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Estimated PDFs of Climate System Properties Including Natural and

Anthropogenic Forcings

Chris E. Forest, Peter H. Stone and Andrei P. Sokolov

Abstract

We present revised probability density functions (PDF) for climate system properties
(climate sensitivity, rate of deep-ocean heat uptake, and the net aerosol forcing strength)
that include the effect on 20th century temperature changes of natural as well as
anthropogenic forcings. The additional natural forcings, primarily the cooling by volcanic
eruptions, affect the PDF by requiring a higher climate sensitivity and a lower rate of deep-
ocean heat uptake to reproduce the observed temperature changes. The estimated 90%
range of climate sensitivity is 2.4 to 9.2 K. The net aerosol forcing strength for the 1980s
decade shifted towards positive values to compensate for the now included volcanic forcing
with 90% bounds of –0.7 to –0.16 W/m2. The rate of deep-ocean heat uptake is also reduced
with the effective diffusivity, Kv, ranging from 0.25 to 7.3 cm2/s. This upper bound implies
that many coupled atmosphere-ocean GCMs mix heat into the deep ocean (below the mixed
layer) too efficiently.
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1 Introduction

Forest et al. (2002) presented an estimate of the joint probability density function (pdf)

for uncertain climate system properties. Other groups (Andronova & Schlesinger, 2001;

Gregory et al., 2002; Knutti et al., 2003) have estimated similar pdfs although each uses

different methods and data. However all are based on estimating the degree to which a

climate model can reproduce the historical climate record. Parameters within each model

are perturbed to alter the response to climate forcings and a statistical comparison is used

to reject combinations of model parameters.

We use an optimal fingerprint detection technique for comparing model and observa-

tional data. This technique consists of running a climate model under a set of prescribed

forcings and using climate change detection diagnostics to determine whether the simulated

climate change is observed in the climate record and is distinguishable from unforced vari-

ability of the climate system (see Mitchell et al. (2001) or International ad hoc Detection

and Attribution Group (2005) and references therein). As is well known, it is not possible

to estimate the true climate system variability on longer time scales from observations and

therefore, climate models are run with fixed boundary conditions for thousands of years to

obtain an estimate of the climate variability.

Forest et al. (2000, 2001, 2002) developed a method using the MIT 2D model to analyze

uncertainty in climate sensitivity (S), the rate of heat uptake by the deep ocean (Kv), and

the net aerosol forcing (Faer). These factors (θ = S,Kv,Faer) were jointly constrained by

using three different diagnostics to estimate the probability of rejection for combinations

of model parameters that lead to simulations of the 20th century which are inconsistent

with the observed records of climate change. The individual probability density functions

(pdfs) can be combined to provide stronger constraints for the uncertain properties via

an application of Bayes’ Theorem. A 2D model is required because 3D models are

computationally too inefficient.

Our former analysis only took into account anthropogenic forcings by greenhouse

gases, stratospheric ozone, and aerosols. We now also take into account the change in

radiative forcing by solar irradiance fluctuations, by stratospheric aerosols due to volcanic

eruptions, and by land-use and land-cover vegetation changes. The major uncertain forcing

is that due to sulfate aerosols, so in our earlier study, the sulfate aerosol pattern had a

specified dependence on latitude and surface type, but the amplitude was taken to be one

of the uncertain parameters to be constrained. There are additional uncertainties associated

with the new forcings that we now include, but they are generally believed to be smaller

than the uncertainties associated with sulfate aerosols (Hansen et al., 2002). Thus, in our

new analysis, we retain the amplitude of the sulfate aerosol forcing as the only uncertain
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parameter describing the forcing. However, we do include in this paper some tests of

whether our new results are sensitive to uncertainties in the new forcings.

