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Future Yield Growth: What Evidence from Historical Data? 

Xavier Gitiaux*, John Reilly† and Sergey Paltsev† 

Abstract 

The potential future role of biofuels has become an important topic in energy legislation 
as it is seen as a potential low carbon alternative to conventional fuels. Hence, future yield 
growth is an important topic from many perspectives, and given the extensions of the period 
over which data are available a re-evaluation of yields trends is in order. Our approach is to 
focus on time series analysis, and to improve upon past work by investigating yields of many 
major crops in many parts of the world. We also apply time series techniques that allow us to 
test for the persistence of a plateau pattern that has worried analysts, and that provide a 
better estimate of forecast uncertainty. The general conclusion from this time series analysis 
of yields is that casual observation or simple linear regression can lead to overconfidence in 
projections because of the failure to consider the likelihood of structural breaks. 

Contents 
1. INTRODUCTION ..................................................................................................................... 1 
2. TESTING FOR UNIT ROOT IN CROP YIELDS .................................................................... 5 

2.1 Data .................................................................................................................................... 5 
2.3 Can We Explain Unit Root Behavior as a Consequence of Structural Break? ................. 10 

3. PERSISTENCY IN CROP YIELDS AND FORECAST INTERVALS .................................. 13 
3.1 A Measure of Persistency: The Variance Ratio ................................................................ 13 
3.2 Forecast Intervals ............................................................................................................. 18 

4. CONCLUSION ........................................................................................................................ 23 
5. REFERENCES ........................................................................................................................ 24 
APPENDIX A .............................................................................................................................. 26 

 

1. INTRODUCTION 

The second half of the century has been characterized by a rapid increase of crop yields in 
most countries. However, there is debate about the sustainability of such growth rates amid some 
evidence that yield growth may be slowing. Limits on yield growth and implications for food 
supply have been concerns that seem to repeat on a cycle of a decade or so. As of the mid 1990s 
there had been a decade or two of relatively low commodity prices, and some evidence of 
slowing yield growth. This led to various efforts to investigate yield growth and debates on either 
side. Borlaug and Dowswell (1993) and Bump and Dowswell (1993) saw significant yield gaps 
between high productivity regions and other regions as evidence for much opportunity for further 
improvement if lower productivity regions could just adopt best varieties and practices. Oram 
(1995) and Brown (1994) both saw slowing yield growth. Rosegrant (2001) accepted evidence 
on the then recent slowdown but offered reasons why it might be temporary, suggesting policy 
measures (environmental regulation on fertilizers and pesticides, reduction of cereals stocks, 
scaled back price supports), declining world prices in the 1980s, and, in the case of developing 
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countries, lack of incentives to apply inputs needed to sustain yield gains combined with natural 
resource issues (water shortage, soil salinity, and decline in soil nitrogen).  

Statistical examination of trends in the U.S. data around this time showed little support for a 
plateau assumption, whether the regression was performed against time alone (Reilly and Fuglie, 
1998; for 1939-1994 U.S. field crops) or when controlling for weather conditions and nitrogen 
consumption (Offutt et al., 1987; for U.S. corn, 1931-1982 at the farm, state and county level).  

Since then commodity prices have firmed and 2006 marked the start of another agricultural 
market crisis in 2006, with commodity prices rising dramatically as they had in the early 1970s. 
That run-up in prices may be attributable to a number of factors but some authors point a finger 
strongly to a boom in ethanol production in the U.S. that diverted a large portion of the U.S. corn 
crop (Mitchell, 2008). The potential future role of biofuels has become an important topic in 
energy legislation as it is seen as a potential low carbon alternative to conventional fuels. 
However, the impact of biofuels on agricultural markets as it affects commodity prices, land use, 
and emissions associated with land use change may undermine their value as a low carbon 
alternative (e.g., Searchinger et al., 2008). As shown by Tyner et al. (2010), continuing yield 
growth can reduce estimates of the indirect emissions of GHGs associated with biofuels 
expansion. Hence, future yield growth is an important topic from many perspectives, and, given 
the extensions of the period over which data are available, a re-evaluation of yields trends is in 
order.  

Of course yield growth is almost certainly some function of economic factors. In the short 
run, higher crop prices might be expected to provide incentives for additional management using 
known technologies (more careful nutrient and pest management, optimized choice of varieties, 
irrigation, etc.), and in the longer run research and development has clearly contributed to 
increasing yields. In one way or another such R&D is likely motivated by economic incentives 
(or somewhat equivalently, concerns about food shortages). However, given the long and 
variable lags in these processes, and difficulty of identifying expectations that drive longer term 
investments in R&D it is very difficult to statistically relate yields to economic incentives for 
increasing them. 

Our approach is thus, to focus on time series analysis, and to improve upon past work by 
investigating yields of many major crops in many parts of the world. Instead of comparing the 
goodness of fit of different types of regression, here we measure how large is the uncertainty 
around the forecasts of future yields that we can derive from these models. We contribute to the 
literature first, by applying time series techniques that show how standard time regressions may 
end up with misleading predictions, as most of the crop yields exhibit a unit root. Although 
papers looking for trend in crop yields are abundant (see articles cited above), the literature has 
been quite silent on the unit root issue; exceptions are Liu and Shumway (2008) at the state level 
in the U.S. for corn, Lin and Seavey (1978) for 19 crops in the U.S., Chen and Chang (2005) in 
Taiwan. Here, we test for the presence of unit root more comprehensively, as we include many 
crops in many regions of the world. Secondly, we conclude from our analysis of historical data 
for the period 1961-2006 that the behavior of crop yields is partly driven by a random component 
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that obscures any long-term forecast. This analysis sheds new light on the evaluation of yields 
trend; for example, we infer that a current plateau is not a robust indication of a persistent slow-
down.  

 

Figure 1. U.S. maize, barley, oats, sorghum and wheat yields. Source: NASS (2008). 

Yield growth is a phenomenon of the last 50 to 80 years. Figure 1 shows little change in 
yields in U.S. wheat, maize and barley from 1866 until a take-off period for yield growth 
beginning in the 1930-1940s: since then, maize yields display a more than fivefold increase from 
2 ton/ha to 10 ton/ha and wheat and barley an almost threefold increase, respectively from 1.0 
ton/ha to 2.7 ton/ha and from 1.2 to 3.2 ton/ha. U.S. improvements have spread across the world 
to Europe and through the Green Revolution in India and China (e.g., Griffon, 2006). From 1961 
to 2006, maize yields increased in Europe from 2.8 ton/ha to 8.7 ton/ha, in China from 1.2 ton/ha 
to 5.4 ton/ha; wheat yields from 1.9 ton/ha to 5.9 ton/ha in Europe, from 0.9 ton/ha to 2.6 ton/ha 
in India, from 0.5 ton/ha to 4.5 ton/ha in China; rice from 2 ton/ha to 6 ton/ha in China, from 1.5 
ton/ha to 3 ton/ha in India.  

