services 172.3 −20.2 −33.0 −42.8 −49.9
Energy-intensive products 605.9 −19.4 −30.3 −38.4 −44.4
Other industries products 157.5 −21.4 −34.7 −44.2 −51.1
Transportation 2029.7 −6.4 −11.9 −16.5 −20.5
Electricity 2365.0 −9.8 −32.2 −54.0 −66.5

Price change
Wage ratea −0.4 −1.0 −1.8 −2.5
Capital rental rate −0.5 −1.4 −2.4 −3.2
Coala (producer price) −1.2 −5.9 −12.4 −18.0
Natural gasa (producer price) −1.7 −1.2 0.3 1.4

Welfare change −0.1 −0.4 −0.9 −1.3

aAverage change across regions.

21 Given the absence of uncertainty inour framework, an equivalent policywith the same
environmental stringency could be implemented as a national cap-and-trade system.
22 We do not attempt to approximate allocation rules that have been proposed by
specific U.S. climate legislation but rather want to make the point that any
comprehensive analysis needs to take into account the value of allowances.
23 Full income is the value of consumption, leisure, and the consumption stream from
residential capital.
24 Since carbon-neutral technologies (mainly nuclear and hydro) operate close to
capacity in the benchmark, generation from these ‘must run’ technologies does not
expand.
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prices, and hencewe do not need to include capacity rents explicitly in
the economy-wide model.

In the second step of the algorithm, the bottom-up demand and fuel
supply schedules are linearized to locally approximate the response
from the top-down model (i.e. elasticities �r and ηrz simulated from the
economy-wide model). More specifically, the second step in iteration n
involves re-calibrating the linear functionsbasedonprice andquantities
derived from the top-down solution:

delet
nð Þ

= delet
nð Þ

1 + �
pele nð Þ

peleðnÞ
−1

2
4

3
5

0
@

1
A: ð14′Þ

Input prices in the bottom-up model are updated with candidate
general equilibrium prices from the economy-wide model. Fuel prices
are scaled with the corresponding top-down price index:

pz
nð Þ

= pz
0ð Þ
Pz nð Þ

;

and the fuel supply schedule is re-calibrated with updated price and
quantity information from iteration (n-1):

pz
nð Þ

= pz
nð Þ

1 +
1
ηz

dz
nð Þ

dzðn−1Þ−1

0
@

1
A

2
4

3
5

0
@

1
A: ð16′Þ

Finally, the variable cost index is updated according to:

pc
nð Þ

= ∑
j

ϕjP j nð Þ
+ ϕLPL nð Þ

+ ϕKPK nð Þ
: ð17′Þ

The updated zero profit condition in iteration n of the bottom-up
model is thus given by:

cgpc
nð Þ

+ pzðnÞγg + μgðnÞ
t ≥pwsðnÞ

t ⊥ eleg;zðnÞt ≥0: ð10′Þ

Additional complexity arises from the fact that demand in the top-
down model is defined on an annual basis whereas the bottom-up
model distinguishes demand by season and load time. We reconcile
both concepts by scaling intra-annual reference demand and price in
the bottom-up model using the top-down index from iteration (n):

delet
nð Þ

= DELE nð Þ
delet

0ð Þ

pele
nð Þ

= PELE nð Þ
pele

0ð Þ

where delet
0ð Þ

and pele
0ð Þ

denote the benchmark value of electricity
demand and the consumer price, respectively.

We find that despite the complexity and dimensionality in both
modules, the algorithm is robust and provides rapid convergence.
Numerical evidence and a discussion related to convergence can be
found in Lanz and Rausch (2011).

3. Electricity sector modeling and the cost of carbon abatement

This section examines the implications of top-down and bottom-
up approaches to electricity sector modeling for the assessment of
economy-wide carbon policies. We explore the sensitivity to different
structural assumptions concerning electricity supply and demand by
using a suite of models that share common technological features and
are calibrated to the same benchmark equilibrium. The virtue of our
integrated model is that it can be used as a benchmark against which
we can compare different versions of the stand-alone top-down and
bottom-up models.
Our counterfactual imposes a national tax on CO2 emissions in all
regions and sectors of the economy.21 We consider several tax levels:
$25, $50, $75, and $100 per metric ton of CO2 (in 2006$). Throughout
our analysis, we require revenue-neutrality by holding back a fraction
of the revenue to offset losses in conventional (non-CO2) tax revenue.
Carbon revenue is returned as a lump-sum transfer to households on a
per-capita basis.22

To motivate our analysis, we begin by assessing the size of
emissions reductions in the electricity sector vis-à-vis other sectors
and the general equilibrium impacts on factor and fuel markets.
Table 8 reports sectoral benchmark emissions, reductions, and factor
and fuel price changes from the integrated model. In the benchmark,
emissions from the electric power sector represent about 40% of total
emissions. For carbon prices higher than $50, the electricity sector
yields the largest emissions reductions in absolute terms.