2 Methodology

To quantify uncertainty in climate model properties, the basic method (Forest et al., 2001,

2002) can be summarized as consisting of two parts: simulations of the 20th century climate

record and the comparison of the simulations with observations using optimal fingerprint

diagnostics. First, we require a large sample of simulated records of climate change in

which climate parameters have been systematically varied. This requires a computationally

efficient model with variable parameters as provided by the MIT 2D statistical-dynamical

climate model (Sokolov & Stone, 1998). A brief description of the MIT 2D climate model

and its recent modifications are given in supplemental material. Second, we employ a

method of comparing model data to observations that appropriately filters “noise” from

the pattern of climate change. The variant of optimal fingerprinting proposed by Allen &

Tett (1999) provides this tool and yields detection diagnostics that are objective estimates

of model-data goodness-of-fit. These goodness of fit statistics are then used to estimate

the likely value of uncertain parameters (via a likelihood function, L(θ)) for multiple

diagnostics of climate change. Individual L(θ) are then combined to estimate the posterior

distribution, p(θ|ΔTi, CN), where ΔTi represent the three temperature change patterns and

CN is the noise covariance matrix required to estimate the goodness-of-fit statistics.

In this work, the noise covariance matrix has been estimated from multiple control

runs of AOGCMs. (The noise estimate for deep ocean heat uptake also includes analysis

error estimates from Levitus et al. (2000).) The matrix represents the natural variability in

any predicted pattern which is determined by the variability in the corresponding pattern

amplitude in successive segments of “pseudo-observations” extracted from the control run

for the climate model. The variability of the MIT 2D climate model is somewhat lower

than that of AOGCMs (Sokolov & Stone, 1998), but the model does exhibit changes in

variability which are dependent on S and Kv and are similar to results from Wigley &

Raper (1990).

2.1 Experimental Design

The description of the climate model experiments, the ensemble design, and the algorithm

for estimating the joint PDFs are provided in full in Forest et al. (2001, 2002). The major

change in the new experiments is the inclusion of three additional 20th century forcings

during the period 1860-1995. The set of forcings is now: greenhouse gas concentrations,
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sulfate aerosol loadings, tropospheric and stratospheric ozone concentrations, land-use

vegetation changes (Ramankutty & Foley, 1999), solar irradiance changes (Lean, 2000),

and stratospheric aerosols from volcanic eruptions (Sato et al., 1993). We refer to these

forcings as GSOLSV with the first three, GSO, being those used in Forest et al. (2002).

(Details on all forcings are in the supplement.)

Additionally, we elected to run each perturbation of the 4 member ensemble starting

with different initial conditions in 1860 rather than perturbing the climate system in 1940

as done previously. This provides data for each ensemble member for the entire simulation

as we will be using surface temperatures beginning in 1906. The initial conditions for each

ensemble member were taken every ten years from an equilibrium control simulation. This

results in 4x136 = 544 simulation years for each choice of model parameters.

3 Results

In the simulated climate change, the additional forcings have two major effects that can

be illustrated by examining the simulated response to the GSOLSV and GSO forcings and

comparing with the observed records, directly (Fig. 1). For the “best fit” parameters in each

case, the new results require higher S and slightly weaker Faer. This shift in the “best fit”

parameters results in appropriate shifts in the distributions and are summarized as follows.

The inclusion of the volcanic aerosol forcing provides a net surface cooling during the

latter 20th century (Fig. 1). This requires changes in uncertain model parameters to remain

consistent with the historical climate record (Figs. 2 and 3 ) which can be achieved by

reducing Kv or Faer, increasing S, or combinations of all three. The median net aerosol

forcing is partially reduced from -0.6 to -0.4 W/m2 but there is little change in the width

of the distribution with the 5-95%-ile range being 0.6 W/m2. The reduction in the median

is partially because the net aerosol forcing no longer includes the volcanic term. However,

the net aerosol forcing remains a cooling effect. The medians for S, Kv, and Faer are 3.1

K, 1.4 cm2/s, and -0.35 W/m2, respectively, for the distributions using an expert prior on S

as used in Forest et al. (2002).