Figure 1 suggests that sharp breaks have characterized by the evolution of crop yields over the 
last hundred and fifty years in the U.S. Second, the presence of a plateau may be due to the 
choice of the period of interest; if we select end points carefully, we actually see the plateau 
behavior in the period from about 1985 through 2000 that worried analysts of the time. The post-
2000 evidence seems to suggest a resumption of yield growth. Thereby, because of sharp 
changes in the behavior of yields, a specific pattern for a limited time span might not be very 
informative about future yields. The problem with a simple time trends approach is the failure to 
account for structural changes in the behavior of crop yields. If the crop yields are modeled as 
stationary processes about a deterministic trend as in most past work, the variance of the forecast 
error is bounded in the far future by the in-sample variance of the residuals provided by the 
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regression. Then, we show that this may underestimate uncertainty, even if the fit is very good. 
To illustrate, we develop best linear fits for sub-periods of historical data and produce out of 
sample forecasts that can be compared against actual data. For example, in Figure 2, the upper 
panel estimates trends in China’s rice yields based on 1965-1975, 1975-1985, and 1985-1995 
data and then uses these trends to forecast ahead to 2006. Figure 2, the lower panel, uses data for 
the full 1965-1995 to forecast ahead to 2006. The forecasts err in being either too high or too low 
depending on the period over which the model is estimated. Moreover, the forecast error, shown 
by the dashed line, fails to provide an indication of the true forecast error. The error ranges from 
all of these approaches do not include the true value, and error bars from the different periods do 
not overlap. At issue is the failure to capture the next plateau or resumption of yield growth, or at 
least to account in the forecast error for such sharp changes. The objective of the remaining 
sections is to construct appropriate error estimates that reflect this feature of the data. 

  

Figure 2. Rice yields in China. Source: FAO (2008). The straight solid lines represent the 
long-run linear projections for yields using data from 1965-1975, 1975-1985, 1985-
1995 (panel (a)) and from 1961-1995 (panel (b)). The forecasts result from the 
extrapolation of a linear deterministic trend. The dotted lines represent a long run 
95% confidence interval for the respective rice yields forecasts. 
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The remaining sections of this paper are organized as follows. Section 2 tests for the presence 
of unit roots in crop yields and provides evidence for modeling them as stochastic trends. That is 
why section 3 decomposes crop yields as the sum of a stationary component and a random walk 
component and then, estimates the size of the random walk component that may represent the 
shift in the long-term trend. Based on these estimates, section 3 also builds forecast intervals and 
shows that historical data do not allow us statistically to discriminate between models with 
constant growth rate growth or without growth.  

2. TESTING FOR UNIT ROOT IN CROP YIELDS 

2.1 Data 

The analysis is based on FAO data (FAO, 2010) provided from 1961 to 2009. We aggregate 
countries following Rosegrant (2001). Specifically, we single out two countries, China and the 
U.S., and two political identities for convenience: the European Union with 15 countries (as in 
1995) and the former soviet block (USSR). Other countries are aggregated in South Asia 
(dominated by India), Latin America, South-East Asia, Western Asia and Northern Africa 
(WANA), Sub-Saharan Africa and Eastern Europe. Details about this aggregation are given in 
Appendix A. The USSR numbers come from the former Soviet Union until 1991 and since then, 
result from the aggregation of the data from countries formerly part of the USSR. As for the 
crops, we only investigate the yields of the major crops (in terms of acreage) in each region. 
Table 1 summarizes the data considered in this paper. 

Table 1. Regions and crop aggregation 

                                                 
1 Excluding former Soviet Republics (Azerbaijan, Armenia and Georgia). 

Regions Crops 

USA Barley, Maize, Oats, Seed cotton, Sorghum, Soybean, Wheat 

South America Maize, Rice, Seed cotton, Sorghum, Soybean, Sunflower, Wheat 

Sub-Saharan Africa Maize, Millet, Rice, Seed cotton, Sorghum, Wheat 
Western Asia1 / 

North Africa 
(WANA) 

Barley, Maize, Seed cotton, Sorghum, Sunflower, Wheat 

South Asia Maize, Millet, Rapeseed, Rice, Seed cotton, Sorghum, Soybean, 
Wheat 

South-East Asia Maize, Rice 
China Maize, Millet, Rapeseed, Rice, Seed cotton, Soybean, Wheat 

USSR Barley, Maize, Millet, Oats, Rye, Sunflower, Wheat 

EU15 Barley, Maize, Oats, Rapeseed, Rye, Sunflower, Wheat 

Eastern Europe Barley, Maize, Oats, Rapeseed, Rye, Sunflower, Wheat 
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 2.2 Unit Root Tests 
Most of the crop yields exhibit strong trends that are not stationary. Stationarity can be 

achieved either by regressing the dependent variable on time or by taking its first difference. The 
former transformation produces a stationary process for time series that results from movements 
along a time trend. The latter transformation works only for time series that contain a unit root, 
i.e. whose model should include a random walk, possibly with drift).  

In most previous work, as in Reilly and Fuglie (1995) or Brown (1994), crop yields have been 
assumed to be trend stationary, but no evidence have been provided to support this assumption. 
However, it should be one of the primary concerns when dealing with crop yields as time series. 
This is the powerful message of Granger and Newbold (1974): 

 
 “In our opinion the econometrician can no longer ignore the time series properties of the 

variables with which he is concerned - except at his peril. The fact that many economic levels are 
near random walks or integrated processes means that considerable care has to be taken in 
specifying one’s equations.” 

 
Indeed, unit root processes and trend stationary processes have very different implications in 

terms of analysis of time series. On one hand, if a crop yield is trend stationary, it exhibits a long 
run growth with short-term transitory shocks that are dampened over time. Effort to extract a 
trend in crop yields are fruitful and are rewarded with bounded forecast intervals. On the other 
hand, if crop yields’ behavior reflects a unit root, shocks have a permanent effect: a decrease in 
the current yields implies that forecasts should be decreased for an indefinite future. Then, 
trending techniques are misleading and any future extrapolation is complicated, as forecast 
intervals are now growing unbounded. 

Therefore, it is crucial to first determine to which regimes the crop yields pertain, before 
projecting yields in the future. We test the presence of unit root against one of the two following 
hypotheses: a trending behavior or a stationary behavior. We use the procedure proposed by 
Elliot, Rosenberg and Stock (1996) to conduct this test. Crop yields tY  are first detrended 
(demeaned, if we test the presence of a unit root against a stationary process) by generalized least 
squares: 

  Yt
GSL Yt 

T Zt . 

For detrending, Zt  (1, t)T and   is obtained by regressing (Y1,Y2 Y1,...,Y49 Y48) on 
(Z1,Z2 Z1,...,Z49 Z48), where  113.5 49, given that we dispose of 49 observations. For 
demeaning, Zt  (1)T  and the same regressions as previously are run with  1 7 49 . The 
values of   are from Stock (1994). Then, we apply a standard augmented Dickey-Fuller 
regression, using the transformed series Yt

GSL . That is, for the crop yields that do not exhibit a 
clear trend, we test the null hypothesis   0  in the regression: 

  Yt
GLS    Yt1

GLS  c j

j1

k

 Yt j
GLS  t , 
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where Yt
GSL  has been demeaned only. For crop yields with a trending behavior, we use the 

regression  

   Yt
GLS    t  Yt1

GLS  c j

j1

k

 Yt j
GLS  t , 

where Yt
GSL  has been detrended. In both formulations, Ys

GLS Ys
GLS Ys1

GLS  and k  is the order 
of the autoregressive process necessary to accommodate serial correlations of the disturbances 
and whiten the errors. In the first approach, this truncation lag is determined by sequentially 
examining the t statistic on the coefficient of higher order. We test the null hypothesis of the 
absence of a unit root by considering a t test on  , with a set of critical values proposed in Elliot, 
Rosenberg and Stock (1996).  