Changes in factor and fuel prices are substantial, with the capital
rental and wage rate decreasing by−0.5% to−3.2% depending on the
level of the carbon tax. Likewise, impacts on fuel prices exclusive of
the carbon charge are significant, with a drop in the producer price of
coal ranging from−1.2% to−18%. The producer price of gas increases
slightly for higher carbon tax levels as the substitution from coal to gas
increases demand. As a measure of economic costs, we report welfare
change measured in equivalent variation as a percentage of full
income.23 Carbon price of $25 and $100 bring about welfare losses of
about 0.1% and 1.3%, respectively.

Fig. 3 shows the fuel mix in electricity generation derived from the
bottom-up component of the integrated model. The key result is the
gradual substitution from coal to natural gas.24 For a $25 carbon price,
we observe a reduction in all technologies using fossil fuels. A small
number of generators using coal with a high carbon content switch to
use other types of coal or alternative energy sources. Fuel switching
represents a significant flexibility mechanism which is reflected by a
decline in the carbon intensity of coal generation of about 10%. As the
carbon price increases, the change in relative fuel prices gradually
makes natural gas generation more competitive compared to coal-
fired generation. The decline in coal-based generation is therefore
partly compensated by an increased utilization rate of the generators
using natural gas. Overall, a $25 carbon price induces a reduction of
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Table 9
Partial and general equilibrium changes in regional electricity prices and demands for a
$50 carbon tax.

Region Partial equilibrium (PE) electricity model General
equilibrium
(GE) model

(1) (2) (3) (4)

Estimated
demand elasticities
and no fuel price
responsea

Simulated
demand
elasticities and
no fuel price
responseb

Simulated
demand
elasticities
and fuel price
responsec

Endogenous
general
equilibrium
response

Change in electricity price (in % relative to BAU)
MISO 77.9 75.3 75.0 67.0
MOUNT 52.4 51.0 51.3 49.4
PJM 53.8 53.6 53.5 43.6
NWPP 43.3 40.1 39.4 37.9
CA 39.8 35.7 35.4 31.0
ERCOT 39.0 33.4 33.3 29.8
SEAST 41.4 36.2 36.4 28.9
SPP 47.0 46.0 45.7 28.3
NENGL 31.9 28.5 28.4 26.6
NY 33.3 33.0 32.9 25.3
Change in electricity demand (in % relative to BAU)
MISO −7.8 −12.4 −12.4 −25.8
MOUNT −8.1 −14.0 −14.1 −16.3
PJM −9.0 −9.2 −9.2 −17.9
NWPP −7.9 −13.4 −13.2 −21.2
CA −8.0 −13.3 −13.2 −17.9
ERCOT −5.1 −12.3 −12.4 −14.7
SEAST −9.2 −11.3 −11.2 −14.5
SPP −4.8 −13.2 −13.2 −17.8
NENGL −5.1 −16.5 −16.5 −20.0
NY −2.8 −4.7 −4.7 −11.4
US −7.8 −11.7 −11.6 −18.1

Notes: aPE model with estimated price elasticities for electricity demand (�̂r) and
exogenous fuel prices (ηrz=∞). bPE model with simulated price elasticities for
electricity demand (�̃r) and exogenous fuel prices (ηrz=∞). cSimiliar to (b) but PE
model here also includes constant-elasticity fuel supply schedules for coal and gas with
simulated supply price elasticities (η̃zr).
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electricity consumption by about 10%, a $50 price yields a 20%
reduction, while for a price of $100, demand declines by about 30%.

3.1. A comparison of partial and general equilibrium analysis

We first examine the reliability of partial equilibrium analysis as an
approximate solution technique for assessing the impact of changes in
the electricity sector. In our setting, there are two channels through
which general equilibrium factors affect the bottom-up electricity
model: (i) income and substitution effects that determine the location
and slope of the electricity demand schedule, and (ii) fuel prices that
influence generation costs. Note that in the partial equilibrium setting,
the electricity sector model optimizes along a given demand curve
and assumes constant fuel prices.