The new distributions are compared with that of Forest et al. (2002) in Fig. 2 and two

key comparisons are made. In one, we compare the distributions with identical treatments

of the climate change diagnostics by keeping the number of retained EOFs (κ) in the

decomposition of C−1
N (κ) fixed. Thus, for the surface temperature diagnostic, we use

κsfc = 14 in both the GSO and GSOLSV pdfs and the marginal posterior distributions

for S, Faer, and Kv are altered. In the second comparison, we allow κsfc to vary. In Forest

et al. (2002) for the surface data, we found that we could reject κsfc > 14 based on the

Allen & Tett (1999) criterion. With the additional forcings, we are no longer able to reject
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the higher EOFs and find that the distributions are insensitive for 15 < κsfc < 19. In a

separate work on Bayesian selection criteria, Curry et al. (2005) using our data find that a

break occurs at κsfc = 16 and thus we select this as an appropriate cutoff. This inclusion of

higher order EOFs is equivalent to stating that smaller spatial and temporal scale patterns

(in five decadal means and four equal-area zonal averages) found in the GSOLSV response

are significant, unlike the GSO case. This also implies that the observations show this

behavior. As a final issue, this shift from κsfc = 14 to 15 further limits the higher Kv

values. We note that the range of effective ocean diffusivities for the existing AOGCMs is

4-25 cm2/s (Sokolov et al., 2003) and these values appear to be highly unlikely according

to our new results. (We note that a more recent analysis of the deep ocean temperatures

(Levitus et al., 2005) has a 20% weaker trend during the period used in our analysis. This

would require even lower acceptable Kv values.)

Several sensitivity tests were performed to assess the robustness of the estimated

distributions. Specifics are found in the supplemental information but we briefly discuss

two here. A first test was designed to determine whether the location of the deep-ocean

heat uptake influenced the spatio-temporal patterns of temperature change. The latitude

dependence of Kv, which was based on observations of Tritium mixing (Sokolov & Stone,

1998), was changed to reflect the pattern identified in the ocean data (Levitus et al., 2000).

Although local surface temperatures were changed, the large-scale averages (four equal-

area zonal bands) as used in our diagnostics were not affected. A second test explored

the sensitivity of the results to reducing the strength of the volcanic forcing by 25%. This

requires slightly higher Faer and lower S values to bring the temperature response down to

match the observations but the changes are relatively small. These results suggest that the

PDFs are robust to such changes.

As discussed earlier, the estimated distributions depend on the choice of the truncation

for the eigen-decomposition of CN for the surface temperature diagnostic. We also tested

the choice of AOGCM for estimating CN . In Forest et al. (2002), we used the natural

variability as estimated from the HadCM2 and GFDL R30 AOGCMs. In our new results,

we have used diagnostics based on the natural variability from control runs by the HadCM2,

HadCM3, GFDL R30, and PCM models. The resulting pdfs have not differed qualitatively

(shown in supplemental material). Although the results are not sensitive to the choice of

AOGCM, observations do not exist to test the quality of such estimates.

4 Discussion and Conclusions

We present a revised estimate of the pdfs for climate system properties that now includes

the response to both natural and anthropogenic forcings. With additional new forcings, a
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larger climate sensitivity and a reduced rate of ocean heat uptake below the mixed layer are

required to match the observed climate record in the 20th century. The primary factor

leading to this change is the strong cooling forcing by volcanic eruptions through the

stratospheric aerosols. Similarly, there is a small change in the aerosol forcing which

tends to offset the volcanic cooling. When using uniform priors on all parameters, these

new results are summarized by the 90% confidence bounds of 2.4 to 9.2 K for climate

sensitivity, 0.25 to 7.3 cm2/s for Kv, and -0.7 to -0.16 W/m2 for the net aerosol forcing

strength. When an expert prior for S is used, the 90% confidence intervals are 2.2 to 5.2 K,

0.1 to 5.5 cm2/s, and -0.62 to -0.05 W/m2 for S, Kv, and Faer, respectively. Our new results

for Kv imply that most AOGCMs are mixing heat into the deep ocean too efficiently, as

shown in Fig. 3.

From the two sensitivity tests regarding the strength of the volcanic forcing and the

location of the ocean heat uptake, we find that our results appear robust. We also explored

the sensitivity to the estimated C−1
N (κ) and find that although the specific AOGCM is not

very important, the method for truncating the number of retained eigenvectors (i.e., patterns

of unforced variability) is critical. For the surface temperature diagnostic, critical changes

in the joint PDF occur when κsfc changes from 14 to 15 and from 19 to 20 and based on

Allen & Tett (1999), we cannot reject these higher modes of variability. Marginal likelihood

results are promising (Curry et al., 2005, from) yet do not appear to be definitive. Based

on κsfc = 14, 15, or 20, the robust result is that the lower bound on S is higher and failure

to reject S > 5 K remains. Additionally, for all three choices, high Kv values are rejected

as producing too much ocean heat uptake and the net aerosol forcing uncertainty remains

stable. Given these considerations, the best choice appears to be κsfc=15.