The column “Model I” of Table 2 shows results for this procedure. Out of 63 crops, the 
presence of a unit root can be rejected at the 99% level for only 17 crops (at 95% for 22 crops). 
At first glance, there is no clear pattern across countries or crops. Although in the U.S. all the 
crops but cotton seeds do not appear to exhibit a unit root, we cannot infer that crop yields in 
developed countries, are more likely to be trend stationary, as the null hypothesis is mostly not 
rejected in Europe. From Table 2, the key message is that for two thirds of the crop yields 
considered, we cannot statistically reject the presence of a unit root and that great care is 
necessary before regressing historical data on time.  
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Table 2. ERS Unit root test. Truncation lags are chosen in Model I by a sequential t-test on 
the coefficient of higher order; in Model II, by a MAIC criterion; in Model III, by a SIC 
criterion. t-ratios in bold characters indicate that the null hypothesis is rejected at the 99% 
(95% in italics) confidence level. 

Region Crops DM or DT2 
Model I Model II Model III 
k t-ratio k t-ratio k t-ratio 

USA Barley DT 0 -4.209 1 -4.012 2 -3.266 
Maize DT 0 -8.465 1 -5.224 9 -1.249 
Oats DT 0 -6.309 1 -4.574 1 -4.574 
Seed cotton DT 1 -2.834 1 -2.834 2 -2.094 
Sorghum DT 0 -6.037 1 -3.564 6 -1.648 
Soybeans DT 0 -6.975 1 -4.034 9 -0.977 
Wheat DT 0 -4.899 1 -3.773 1 -3.773 

Latin 
America 

Maize DT 2 -0.711 1 -1.403 2 -0.711 
Rice DT 7 -1.136 1 0.268 1 0.268 
Seed cotton DT 8 -1.622 1 -2.77 1 -2.77 
Sorghum DT 5 -2.053 1 -2.667 4 -1.554 
Soybeans DT 2 -0.348 2 -0.348 2 -0.348 
Wheat DT 0 -3.89 1 -2.702 3 -1.708 

Sub 
Saharan 
Africa 

Maize DT 0 -5.488 1 -4.347 2 -2.801 
Millet DT 7 -2.505 1 -1.859 2 -1.208 
Rice DT 3 -2.151 1 -2.379 2 -1.728 
Seed Cotton DT 5 -1.756 1 -2.038 4 -1.15 
Sorghum DT 0 -3.392 1 -2.824 2 -2.338 
Wheat DT 2 -5.486 1 -5.687 7 -1.562 

Western 
Asia / North 
Africa 
(WANA) 

Barley DT 9 -1.821 1 -4.496 1 -4.496 
Maize DT 5 -0.778 1 -1.246 1 -1.246 
Seed cotton DT 0 -2.75 1 -2.792 1 -2.792 
Sorghum DT 2 -1.481 2 -1.481 2 -1.481 
Sunflower seed DT 9 -1.506 1 -3.13 8 -1.097 
Wheat DT 0 -5.292 1 -3.142 3 -1.977 

South Asia Maize DT 9 -0.955 1 -1.322 2 -0.511 
Millet DT 9 -0.922 1 -3.79 6 -0.533 
Rapeseed DT 4 -1.164 1 -2.55 4 -1.164 
Rice DT 2 -1.182 1 -1.858 2 -1.182 
Sorghum DT 4 -2.842 2 -2.097 2 -2.097 
Soybeans DT 0 -3.811 1 -2.514 1 -2.514 
Wheat DT 6 -1.172 2 -1.18 2 -1.18 

South-East 
Asia 

Maize DT 5 -0.911 5 -0.911 5 -0.911 
Rice DT 7 -1.27 1 -1.801 1 -1.801 

China Maize DT 2 -1.103 2 -1.103 2 -1.103 
Millet DT 1 -2.272 1 -2.272 1 -2.272 
Rapeseed DT 5 -4.42 1 -2.845 1 -2.845 

                                                 
2 DM: demeaned; DT: detrended. 
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Rice DT 0 -1.372 1 -1.128 1 -1.128 
Seed cotton DT 7 -3.163 1 -2.421 1 -2.421 
Soybeans DT 4 -2.559 1 -2.095 2 -1.645 
Wheat DT 6 -1.753 1 -2.44 1 -2.44 

USSR Barley DT 0 -5.873 1 -3.533 3 -2.287 
Maize DT 9 -2.901 1 -1.824 3 -1.319 
Millet DM 0 -5.967 1 -2.48 4 -1.234 
Oats DT 6 -2.333 1 -4.216 6 -2.333 
Rye DT 5 -2.427 1 -2.985 4 -1.869 
Sunflower seed DT 0 -3.211 1 -1.814 1 -1.814 
Wheat DT 0 -5.538 1 -3.307 2 -2.666 

EU15 Barley DT 0 -5.872 1 -3.343 5 -1.368 
Maize DT 0 -4.403 1 -3 2 -2.302 
Oats DT 5 -0.51 2 -0.951 2 -0.951 
Rapeseed DT 7 -1.79 1 -2.308 4 -1.439 
Rye DT 7 -3.656 1 -3.013 2 -2.416 
Sunflower seed DM or DT 0 -1.667 1 -0.952 1 -0.952 
Wheat DT 1 -1.824 5 0.82 1 -1.824 

Eastern 
Europe 

Barley DM 7 -1.479 1 -1.71 2 -1.288 
Maize DM 8 -0.937 1 -1.607 2 -1.176 
Oats DM 10 -0.456 1 -1.611 2 -1.16 
Rapeseed DT 0 -5.23 1 -3.248 2 -2.535 
Rye DT 0 -4.203 1 -2.568 5 -1.3 
Sunflower seed DM 3 -0.954 1 -1.469 3 -0.954 
Wheat DM 7 -0.831 2 -0.732 8 -0.599 

We look at the robustness of our findings in relation to the sample size and the choice of the 
truncation lag. First, the number of observations (1961-2009) provided by the FAO is small, 
especially because truncation lags should be selected at an order high enough to avoid serial 
autocorrelation in the ERS procedure. With a truncation lag order equal to 5, the number of no 
overlapping data is reduced to between 9 and 10. Such a small number may cast doubt on the 
solidity of our previous results in Table 1, especially on the power of the unit root test. We test 
the unit root hypothesis with the much longer time series for U.S. data provided by NASS 
(2008). Two sets of data are considered: barley, maize, oats from 1866 to 2008; barley, maize, 
oats and sorghum from 1929 to 2008. With this expanded dataset, the ERS procedure concludes 
that all crops but oats between 1929 and 2008 behave as a unit root. Therefore, not only does a 
longer time horizon not contradict the presence of unit root, it also reinforces this pattern, at least 
in the U.S., since we did not find a unit root for maize, barley and oats previously with the 
shorter time series.  
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Table 3. Unit root test for U.S. crops from 1866 to 2009 and from 1929 to 2009. Truncation 
lags are chosen in model I by a sequential t-test on the coefficient of higher order; in model 
II, by a MAIC criterion; in model III, by a SIC criterion. t-ratios in bold characters indicate 
that the null hypothesis is rejected at the 99% (95% in italic) confidence level. 