Table 9 reports changes in regional wholesale electricity prices
(net of transmission and distribution costs) and demand reductions
for a $50 carbon tax.We contrast results from the integrated GEmodel
with three different versions of the PE bottom-up model25:

● PE model parameterized with econometric estimates of the price
elasticity of demand (�̂r), in column (1),

● PE model with price elasticities of demand simulated from the GE
model (�̃r), in column (2),

● PE model with price elasticities of demand simulated from the GE
model (�̃r) and fuel supply schedules parameterized with elastic-
ities for coal and natural gas simulated from the GE model (η̃zr), in
column (3).

Not surprisingly, a $50 carbon tax leads to substantial increases in
regional electricity prices across all models. Since the carbon tax is
reflected in the electricity price through the carbon intensity of the
marginal generator, the key driver for regional variations in price
increases is the relative generation cost of themarginal fuel in the pre-
and after-tax equilibrium. MISO, for example, has a large stock of
efficient coal-fired plants and faces relatively low benchmark coal
prices, making coal themarginal technology across all load blocks. The
$50 carbon price does not lead to a significant reordering of
technologies in the supply schedule, and the price increase is the
largest among all regions. In MOUNT and PJM, coal is also the
predominant marginal fuel in the benchmark, but generation from
natural gas expands significantly under the carbon tax, therefore
mitigating the price increase. Regions such as CA, ERCOT, NENGL, and
NY are characterized by a relatively large share of natural gas in the
benchmark, and they experience relatively modest price increases.

Comparing projected electricity prices from the PE models and the
integrated GE model, it is evident that the PE models suggest higher
25 The value of elasticities is reported in Table 7.
price increases. The main reason for this is that the PE models do not
capture shifts and changes in the slope of the electricity demand
schedule. Indeed, reduced income due to lower factor prices and
substitution away from carbon-intensive activities induce a structural
change in electricity demand, reflecting a shift in the demand rather
than a movement along the demand schedule. The PE model with
econometric estimates of price elasticities generates the largest price
increases. Differences with the integrated GE framework range from
around 3% for MOUNT to 20% for SPP. When using simulated price
elasticities that locally approximate the demand response of the GE
model, the PE estimates for all regions are somewhat closer to those
from the GE case. Including a fuel supply response in the PEmodel has
only a minor effect, reflecting the small impact of the regional
electricity sectors on coal and natural gas prices when modeled
independently.

While overall price differences across models are relatively
modest, the step function representation for supply implies that
shifts in the demand are not necessarily reflected in price changes.26

In fact, demand reduction suggested by the PE models (see bottom
panel of Table 8) grossly underestimate the change in demand
suggested by the general equilibrium framework. Averaged across all
regions, the PE models estimate demand reductions that are 35% to
58% smaller than the GE estimate. At the regional level, and across
different PE models, estimates are 13% to 75% lower than those from
the GE case.
26 Moreover, the price signal is a weighted average over different time periods, which
further tends to smooth out intra-annual price differences.



Fig. 4.Model comparison of U.S. CO2 emission reductions from electricity generation for
$50 carbon tax (relative to BAU).
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27 We focus on the change in fossil fuel generation, and in particular on the
substitution between coal and natural gas, because (i) the shares of nuclear and hydro
remain almost constant and (ii) other fuels have relatively small market shares.
28 Both top-down approaches produce relatively similar substitution patterns, but
the decline in coal-based generation is more pronounced for nesting structure (b)
relative to (a). The latter assumes a smaller elasticity of substitution between energy
and material inputs.
29 Of course, this is a modeling choice, and top-down models could be based on
regionally differentiated data. To our knowledge however, this is typically not the case.
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Fig. 4 provides a comparison of PE and GE models in terms of
country-wide emissions reductions from the electricity sector. The
pattern of emissions reductions for the three different PE models
(columns 1–3) and the integrated model (column 4) mirrors the
pattern of electricity demand reductions. Thus, for the purpose of
approximating emissions reductions, a PE approach can be a poor tool.
To further explore the scope and magnitude of GE effects, we run two
additional versions of the integrated GE model where we do not
recycle the carbon revenue (column 5), and where, in addition, input
prices to the electricity sector are kept constant (column 6). In both
cases, emission reductions are slightly larger compared to (4) as
reduced income lowers consumer demand and keeping input price
constant implies higher generation costs. Overall, Fig. 4 suggests that
economy-wide income and substitution effects on electricity demand
are of first-order importance. Comparing the ‘simple’ PE model (1)
with the full GE model (4), we find that emission reductions are 38%
larger in the GE case. Evaluated at a carbon price of $50 per metric ton,
this is equivalent to $17.7 billions worth of carbon revenue (or
allowance value).

In summary then, the different parametrizations of the PE model
seem to provide unreliable approximations of general equilibrium
projections. If the goal is to approximate price changes, the
performance of the PE framework can be improved if price elasticities
are based on a local approximation of the GE model. However, PE
analysis uniformly diverges with regard to changes in the electricity
demand and CO2 emissions.