Finally, the use of the expert prior on S remains a key factor in limiting the possibility

of high values of S. Despite their uncertainties, the paleoclimate results provide data not

directly included in the present framework and this supports using a prior influenced by

such results. The implications of these results are that the climate system response will be

stronger (specifically, a higher lower bound) for a given forcing scenario than previously

estimated via the uncertainty propagation techniques in Webster et al. (2003).
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Figure 1: Representative MIT 2D model simulations with the GSOLSV, GSOLS, and GSO forcings for
(a) global-mean annual-mean surface temperature change, and (b) 0 to 3 km global mean
annual-mean ocean temperature change. We show cases near the distributions’ modes for
GSOLSV (black) and GSOLS (blue) with S = 3.5 K, Kv = 4 cm2/s, and Faer = –0.5 W/m2 and for GSO
(green) with S = 2.5 K, Kv = 7.5 cm2/s, and Faer = –0.75 W/m2. Observations (red) from Jones (2000)
(surface) and Levitus et al. (2000) (deep-ocean). Surface temperatures have been smoothed with
a three-point moving average.
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Figure 2: The marginal posterior probability density function for the three climate system properties
for four cases. In each panel, the marginal pdfs are shown for the GSOLSV forcings with sfc = 16
(black) and 14 (green) and for GSO case (blue) with sfc = 14 from Forest et al. (2002). A fourth
case (red) includes an expert prior on S and uniform priors elsewhere with sfc = 16. Marginal
distributions are estimated by integrating the density function over the remaining two
parameters and renormalizing. The whisker plots indicate boundaries for the percentiles 2.5 to
97.5 (dots), 5 to 95 (vertical bar at ends), 25 to 75 (box ends), and 50 (vertical bar in box). The
mean is indicated with the diamond and the mode is the peak in the distribution.



10

p(S,Kv): Expert Prior on S
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Figure 3: The marginal posterior probability density function for GSOLSV results with expert prior on
S for the S-Kv parameter space. The blue shading denotes rejection regions for a given
significance level: 10% (light) and 1% (dark). The positions of AOGCMs (from Sokolov et al., 2003)
represent the parameters in the MIT 2D model that match the transient response in surface
temperature and thermal expansion component of sea-level rise under a common forcing
scenario. Lower Kv values imply less deep-ocean heat uptake and hence, a smaller effective heat
capacity of the ocean.



Supplement to: Estimated PDFs of climate system

properties including natural and anthropogenic

forcings

Chris E. Forest and Peter H. Stone and Andrei P. Sokolov  

 

This supplement provides additional information for Forest et al. (2005). It presents

details on the methods used (Sect. 1) and a set of sensitivity tests for the estimated PDFs

(Sect. 2). Three tests provide details on sensitivies to the noise model truncation, to the lat-

itude dependence of the deep-ocean heat uptake, and to uncertainty in the volcanic forcing.

There is also a section on the ability of the 2D climate model to reproduce the ocean heat

uptake in response to the 20th century forcings.

1 Methods

1.1 Summary of PDF Estimation Algorithm

The following steps provide further details of the method for estimating the probability

density functions (PDFs):

1. Simulate 20th century climate using anthropogenic and natural forcings while sys-

tematically varying the choices of climate system properties, θ = {S, Kv, Faer}, as

set in the MIT 2D climate model, where S is the climate sensitivity (defined as the

equilibrium change in surface air temperature when the CO2 concentration doubles),

Kv is an effective vertical diffusivity controlling the rate at which heat anomalies

penetrate into the deep ocean (below the mixed layer), and Faer is the net aerosol

forcing and represents the uncertainty in the net historical forcing.
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2. Compare the spatio-temporal patterns of climate change in each model temperature

response, T (θ), against observed patterns, Tobs, as in an optimal fingerprint detection

algorithm using unforced variability estimated from AOGCMs to obtain an estimate,

CN(κ), of the covariance matrix and only the first κ modes of variability are retained

from the eigenvalue decomposition. The best choice of κ is discussed later. The

observed temperature change diagnostics that we use are described in Appendix A2.