  
Crops DM or 

DT 
Model I Model II Model III 

  k t-ratio k t-ratio k t-ratio 
1866 -2008 Barley DT 9 -0.284 2 -0.866 2 -0.866 
  Maize DT 11 -0.848 11 -0.848 4 0.488 
  Oats DT 8 -0.988 6 -0.829 2 -1.576 
1929-2008 Barley DT 10 -1.279 10 -1.279 1 -3.81 
  Maize DT 10 -1.108 4 -1.021 4 -1.021 
  Oats DT 0 -6.902 6 -1.946 1 -4.21 
  Sorghum DT 1 -2.531 5 -1.438 1 -2.531 

Secondly, Ng and Perron (2001) argue that the choice of a truncation lag may distort the size 
of the ERS test. Specifically, they show that small k may be inadequate and lead to an over-
rejection of the null hypothesis. To improve the size of the test, they propose to choose the 
truncation lag k that minimizes a modified Akaike’s information criterion (MAIC) defined by: 

  MAIC(k)  ln( k
2) 

2( k  k)

49  kmax

, 

  where  k
2 

t
2

kmax 1

49


49  kmax

,  k 

 2 (Yt1
GLS )2

kmax 1

49


 k

2  and kmax 12*
491
100









0.25

.  

Results from the ERS procedure using this criterion are reported in the column “Model II” of 
Table 2 and Table 3. The unit root hypothesis is rejected for only 9 yields at the 99% confidence 
level (at 95% for 13 yields). Therefore, an improvement in our selection of truncation lags turns 
out to reinforce our previous conclusion that crop yields contain a unit root. It does not come as a 
surprise, as the MAIC procedure is designed to increase the size of the test. The last column of 
Table 2 and Table 3 relies on another selection criterion, the Schwarz information criterion (SIC) 
that determines k, as the lag that minimizes: 

  SIC(k)  ln(

t
2

kmax 1

49


49  kmax K

)  (k  K)
ln(49  kmax K)

49  kmax

, 

with K 1 if the yields are demeaned only, and K  2  if they are detrended. Our key results 
still hold, as the unit root hypothesis is rejected in only 3 situations at the 99% level. 

2.3 Can We Explain Unit Root Behavior as a Consequence of Structural Break? 

Looking back at Figure 1, one of the most striking features is a sharp change in the behavior 
of crop yields in the U.S. at the beginning of the 1930s for maize, barley and oats and at the end 
of the 1950s for sorghum. It may give us a reasonable interpretation for the presence of unit roots 
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in crop yields. Intuitively, a structural break implies one permanent shock that masks a collection 
of permanent small innovations and therefore biases the ERS procedure toward a non-rejection 
of the unit root. Following Zivot and Andrews (1992), we consider these jumps as realizations 
from the tail of the distribution of the underlying data-generating process. Thereby, the null 
hypothesis of a unit root model should be tested against the alternative hypothesis of a trend-
stationary model with one structural break occurring at a date determined endogenously. We 
consider the regression  

Yt    t  DIt (tB )  DSt (tB )  Yt1  c j

j1

k

 Yt j  t  

where k  is a truncation lag defined as in section 2.2, tB is the time of the break. DIt  is the 
indicator dummy variable for shift in the intercept occurring at time tB : DIt  0  for t  tB  and 
DIt 1 otherwise. DSt  is the corresponding trend shift variable such that DSt  t  if t  tB  and 
zero otherwise. We test for the presence of a unit root with a null   0 . The alternative 
hypothesis is a trend stationary process with a break in the intercept and the slope at time tB . 
The date of this structural change is allowed to vary from tB  2 to tB  48 , therefore we do not 
allow break at the beginning and the end of the period. Zivot and Andrews (1992) select the 
break point that least favors the null hypothesis i.e. that minimizes the t-ratio corresponding to 
the coefficient  . Critical values corresponding to this t-ratio are from Zivot and Andrews 
(1992). In Table 4, we report the results of this procedure: for 31 crop yields, the unit root 
hypothesis can be rejected at the 99% (at 95% for 34 crop yields) level. When we admit 
structural break, we have less support to conclude that crop yields behave as a unit root process. 
It is particularly true for the former Soviet Union (USSR), the EU15 and Eastern Europe, where 
out of 21 crops, only 4 yields are not trend stationary. Moreover, in the former communist 
regions (USSR and Eastern Europe), the date of break coincides with the change of regime 
(beginning of the nineties), which was followed by a restructuring in the agriculture sector. 
However, our procedure provides still little support for a trend stationary model of crop yields in 
the developing countries: out of 34 crops, the presence of a unit root is rejected for only 11crops 
at the 99% level (13 crops at the 95% level). One of the likely reasons is that we allow for only 
one structural break. Lumsdaine and Papell (1997) argue that considering one break may be 
insufficient and leads to a loss of information if there is actually more than one break in the data 
generating process.  
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Table 4. ERS Unit root test. Truncation lags are chosen by a sequential t-test on the 
coefficient of higher order. t-ratios in bold  characters indicate that the null hypothesis is 
rejected at the 99% (95% in italic) confidence level. 

Regions Crops tB k t-statistic 
USA Barley 1985 0 -4.81 

Maize 1988 0 -9.874 
Oats 1987 0 -7.322 
Seed cotton 1981 1 -4.345 
Sorghum 2001 0 -7.391 
Soybeans 1990 0 -8.202 
Wheat 1986 0 -5.554 

Latin America Maize 1991 2 -5.687 
Rice 1988 1 -2.992 
Seed cotton 1982 0 -3.565 
Sorghum 1979 0 -5.927 
Soybeans 1995 2 -2.482 
Wheat 1969 0 -5.213 

Sub Saharan Africa Maize 1976 0 -7.588 
Millet 1991 2 -3.098 
Rice 1984 2 -2.805 
Seed Cotton 1985 0 -5.874 
Sorghum 1974 0 -4.255 
Wheat 1970 2 -7.591 

West Asia/North Africa 
(WANA) 

Barley 2002 0 -8.405 
Maize 1984 0 -3.955 
Seed cotton 2000 0 -6.022 
Sorghum 1983 2 -5.03 
Sunflower seed 1990 0 -7.326 
Wheat 1986 0 -6.199 

South Asia Maize 1987 2 -3.094 
Millet 1985 0 -9.124 
Rapeseed 1984 0 -7.547 
Rice 1983 0 -7.932 
Sorghum 1974 2 -3.059 
Soybeans 1979 1 -4.606 
Wheat 1995 2 -3.999 