3.2. Top-down and bottom-up technology representation and the cost of
carbon abatement

This section explores the implications of top-down and bottom-up
approaches to electricity sector modeling for the assessment of CO2

mitigation policy. We consider three versions of the model outlined in
Section 2:

● GE model with top-down representation of electricity generation,
based on nesting structure (a),

● GE model with top-down representation of electricity generation,
based on nesting structure (b),

● GE model with integrated bottom-up representation of electricity
generation.

All three models are benchmarked to the same fuel mix in
electricity generation, so that any differences in model responses' can
be attributed to the specific structural technology representation.
Fig. 5 shows U.S. electricity generation from coal and natural gas
for different carbon prices.27 For a carbon price of $25, the integrated
GE model suggests a modest decline in generation from coal and
natural gas. This is mainly due to a demand reduction, as the small
change in relative generation costs has almost no influence on the
ordering of technologies in the supply schedule. In contrast, with
either top-down representation, coal generation sharply decreases
and generation from natural gas slightly increases. This effect is a
consequence of using aggregate CES functions to characterize
electricity generation, as changes in relative fuel prices trigger a
movement along the smooth production possibility frontier even for
low tax levels. Furthermore, in the top-down approach the price of
electricity reflects the total carbon content of generation, so that the
demand response is larger than in the bottom-up approach.

For carbon prices above $25, the differences in the substitution
pattern persist. Indeed, as the carbon price increases, the bottom-up
component of the integrated GE model suggests that coal-fired
generation declines steadily and natural gas generation gradually
expands. The increase in electricity generated from gas is possible
because all regions have idle generation capacity for natural gas. In
contrast, the two top-down models show a virtually constant
generation from natural gas, while the decline in coal-fired electricity
gradually flattens out. The main driver of this effect is a low elasticity
of substitution between coal and gas preventing a significant increase
in the generation from natural gas.28

A key aspect of top-down models is that the nesting structure and
elasticity parameters are typically identical across regions, whereas
the response of the integrated model depends on the benchmark fuel
costs and stock of available generation technologies.29 Fig. 6 reports
differences between models in terms of regional abatement for a $50
carbon price, and suggests country-wide abatement in the integrated
model is 23% and 31% lower than under the top-down representations
(a) and (b), respectively. Interestingly, differences in emissions
reductions are most striking in regions with a large share of coal-
fired generation (SPP, PJM, SEAST, and MOUNT), for which the top-
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down models feature large emissions reductions.30 Regions using a
larger share of natural gas generation in the benchmark (CA, NENGL,
NY, and ERCOT) have similar emissions reductions for all modeling
approaches. Note also that, among the two top-down models,
differences in emissions reductions are largest in regions using a
large share of coal in the benchmark, illustrating the sensitivity of the
parametrization in top-down nesting structures (the benchmark
shares are kept constant).

Fig. 7 shows the welfare cost and emissions reductions for the
three models. Each locus has one marker for each carbon price level
($25, $50, $75, and $100) and thus provides a mapping between
emissions reductions and welfare costs for the different modeling
frameworks. The advantage of this graphical presentation is that
policy costs across different models can be compared for the same
environmental impacts.

For economy-wide abatement levels below 10%, results from the
three models are virtually identical. For a 20% abatement level,
welfare costs from the bottom-up approach are about 40% and 60%
higher than those from the top-down structure (a) and (b),
respectively. For higher abatement levels, absolutewelfare differences
between bottom-up and top-down approaches are even more
pronounced. Furthermore, the marginal abatement costs (as mea-
sured by the carbon price) for a given emissions reduction differ
widely across models. A $75 carbon tax imposed under the top-down
structure (b) yields a welfare cost of about −0.8% and a decline in
emissions of 40%. For the bottom-up approach and the top-down
nesting structure (a), the same carbon abatement level would be
achieved with a carbon price of $100, which is associated with a
welfare cost of −1.2%, a difference in welfare cost of about 50%.
Differences between the bottom-up approach and the top-down
structure (b) are smaller, especially for emissions reductions above
30%.