3. Use the goodness-of-fit statistics, r2(θ, Tobs) = (T (θ)− Tobs)
T C−1

N (κ)(T (θ)− Tobs),

to obtain the likelihood function, L(θ) = p(Tobs|θ, CN) for each T (θ) diagnostics.

This likelihood is based on the result that r2 must differ by mFm,ν , for a given sig-

nificance level, to be considered different from the minimum r2 value (Forest et al.,

2001). The minimum r2 is estimated as where the model obtains its best-fit with

observations for each diagnostic and also has uncertainties.

4. Use Bayes theorem to estimate the joint distribution p(θ|Tobs, CN) that results from

combining the likelihood functions for each diagnostic.

We note that this algorithm has similar features to those of both Andronova & Schlesinger

(2001) and Gregory et al. (2002) with differences arising in different choices of climate

models and observational data. Only the Forest et al. (2002) approach uses spatio-temporal

patterns of climate change that are integral to the optimal fingerprint detection algorithm

(e.g., Allen & Tett, 1999). The resulting posterior pdf then determines the regions of the

parameter space, θ, that can be rejected as being inconsistent with the multiple observa-

tional data sets.

1.2 Description of MIT 2D Climate Model

The MIT 2D climate model consists of a zonally averaged atmospheric model coupled to

a mixed-layer Q-flux ocean model, with heat anomalies diffused below the mixed-layer.

The model details can be found in Sokolov & Stone (1998). The atmospheric model is a

zonally averaged version of the Goddard Institute for Space Studies (GISS) Model II gen-

eral circulation model (Hansen et al., 1983) with parameterizations of the eddy transports

of momentum, heat, and moisture by baroclinic eddies (Stone & Yao, 1987, 1990). The

model version we use has 46 latitude bands ( Δφ = 4o ) and 11 vertical layers with 4 layers

above the tropopause. The 8◦latitudinal resolution used in our earlier study was improved

to 4◦mainly to allow for smoother transitions of melting sea-ice in high latitudes.
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The model also employs a 2.5D Q-flux ocean mixed layer model with 4◦x 5◦latitude-

longitude grid cells and diffusion of heat anomalies into the deep-ocean below the cli-

matological mixed layer. Allowing for changing sea-ice in multiple grid cells, this pro-

vides smoother melt transitions than before. This ocean component model is described by

Hansen et al. (1983) and only increased computations by a few percent. The model uses

the GISS radiative transfer code which contains all radiatively important trace gases as well

as aerosols and their effect on radiative transfer. The surface area of each latitude band is

divided into a percentage of land, ocean, land-ice, and sea-ice with the surface fluxes com-

puted separately for each surface type. This allows for appropriate treatment of radiative

forcings dependent on underlying surface type such as anthropogenic aerosols. The atmo-

spheric component of the model, therefore, provides most important nonlinear interactions

between components of the atmospheric system.

The MIT model has two parameters that determine the timescale and magnitude of the

decadal to century timescale response to an external forcing. These are the equilibrium

climate sensitivity (S) to a doubling of CO2 concentrations and the global-mean vertical

thermal diffusivity (Kv) for the mixing of thermal anomalies into the deep ocean. Sokolov

& Stone (1998) have shown that the large-scale response of a given 3D AOGCM can be du-

plicated by the MIT 2D model with an appropriate choice of these two parameters for any

forcing (see supplemental material, section 2.2). Published values of 3D AOGCM model

sensitivities range from 2.0◦to 5.1◦C (Cubasch et al., 2001). Comparisons between time-

series of transient climate changes calculated with the MIT model and with 3D AOGCMs

show that the GCM’s equivalent vertical diffusivities range from 4.0 to 25.0 cm2/s (see

Figure 3 in the main text). The model’s flexibility to duplicate AOGCM responses, along

with its computational efficiency, provides the tool needed for exploring questions which

would be impractical to explore with 3D AOGCMs.