South-East Asia Maize 1991 1 -1.775 
Rice 1980 2 -4.712 

China Maize 1990 2 -3.833 
Millet 1993 1 -4.201 
Rapeseed 1981 0 -4.309 
Rice 1982 0 -5.122 
Seed cotton 1992 0 -3.775 
Soybeans 1993 1 -4.463 
Wheat 1982 0 -5.153 
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USSR Barley 1995 0 -7.362 
Maize 1992 0 -5.85 
Millet 1991 0 -6.875 
Oats 1972 0 -5.95 
Rye 1998 0 -6.503 
Sunflower seed 1993 0 -4.796 
Wheat 1994 0 -7.146 

EU15 Barley 1984 0 -7.797 
Maize 1996 0 -5.741 
Oats 1995 2 -4.294 
Rapeseed 1984 0 -5.92 
Rye 1995 0 -6.552 
Sunflower seed 1970 2 -4.466 
Wheat 1984 1 -4.575 

Eastern Europe Barley 1992 1 -6.46 
Maize 1987 0 -5.661 
Oats 1991 0 -6.248 
Rapeseed 1992 0 -6.532 
Rye 1992 0 -6.884 
Sunflower seed 1992 0 -5.669 
Wheat 1992 2 -4.825 

In practice, with finite samples, it is nearly equivalent to consider a unit root process with fat 
tail disturbances or a trend stationary process with structural break. The key consequence of both 
interpretations is that a part of the long-run response of crop yields is driven by current shocks, 
which complicates any predictions of future yields based on the extrapolation of past or current 
trends. 

3. PERSISTENCY IN CROP YIELDS AND FORECAST INTERVALS 

3.1 A Measure of Persistency: The Variance Ratio 

The presence of unit root in crop yields shows that at least a part of the shocks has a 
permanent effect on crop yields. Therefore, we follow Cochrane (1988) and decompose our time 
series into a stationary component and a random walk component3: the latter represents 
permanent changes and the former temporary fluctuations. It can be shown that in the presence 
of a unit root, such decomposition does not add any structure. As in Cochrane (1988), we 
propose a measure of persistency that considers at lag k  the variance ratio: 

  VR(k) 
var(Yt Ytk ) k

var(Yt Yt1)
. 

                                                 
3 The decomposition is not unique; however, Cochrane argues that the innovation variance of the random component 

does not depend on the decomposition. 
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Then, we exploit the fact that on one hand, if a crop yield tY  is a pure random walk, the 

variance of its k differences grows linearly with the lag k  and lim
k

var(Yt Ytk )

k


2 , where 

2
  is the variance of the random walk component. Hence, the variance ratio converges to unity. 

On the other hand, if tY  is stationary about a trend, the variance of its k differences converges 

to a constant when k  increases, and the variance ratio converges to zero. In an intermediate case, 
if the fluctuations in crop yields are partly temporary and partly permanent, the variance ratio 
converges to the fraction of the variance in the crop yields that is explained by the random walk 
component4. A value larger than one suggests that crop yields exhibit more shock persistence 
than a random walk. In contrast, values significantly lower than one indicate that the time series 
is mostly mean reverting. 

To avoid small sample bias, we estimate the variance ratio by: VR(k)
________


 k

2
_

1
2

_  , where 

 k
2


T

k(T  k)(T  k 1)
Yj Yjk  k 

j k

T


2

, 1
2


1

(T 1)
Yj Yj1  

j 2

T


2

 and  is the sample 

mean of the first difference Yt Yt1.  

 
 

                                                 
4 Provided that the random walk component and the stationary component are not correlated. 
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Figure 3. Estimates of variance ratio. 

Table 5. Variance ratio computed at lag 16.  

Regions Crops σ2
16 VR(16)=σ2

16/σ2
1 

USA Barley 0.0352 0.472 
Maize 0.2994 0.256 
Oats 0.0195 0.352 
Seed cotton 0.0175 0.269 
Sorghum 0.1045 0.273 
Soybeans 0.0185 0.264 
Wheat 0.0123 0.258 

Latin 
America 

Maize 0.0605 1.003 
Rice 0.1514 4.804 
Seed cotton 0.0436 0.879 
Sorghum 0.0977 0.945 
Soybeans 0.1048 4.075 
Wheat 0.0288 0.583 

Sub 
Saharan 
Africa 

Maize 0.0177 0.443 
Millet 0.0036 1.008 
Rice 0.0024 0.449 
Seed Cotton 0.0018 1.105 
Sorghum 0.0042 1.46 
Wheat 0.0117 0.302 

West Asia / 
North Africa 
(WANA) 

Barley 0.0085 0.141 
Maize 0.0651 1.336 
Seed cotton 0.0098 0.907 
Sorghum 0.0101 0.42 
Sunflower seed 0.0068 0.312 
Wheat 0.0061 0.249 

South Asia Maize 0.026 1.17 
Millet 0.0046 0.243 
Rapeseed 0.0034 0.277 
Rice 0.0092 0.328 
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Sorghum 0.0023 0.18 
Soybeans 0.0249 0.785 
Wheat 0.0027 0.379 

South-East 
Asia 

Maize 0.0658 11.751 
Rice 0.0072 2.263 

China Maize 0.0587 0.581 
Millet 0.0245 0.343 
Rapeseed 0.012 0.759 
Rice 0.0688 2.782 
Seed cotton 0.0655 0.935 
Soybeans 0.0076 0.487 
Wheat 0.0277 0.674 

USSR Maize 0.0587 0.581 
Millet 0.0245 0.343 
Rapeseed 0.012 0.759 
Rice 0.0688 2.782 
Seed cotton 0.0655 0.935 
Soybeans 0.0076 0.487 
Wheat 0.0277 0.674 

EU15 Barley 0.0245 0.221 
Maize 0.0766 0.292 
Oats 0.0432 0.462 
Rapeseed 0.0653 0.959 
Rye 0.0536 0.249 
Sunflower seed 0.2708 8.991 
Wheat 0.067 0.447 

Eastern 
Europe 

Barley 0.1542 0.963 
Maize 0.6434 0.548 
Oats 0.0559 0.668 
Rapeseed 0.0447 0.308 
Rye 0.0453 0.444 
Sunflower seed 0.0357 0.648 
Wheat 0.3154 1.285 

Figure 3 suggests three different behaviors: for most of the crops, the ratio settles between 0.2 
and 0.4 for large k , indicating that the random walk component explains only between 20% and 
40% of the total variation; for some crops (cotton in West Asia/North Africa, millet and cotton in 
Sub Saharan Africa, cotton and soybeans in South Asia, cotton in China, maize and sunflower 
seeds in USSR), the variance reaches a plateau at the variance ratio closer to unity, showing 
evidence for a stronger random walk component; finally, yields for rice and soybean in LAM, 
maize in West Asia/North Africa, sorghum in Sub Saharan Africa, maize and rice in South East 
Asia, maize in South Asia, sunflower seeds in EU15, rice in China, barley and wheat in Eastern 
Europe, appear to be mean averting, in the sense that they exhibit more shocks persistence than a 
random walk. At lag 16 most of the variance ratios do settle down; the ones that do not, exhibit 
an explosive behavior that would not be likely to be moderate at larger lags anyway. Moreover, 
the larger the lags, the smaller the size of the sample we analyze: with a lag 16, the sample is 
already reduced to 33 observations. Hence, results obtained with large lags may be doubtful, due 
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to potential distortions arising in small samples. Beyond lags 16, it might be reasonable to 
assume that temporary shocks have been sufficiently dampened and that resilient shocks operate 
through the random walk component. Therefore, the figures reported in Table 5 at lag 16 should 
be an approximation of the size of this component. They suggest that there are substantial 
differences across regions and crops with a variance ratio varying between 0.117 and 11.751.  