Despite quantitative discrepancies, projections of carbon policies
exhibit the same qualitative behavior especially when comparing
nesting structure (a) with the integrated model. At the regional level
however, we observe significant departures among these two
modeling framework. We report results for three representative
regions to illustrate the large heterogeneity across model outcomes
even though the benchmark data is the same. First, the solid lines for
ERCOT are almost identical across models, as they all suggest a large
decline in coal-fired generation and a small increase in natural gas—
most of the abatement here is driven by the demand response. This
situation is similar for MISO. Second, NENGL generates little electricity
30 The only exception is MISO, where the integrated model suggests a very large
increase of generation costs and in turn a large demand reduction (see Table 9).
from coal, and the top-down representation suggests much higher
abatement costs in the electricity sector, as compared to the bottom-
up representation. This situation is similar for CA, NY and NWPP.31

Finally, SPP has a large share of coal in the benchmark, and the
bottom-up approach suggests that generation from natural gas
expands. Here, abatement costs in the electricity sector are higher
under the bottom-up representation. This situation is similar for PJM,
SEAST and MOUNT.

Two general conclusions can be drawn from this comparison of
generation technology representation. First, the choice of bottom-up
or top-down representations has a large effect on the projected cost
and environmental effects of carbon policies. The differences implied
by these structural assumptions would seem to go beyond the model
uncertainty that is typically borne out by parametric sensitivity
analysis. Second, given the significant discrepancies across model
outcomes, in particular at the regional level, our analysis reveals the
difficulty in parameterizing a top-down technology representation of
the electricity sector. While simulating elasticities from a bottom-up
model may be one potential avenue to address this issue, approxi-
mating the multi-dimensional and discontinuous response of a
bottom-up model by means of highly aggregated substitution
elasticities is a challenging task. Moreover, this would require
structural accordance of the bottom-up and top-down models in
terms of key model dimensions such as, for example, regional
configuration and input structure. In any instances, the conceptual
differences between the two model paradigms with respect to the
transmission of the carbon price would be difficult to reconcile.
4. Concluding remarks

Large-scale numerical models have become a popular and
widespread tool to assess the economic implications of climate and
energy policies. While the virtue of top-down models is their
representation of general equilibrium effects, a major source of
critiques is their reliance on smooth aggregate production functions to
describe the technology choice in the electric power sector. In
contrast, bottom-up models have a rich technological underpinning
but typically do not account for general equilibrium effects. By
developing an integrated benchmark model that embeds a bottom-up
technology representation of the electricity sector within a multi-
sector general equilibrium framework, we generate numerical
evidence on (1) the importance of general equilibrium effects for
partial equilibrium bottom-upmodels of the electricity sector, and (2)
the implications of top-down versus bottom-up representations of
electric generation technologies for assessing the cost and environ-
mental effects of CO2 control policies.

In the context of U.S. climate policy, our numerical analysis
suggests that the general equilibrium effects and the mode of
representation of electricity technologies are of crucial importance
for projecting electricity prices and demand, carbon abatement
potentials, and welfare costs. Moreover, the elasticity parameters
needed for a reduced-form model response are difficult to estimate
from empirical observations, for two reasons. First, general equilib-
rium effects associated with carbon policies are complex and difficult
to identify from historic data. Second, while nested CES function can
accommodate any substitution patterns, the empirical validation of
these structures to represent substitution among electricity genera-
tion technologies is difficult. In our framework, bottom-up and top-
down models represent a structural representation of the electricity
supply and demand respectively, and our comparison exercise
generates quantitative insights on the implication of these assump-
tions for policy assessment.
31 Note that for a $25 carbon price, the integrated model suggests a positive welfare
impact for NENGL which is due to the redistribution of allowances.
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As a final note, we emphasize that our quantitative results are
model-specific and abstract from a number of features. First, we do
not represent the dynamic response to a policy shock. Specifically, the
response of the electricity sector is constrained by the existing
generation capacity, and most of the actions take place in the
substitution between coal and gas. While our analysis is informative
in this respect, carbon-free technologies such as wind, solar, hydro
and nuclear are used at their effective capacity in the benchmark, and
thus cannot expand as they get more competitive under a carbon
price. The expansion of renewable technologies under a carbon price
is obviously an important research question, but in our view the
structural assumption about electricity sector will be even more
important in a capacity-expansion model. Thus we expect discrepan-
cies between modeling frameworks to be even more important in a
forward-looking framework. Second, our analysis abstracts from
physical constraints on the transmission network which are likely to
hamper the flexibility in the substitution among technologies and
might increase the welfare costs of carbon policy. We note that such
constraints will be difficult to represent accurately in a highly
aggregated top-down representation of electric power technologies.
Finally, while the assumption of marginal cost pricing makes the
comparison across different modeling paradigms more transparent,
carbon abatement policies is likely to be affected by the extent of state
regulation and imperfect competition in the U.S. electricity markets.
Quantifying the effects of market structure on the cost of carbon
regulation is, however, beyond the scope of the present paper.
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