1.3 Temperature Change Diagnostics

We have elected to use the same climate change diagnostics as used in Forest et al. (2002).

This allows us to isolate the effect of the additional forcings on the posterior distributions.

The climate change diagnostics used in Forest et al. (2002) were:

• Surface temperatures: 4 equal-area latitude averages for each of five decades from

1946–1995 referenced to 1905-1995 climatology. Source: Jones (2000)

• Deep-ocean temperatures: trend in global-mean 0–3km deep layer of pentadal av-
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Table 1: Comparison of applied forcings for GSO and GSOLSV scenarios.

GSO GSOLSV

(Forest et al., 2001, 2002) (This study.)

G Radiative forcing by greenhouse All greenhouse gas concentrations

gases prescribed as equivalent specified explicitly

CO2 concentrations

S Sulfate aerosol loading scaled Updated historical sulfur emissions

by historical sulfur emissions to Smith et al. (2003)

(Hameed & Dignon, 1992)

O Stratospheric and tropospheric Stratospheric and tropospheric ozone

ozone concentrations specifed specified from 1860-2001

from 1979-1995 (Hansen et al., 2002)

L N/A Land-use and land-cover change

(Ramankutty & Foley, 1999)

S N/A Solar irradiance change including

secular change. (Lean, 2000)

V N/A Volcanic forcing specified as

stratospheric aerosol optical depth

Sato et al. (1993) updated to 2001.

erages from 1952–1995. Source: Levitus et al. (2000)

• Upper-air temperatures: Difference between 1986–1995 and 1961–1980 averages

at eight standard pressure levels from 850-50 hPa on 5 degree grid. GSO: Years

1963-4 and 1992 were removed. GSOLSV: all years used. Source: Parker et al.

(1997)

1.4 Summary of Applied Climate Forcings

The current set of simulations has an updated set of historical climate forcings during the

period 1860-1995. The set of forcings is now: greenhouse gas concentrations, sulfate

aerosol loadings, tropospheric and stratospheric ozone concentrations, land-use vegeta-

tion changes, solar irradiance changes, and stratospheric aerosols from volcanic eruptions.

GSOLSV is the shorthand notation for this set of forcings (summarized in Table 1.)

Previously, greenhouse gas concentrations were prescribed as equivalent CO2 concen-
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trations such that the radiative forcing by all gases was converted into a change in the CO2

concentration alone with all other gases remaining fixed. Now, we specify the concen-

tration of each gas separately. The climate model calculates the historical aerosol forcing

prescribed by a change in the surface albedo which depends on the sulfate loadings as a

function of latitude. This loading pattern remains fixed but is scaled by the time series

of SO2 emissions to obtain the time varying forcing. In the new simulations, we have

updated the SO2 emissions after 1990 with Smith et al. (2003). Previously, the strato-

spheric and tropospheric ozone concentrations were held constant prior to 1979 and then

specified from 1979-1995. Now, we include a historical time series (Hansen et al., 2002)

based on GISS estimates of tropospheric ozone in 1890 (Wang & Jacob, 1998). Prior

to 1890, the concentrations are held fixed. From 1890 to 1979, a linear interpolation of

concentrations were used and after 1979, observed estimates of concentrations were spec-

ified. Stratospheric ozone concentrations were held constant prior to 1970, but with a

QBO and solar cycle included, and a trend is prescribed for 1970-1979 that is half that

in 1979-1996, and observed concentrations from 1979-2001. The stratospheric aerosols

from volcanic eruptions are specified as a change in its optical depth for the stratospheric

model layers. The solar irradiance changes are from Lean (2000) with the secular trend

included. (The ozone, stratospheric aerosol, and solar irradiance forcings are described at

http://www.giss.nasa.gov/data/simodel/ and described in Hansen et al. (2002).) The land-

use vegetation changes (Ramankutty & Foley, 1999) are specifed for 1860-1992 and held

fixed after 1992.