3.2 Forecast Intervals 

The persistency of shocks that we measured in the previous section, is an indicator to what 
extent crop yields are predictable in the long run. A low variance ratio at lag 16 means that future 
crop yields could reasonably be extrapolated from past data, since shocks do not affect 
substantially the long run behavior of the time series. In contrast, a value larger than unity is the 
sign that a process is highly unpredictable, as future values are mostly built from current shocks 
that are, in essence, not foreseeable. To illustrate, we show in this section, how the random walk 
component affects the quality of projections by 2025.  

As in section 3.1, we use a decomposition of crop yields into a stationary component and a 
random walk and look at the width of forecast intervals around projections by 2025. We first 
consider forecasts that assume no growth from 2009 onward. To derive the size of a 95% 
forecast intervals, we consider only the variance in the data explained by the random walk 
component. Specifically, we look at crop yields once purged of temporary fluctuations, and then 
we compute a forecast interval [Y

_

1.9616

_

17;Y
_

1.9616

_

17], where Y
_

 is the projected crop 
yield by 2025 and 16

_

 are from the second column of Table 5. The rationale behind this 
construction is that 16

_

is a consistent estimator of the variance of the random walk component. 
Although this approach underestimates the true size of the interval, as it discards the variability 
implied by the stationary component, it has the merit of simplicity and it provides a reasonable 
idea of how predictable or not crop yields are. The column for Model A of Table 6 shows the 
projected value of crop yields by 2025, given our no growth assumption for the average crop 
yield over the last five years of the time series. The last two columns display the lower and upper 
bound of the associated forecast interval. On average, the uncertainties on 2025 projections are 
about 70%  of the forecast. This average hides diverse behaviors among crop yields: rice in Sub 
Saharan Africa, cotton in West Asia/North Africa, rice and wheat in South Asia, rice in South 
East Asia, maize in EU15 have less than 25%  of uncertainties on their predicted yields; for 
soybeans in LAM, sorghum in West Asia/North Africa, soybeans in South Asia, sunflower seeds 
in EU15, maize and wheat in Eastern Europe, these uncertainties are higher than 100% . 

The conclusion is that the historical data imply large forecast intervals. From this foundation 
and in light of concerns about the slowing growth of yields, we next assess how different 
assumptions about the functional form of yield growth affect 2025 projections. In addition to our 
previous projections, two additional projections are considered: we assume that crop yields grow 
from 2009 to 2025 at a constant rate equal to the average growth rate from 1961 to 2009 in 
Model B and from 1990 to 2009 in Model C. Model A is an extreme representation of a plateau; 
Model B is an optimistic perspective that considers sustainable the growth observed in the last 
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fifty years; Model (C) reflects a more recent trend in the growth rate. It can be noticed in Table 
6, that Model C is not always more pessimistic than Model B. The striking result is that for 40 
crops, projections from Model B (36 crops for projections from Model C) lie within the forecast 
intervals associated with our projections without growth. This means that for almost two thirds 
of the crops, we cannot statistically distinguish the projections from a model without growth and 
the ones from a model with a constant growth rate. Here the random walk extracted from 
historical data dominates the uncertainties related to the choice of forecast model.  

Hence, a slowdown today is not a strong indication of a continued plateau in the future as the 
uncertainty of crop yields, embedded in the random walk, prevents us from pursuing such an 
extrapolation. As argued in section 2.3, one of the reasons for this difficulty is that historical data 
exhibit structural breaks that we cannot rule out in the future. For example, Figure 4 looks back 
at the example of rice in China and sheds new light by adding a 95% forecast interval that take 
into account a random shift in the long run trend. These bands are constructed by using our 
previous methodology but with two differences: we use only data from 1961 to 1995 and we 
forecast rice yields in 2009, based on a linear projection. First, this forecast interval performs 
better than the one provided by a purely deterministic approach. Unlike the latter, the former is 
wide enough to encompass the actual variations of rice yields between 1996 and 2009. Secondly, 
despite this width, rice yields cross nearly the lower confidence bound at the end of the period. 
Random trend shifts do not allow for ruling out completely the possibility for yields to catch up 
with the linear projections level. But the persistency of the proximity between actual yields and 
lower confidence bands may indicate that, in the last 14 years, the productivity of rice land is 
driven by patterns that are not captured in the historical data and that are not taken into account 
by the amplitude of the past trend shifts. Thirdly, both projections implied by a model without 
growth and by a model with a constant growth rate based on 1961-1995 data lies within the 95% 
forecast interval around a linear projection. In comparison, the slowdown pattern is not clear for 
wheat in India, since the 1996-2009 observations do not escape the 95% forecast intervals. Sharp 
shifts in trend may be still expected to allow wheat yields to catch up with linear extrapolations. 
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Table 6. Projections of crop yields by 2025. Model (A) proposes the average from 2005 to 
2009 as forecast by 2025; Model (B) assumes a constant growth rate equal to the average 
growth rate from 1961 to 2009; Model (C) assumes a constant growth rate equal to the 
average growth rate from 1990 to 2009.  

Regions Crops 
Forecasts by 2025  Forecast 

intervals 
Model 
A 

Model 
B 

Model 
C 

Lower 
bound 

Upper 
bound 

USA Barley 3.52 5.13 5.20 2.00 5.03 
Maize 9.69 16.32 14.86 5.27 14.12 
Oats 2.26 2.97 2.96 1.14 3.39 
Seed cotton 2.26 3.04 2.84 1.19 3.33 
Sorghum 4.20 5.93 6.30 1.59 6.82 
Soybeans 2.84 3.82 4.01 1.74 3.94 
Wheat 2.84 3.73 3.99 1.94 3.74 

Latin 
America 

Maize 3.90 5.93 6.91 1.91 5.89 
Rice 4.47 6.52 7.92 1.33 7.62 
Seed cotton 1.75 2.47 2.20 0.07 3.44 
Sorghum 3.09 4.34 4.03 0.57 5.62 
Soybeans 2.59 4.53 6.26 -0.02 5.21 
Wheat 2.39 3.32 2.77 1.02 3.76 

Sub 
Saharan 
Africa 

Maize 1.60 2.37 2.04 0.53 2.68 
Millet 0.90 1.15 1.15 0.41 1.38 
Rice 1.74 2.02 1.88 1.34 2.13 
Seed Cotton 0.88 1.32 1.01 0.54 1.23 
Sorghum 1.00 1.20 1.26 0.48 1.53 
Wheat 1.99 3.33 3.29 1.11 2.86 

Western 
Asia / 
North 
Africa 
(WANA) 