2 Sensitivity Tests

2.1 Effects of Noise Model Truncation

The treatment of the noise model is a key element of the detection problem as it represents

the noise component in the goodness of fit statistic: r2 = ΔT T C−1
N (κ)ΔT where ΔT

is the difference between the model and observed temperature change pattern. C−1
N (κ)

is the pseudo-inverse (Mardia et al., 1979) in which the eigendecomposition of the noise

covariance matrix is used: CN = UΛUT with U = matrix of eigenvectors and Λ is the

diagonal matrix of eigenvalues, λi. This allows us to write: C−1
N (κ) = UT Λ−1U where the

diagonal elements of Λ−1 are 1/λi and the other elements are zero. The truncation must

be chosen to retain only the first κ values of Λ−1 and thereby eliminating the projection of

the temperature change pattern onto those patterns of variability with the smallest variance
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in the control run data. Depending on the dimension of the diagnostic, these small λ i are

considered underconstrained and treated as poorly estimated.

We find that the posterior distributions are sensitive to the choice of κsfc but not for

κupper−air and therefore, the selection criteria for κsfc must be considered. The marginal

posteriors (Fig. 1) indicate changes when κsfc change from 14 to 15 but weak sensitivity

to subsequent changes. Based on Allen & Tett (1999), κsfc = 20 cannot be rejected, yet

a better selection method does not appear available. Using our data, Curry et al. (2005)

explored an alternative method for choosing κsfc based on Bayesian methods and find a

strong cutoff when κsfc changes from 18 to 19 and a break in the posteriors when κsfc

changes from 16 to 17. Multiple selection criteria were tested and from the Marginal Like-

lihood method (Chib & Jeliazhov, 2001), κsfc = 16 appears to be an appropriate truncation

but both methods give similar results.

We test the sensitivity to the truncation for the surface CN estimate with κsfc = 14,15,16

(Fig. 1a) and κsfc = 16,18,20 (Fig. 1b). The PDFs change from 14 to 15, and from 19 to

20, with little change from 15 to 19.

2.2 2D Model Simulation of Ocean Heat Uptake

Sokolov & Stone (1998) compared the performance of the MIT 2D climate model in tran-

sient global warming scenarios with the performance of AOGCMs, and showed that the

net heat uptake simulated by any given AOGCM could be modeled accuratedly by the 2D

model with a choice of S and Kv unique to each AOGCM. In particular, the unique choice

worked for different forcing scenarios. However, the scenarios they examined were mostly

ones with forcing stronger than that experienced in the 20th century, e.g., CO2 concen-

trations increasing 1% per year, or the IPCC IS92a scenario, and none of these included

volcanic forcing. Thus, to determine whether the values of S and Kv determined from such

scenarios would still simulate accurately the heat uptake by an OGCM in a 20th century

scenario, we carried out several simulations in which the 2D ocean model in the MIT 2D

model was replaced by a 3D OGCM.

The OGCM used was the MIT OGCM (Marshall et al., 1997) at coarse resolution (4◦)

with conventional subgrid-scale parameterizations. The climate model formed by coupling

the standard version of the MIT 2D atmospheric model with this 3D OGCM is documented

at “http://web.mit.edu/globalchange/www/MITJPSPGC Rpt122.pdf”. The 2D/3D coupled

model was then run in a scenario in which CO2 increased by 1% per year for 100 years,

and the 2D model’s S and Kv were picked so that the surface temperature and deep ocean
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heat uptake of the 2D model matched the results with the 3D ocean. Then the coupled

2D/3D model and the matching version of the MIT 2D model were both integrated from

1860 to 2100 with identical forcings as further discussed in Sokolov et al. (2005). From

1860-1990, all forcings are the same as used in this paper with the net aerosol forcing set to

-0.35 W/m2. From 1991-2100, the model is forced by a reference emission scenario from

the MIT EPPA4 emissions model and yields a ≈7 W/m2 net forcing in 2100 with respect to

1990 due to anthropogenic and natural greenhouse gas emissions (for complete details, see

Sokolov et al., 2005). The results for the global mean surface temperature and the thermal

expansion component of sea-level rise from 1860-2100 are shown in Fig. 2 and indicate

that the 2D model closely matches the changes simulated by the coupled 2D/3D model.