Barley 1.40 2.56 2.68 0.66 2.15 
Maize 5.65 9.52 8.73 3.59 7.71 
Seed cotton 3.14 4.75 4.56 2.34 3.94 
Sorghum 0.79 0.94 1.29 -0.02 1.61 
Sunflower seed 1.54 2.08 1.76 0.88 2.21 
Wheat 2.30 3.69 3.26 1.67 2.93 

South Asia Maize 2.37 3.42 3.47 1.07 3.67 
Millet 0.91 1.57 1.54 0.36 1.46 
Rapeseed 1.10 1.87 1.66 0.63 1.57 
Rice 3.30 4.44 4.02 2.52 4.07 
Sorghum 0.86 1.31 1.13 0.47 1.25 
Soybeans 1.08 1.86 1.82 -0.20 2.35 
Wheat 2.52 3.86 3.34 2.10 2.94 

South-East 
Asia 

Maize 3.35 5.64 6.27 1.27 5.42 
Rice 3.94 5.48 5.06 3.25 4.63 

China Maize 5.30 9.48 7.34 3.34 7.26 
Millet 1.93 2.76 2.65 0.66 3.19 
Rapeseed 1.84 4.22 3.05 0.95 2.72 
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Rice 6.40 9.76 7.49 4.28 8.52 
Seed cotton 3.68 7.97 6.87 1.61 5.75 
Soybeans 1.67 2.58 2.22 0.96 2.37 
Wheat 4.54 10.24 6.76 3.19 5.88 

USSR Barley 2.05 4.30 3.42 1.18 2.91 
Maize 3.89 3.89 5.60 0.80 6.98 
Millet 1.14 1.14 3.64 0.22 2.07 
Oats 1.67 1.67 2.51 0.86 2.49 
Rye 1.96 1.96 2.90 1.01 2.91 
Sunflower seed 1.18 1.18 1.19 0.16 2.20 
Wheat 2.08 2.08 3.03 1.05 3.11 

EU15 Barley 4.24 5.51 5.51 2.98 5.51 
Maize 9.10 14.12 14.12 6.87 11.34 
Oats 2.65 3.17 3.17 0.97 4.33 
Rapeseed 3.45 4.62 4.62 1.39 5.52 
Rye 4.03 6.28 6.28 2.15 5.90 
Sunflower seed 1.76 1.70 1.70 -2.45 5.96 
Wheat 5.44 8.32 8.32 3.35 7.53 

Eastern 
Europe 

Barley 3.22 4.25 3.09 0.04 6.39 
Maize 3.32 6.10 9.74 -3.16 9.81 
Oats 2.14 2.63 2.81 0.23 4.05 
Rapeseed 2.63 4.37 5.40 0.92 4.34 
Rye 2.50 3.41 3.40 0.78 4.22 
Sunflower seed 1.60 2.19 2.38 0.07 3.13 
Wheat 3.15 4.45 4.56 -1.38 7.69 
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Figure 4. Rice yields in China (lower panel) and wheat yields in India (upper panel). The 
solid vertical line represents the width of 95% confidence forecast for 2009 based on 
linear projections from 1961-1995. The model without growth is based on the 1991-
1995 yield average; the model with constant growth rate is based on the average 
growth rate from 1961 to 1995. 
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4. CONCLUSION 

Concerns about a yield plateau and a failure of yield growth to keep up with population 
growth and other demands have been a recurring issue. In recent times, these concerns arose in 
the mid-1990s after yield growth rates appeared to slow in the 1980s. These concerns led to 
fairly pessimistic projections based on a variety of approaches, ranging from expert judgment to 
regression models. In this paper, we re-evaluate crop yields with a new approach. We do not 
focus on the determination of the trend that best fits the time series, but instead we wonder how 
useful such trends are in order to forecast future yields. The main result is that trending these 
time series may be a misleading technique, since we show that among all the crops we 
investigated, at least two thirds behave as a unit root. Furthermore, one likely explanation for 
these unit roots is the failure to account for structural breaks that characterize yields in the last 
fifty years. What we can learn from past data is that long run behavior of crop yields is shaped by 
either a multitude of small shocks or by a few structural changes. Given the uncertainty entailed 
with both types of fluctuations, it seems reasonable to add a random walk component into our 
representation of crop yields. We introduce a measure of the resiliency of shocks and show that 
very few crop yields are mean reverting. We also construct forecast intervals to account for the 
presence of a random walk component into the time series. As a result, for almost two thirds of 
the crops, historical data do not provide us with any reason to favor a model without growth over 
a model with a constant growth rate.  

Our findings shed new light on the issue of possible slowdown in agricultural yields. 
Conclusions about a current plateau effect may be reversed in the future by shocks that will 
affect permanently the long run behavior of yields. In other words, more than future trends, past 
data suggest that we should use extrapolations with very great caution, given the inherent 
randomness of crop yields.  

The addition of these uncertainties allows us to reconsider the question of whether there is a 
plateau in yield growth. For most of the crops, forecasts based on a constant growth rate or no 
annual increment are not significantly different given the uncertainties in these forecasts. Data 
for the period 1961-2009 do not provide strong support for choosing one model over another. 
There is no statistical evidence to distinguish the forecasts provided by a model without growth 
or by a model with constant growth rate, because of our inability to rule out a structural shift 
from one path of agriculture development to another. The general conclusion from this time 
series analysis of yields is that casual observation or simple regression can lead to 
overconfidence in projections because of the failure to consider the likelihood of structural 
breaks. 

Two possible avenues can be suggested to pursue this analysis. The first is to use a Bayesian 
estimation and prediction procedure, as in Pesaran et al. (2006), to allow for possible future 
breaks over the forecast time horizon, based on the distribution of historical breaks. The second 
is to provide a causal model of yield growth and thereby explain structural breaks as a function 
of economic conditions or other factors. The difficulty is that we have a relatively short time 
series and many potential explanatory variables. Moreover, the lag between the events that might 
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explain changes in yield and the observation of change is likely long and variable. We have 
taken a first step by simply investigating the time series behavior of yields. The very long time 
series that exists for the U.S. indicates a very different pattern of yield growth (i.e. very little if 
any) in the period of about 1930-40, followed by rapid growth. The period of rapid growth 
coincides and is likely explained by advances in plant breeding and the widespread availability 
of fertilizers and other chemicals. However we mostly have good data only for the period 
spanning 1960 to the present.  

 
Acknowledgments 
The authors gratefully acknowledge Sharmila Ganguly for her help with the manuscript; Luc De 
Marliave from TOTAL SA, for his support to the Joint Program; and Ed Kosack for his fruitful 
comments. The financial support for this work is provided by the MIT Joint Program on the 
Science and Policy of Global Change through a consortium of industrial sponsors and Federal 
grants. 
 

5. REFERENCES 

Alexandratos, N., 1995: The outlook for world food and agriculture to year 2010. In: Population 
and food in the early twenty-first century: Meeting future food demands of an increasing 
world population. Occasional paper, International Food Policy Research Institute (IFPRI): 
Washington, D.C., pp. 24-48. 

Blough, S.R., 1992: The Relationship between Power and Level for Generic Unit Root Tests in 
Finite Samples. Journal of Applied Econometrics, 7: 295-308. 