2.3 Sensitivity to latitude dependence of ocean heat uptake

In the MIT 2D climate model, heat anomalies in the mixed layer are diffused into the deep-

ocean (below the climatological mixed layer) based on a latitude dependent profile, Kv(φ).

We note that this diffusive process represents all mixing processes and not just a diffusion

process in the interior deep-ocean. In the original Q-flux model (Hansen et al., 1983),

Kv(φ) was based on observations of tritium mixing into the deep ocean. As presented by

Sun & Hansen (2003), the changes in ocean heat content with depth for the 1951-1998

period differ from the mixing implied by the tritium distribution. The ocean heat content

changes show stronger heat uptake in the tropical and mid-latitude regions as compared to

high latitude regions.

We test whether the deep-ocean heat uptake distribution affects the climate change di-

agnostics by estimating an empirical latitude dependent profile, K ′
v(φ), to reflect the ob-

served changes in ocean heat content (see Fig. 3). This provides a pattern of deep-ocean

heat uptake that mimics the observed pattern (Fig. 4).

The effect of using K ′
v(φ) based on the observed ocean heat content changes results

in almost no change in the global mean surface temperatures (differing by at most ±0.05

K). There are very minor differences in the response and they have very little effect on the

large-scale averages that are used in the optimal fingerprint analyses to estimate the PDF of

the climate system properties. The conditional probability distribution, p(θ|Tobs, CN , Faer

= -0.5 W/m2) (Figure 5) is virtually unchanged with the new Kv distribution.

We conclude that the spatial distribution of heat-uptake is not a critical component for

estimating the p(θ|Tobs, CN) for climate system properties. Because large-scale averages

are used in the analysis, the small regional differences are not affecting the diagnostics.
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The ability for AOGCMs to match the observed behavior on smaller scales remains an

open research question.

2.4 Sensitivity to Volcanic Forcing Uncertainty

A key difference between the responses to the GSO and GSOLSV forcing scenarios is the

strong decrease in global temperature following the volcanic eruptions. The response to the

volcanic aerosol distribution has a significant impact on the temperature time-series for a

given choice of θ (main text Fig. 1a). The difference in the 10-year running mean is larger

than the observational errors for global mean surface temperature and thus, will lead to a

shift in the p(θ|Tobs, CN) that cannot be attributed to unforced variability alone.

As discussed in the main text, the uncertainty in the climate forcings has been treated by

changing the amplitude of the sulfate aerosol forcing and maintaining all other forcings at

their specified strengths. Given the impact of the volcanic forcing, we test whether the un-

certainty in the volcanic forcing has a significant impact on the resulting pdfs. The forcing

uncertainty (2σ) has been subjectively assessed as 30%, 20%, and 15% for the Mt. Agung

(1964), El Chichon (1982), and Mt. Pinatubo (1992) eruptions (Hansen et al., 2002). We

chose to run a cross-section experiment (S-Faer) with constant Kv = 4. cm2/s and volcanic

forcing reduced by 25% to assess whether the uncertainty would have a significant impact

on the estimated pdfs. The posteriors (Fig. 6) for GSOLSV and GSOLSV-75 indicate that

slightly stronger Faer and lower S are required to match the observations under reduced

volcanic forcing. The changes in these two parameters are, however, relatively small.
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Figure S1: The marginal posterior probability density function for the three climate system
properties for uniform priors while varying sfc = 16, 18, 20 (a) and 14, 15, 16 (b) cases. This
marginal distribution is estimated by integrating the density function over the remaining two
parameters and renormalizing. The whisker plots indicate percentile boundaries for the 2.5 to
97.5 (dots), 5 to 95 (vertical bar ends), 25 to 75 (box ends), and 50 (vertical bar in box). The mean
is indicated with the diamond and the mode is the peak in the distribution. The whisker plots
correspond to the density function curves depicted the corresponding color.
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Figure S2: Changes in global-mean (a) annual-mean surface temperatures, and (b) sea-level rise due
to thermal expansion from MIT 2D climate model with 2.5D Q-flux mixed layer model (IGSM2.2)
as used in this study and with 3D ocean model (IGSM2.3) in response to 20th century GSOLSV
forcings (1860-1990) and to MIT EPPA4 reference emissions scenario after 1990. (Sokolov et al.
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