Borlaug, N.E. and C.R. Dowswell, 1993: Fertilizer: To nourish infertile soil that feeds a fertile 
population that crowds a fragile world. Fertilizer News, 38(7): 11-20. 

Brown, L.,1994: Facing Food Insecurity. In: State of the World: a Worldwatch Institute report on 
progress toward a sustainable society, Brown et al. (eds.), W.W. Norton and Co., Inc., New 
York, pp 177-197. 

Bump, B. and C.R. Dowswell, 1993: Growth potential of existing technology is insufficiently 
tapped. In: Population and food in the early twenty-first century: Meeting future food 
demands of an increasing world population, N. Islam (ed.), Occasional paper, International 
Food Policy Research Institute (IFPRI), Washington, D.C., pp. 191-206. 

Cochrane, J.H., 1988: How Big is the Random Walk in GNP? The Journal of Political Economy, 
96(5): 893-920. 

Dickey, D.A and W.A. Fuller, 1979: Distribution of the estimators for autoregressive time series 
with a unit root. Journal of the American Statistical Association, 74: 427-431. 

Elliot, G., T. Rosenberg and J.H. Stock, 1996: Efficient Tests for an Autoregressive Unit root. 
Econometrica, 64: 813-816. 

FAO (Food and Agriculture Organization of the United Nations): www.fao.org 
Granger and Newbold, 1994: Spurious Regressions in Econometrics, Journal of Econometrics, 2: 

111-120, 1974. 
Griffon, M., 2006: Nourrir la planete, Odile Jacob Sciences. 
Hamilton, J.D., 1994: Time Series Analysis, Princeton University Press, Princeton, NJ.  



25 
 

Harvey, A.C., 1990: The econometric analysis of time series, MIT Press, Cambridge, Mass. 
Lumsdaine, R. L. and D.H. Papell, 1997: ‘Multiple trend breaks and the unit root hypothesis, 

Review of Economics and Statistics, 79(2): 212-18.  
Mitchell, D., 2008: A note on rising food prices. In: World Bank Policy Research Paper 4682, 

The World Bank, Washington DC.  
NASS (National Agriculture Statistics Service): http://www.nass.usda.gov/Ng, Serena, and 
Pierre Perron. 2001. Lag Length Selection and the Construction of Unit Root Tests with Good 
Size and Power. Econometrica, 69: 1519-1554. 
 Offutt, S.E., P. Garcia and M. Pinar, 1987: Technological Advance, Weather and Crop Yield 
Behavior. North Central Journal of Agriculture Economics, 9(1): 49-63. 
Oram, P.A. and P.A. Hojjati, 1995: The growth potential of existing agricultural technology. In: 

Population and food in the early twenty-first century: Meeting future food demands of an 
increasing world population, N. Islam (ed.), Occasional paper, International Food Policy 
Research Institute (IFPRI), Washington, D.C., pp. 167-189. 

Reilly, J.M. and K.O. Fuglie, 1998: Future yield growth in field crops: what evidence exists? Soil 
and Tillage Research, 47: 275-290. 

Rosegrant, M.W., M.S. Paisner, S. Meijer and J. Witcover, 2001: 2020 Global Food Outlook: 
Trend, Alternatives, and Choices. A 2020 Vision for Food, Agriculture, and the Environment 
Initiative. International Food Policy Research Institute (IFPRI), Washington, D.C. 

Searchinger, T., R. Heimlich, R.A. Houghton, F. Dong, A. Elobeid, J. Fabiosa, S. Tokgoz, D. 
Hayes and T-H. Yu, 2008: Use of U.S. Croplands for Biofuels Increases Greenhouse Gases 
through Emissions from Land-Use Change, Science, 319: 1238-1240 

Stock, James H., 1994: Unit Roots, Structural Breaks and Trends. In: Handbook of 
Econometrics, R.F. Engle and D.L. McFadden, (eds.), Amsterdam: Elsevier, Volume IV, Ch. 46.  
Tyner, W.E., F. Taheripour, Q. Zhuang, D. Birur and U. Baldos, 2010: Land Use Changes and 

Consequent CO2 emissions due to U.S. Corn Ethanol Production: A Comprehensive 
Analysis, Department of Agricultural Economics. 

Zivot, E., and D.W.K. Andrews, 1990: Further Evidence on the Great Crash, the Oil Price Shock, 
and the Unit Root Hypothesis. Cowles Foundation Discussion Papers 944, Cowles 
Foundation for Research in Economics, Yale University. 



26 
 

APPENDIX A 

Countries Included in the Analysis 
 
European Union (EU 15): Austria, Belgium, Denmark, Finland, France, Germany, Greece,  
Ireland, Italy, Luxembourg, the Netherlands, Portugal, Spain, Sweden, and the United  
Kingdom. 
 
United States 
 
Eastern Europe: Albania, Bosnia-Herzegovina, Bulgaria, Croatia, Czech Republic,  
Hungary, Macedonia, Poland, Romania, Slovakia, Slovenia, and Yugoslavia. 
 
USSR: Armenia, Azerbaijan, Belarus, Estonia, Georgia, Kazakhstan, Kyrgyzstan, Latvia, 
Lithuania, Moldova, Russian Federation Tajikistan, Turkmenistan, Uzbekistan and Ukraine 
 
 
Central and Latin America: Antigua and Barbuda, Argentina, Bahamas, Barbados, Belize, 
Bolivia, Brazil, Chile, Colombia, Costa Rica, Cuba, Dominica, Dominican Republic, Ecuador, El 
Salvador, French Guiana, Grenada, Guadeloupe, Guatemala, Guyana, Haiti, Honduras, Jamaica, 
Martinique, Mexico, Netherlands Antilles, Nicaragua, Panama, Paraguay, Peru, Saint Kitts and 
Nevis, Saint Lucia, Saint Vincent, Suriname, Trinidad and Tobago, Uruguay, and Venezuela. 
 
South Asia: Afghanistan, Bangladesh, India, Maldives, Nepal, Pakistan and Sri Lanka. 
 
Southeast Asia: Brunei, Cambodia, Indonesia, Laos, Malaysia, Myanmar, Philippines, Thailand 
and Viet Nam.  
 
China 
 
Sub-Saharan Africa: Angola, Botswana, Benin, Burkina Faso, Burundi, Cameroon, Chad, 
Central African Republic, Comoros Island, Congo Democratic Republic, Congo Republic, 
Djibouti, Eritrea, Ethiopia, Gabon, Gambia, Ghana, Guinea, Guinea-Bissau, Ivory Coast, Kenya, 
Lesotho, Liberia, Madagascar, Malawi, Mali, Mauritania, Mauritius, Mozambique, Namibia, 
Niger, Nigeria, Réunion, Rwanda, Sao Tome and Principe, Senegal, Sierra Leone, Somalia, 
Sudan, Swaziland, Tanzania, Togo, Uganda, Zambia, and Zimbabwe. 
 
West Asia/North Africa (WANA): Algeria, Cyprus, Egypt, : Iran, Iraq, Jordan, Kuwait, 
Lebanon, Libya, Morocco, Saudi Arabia, Syria, Tunisia, Turkey, United Arab Emirates, and 
Yemen. 
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