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Does Model Sensitivity to Changes in CO2 Provide a Measure of
Sensitivity to the Forcing of Different Nature?

Andrei P. Sokolov

Abstract
Simulation of both the climate of the 20th century and of possible future climate change requires taking

into account numerous forcings of different nature. Climate sensitivities of existing general circulation
models, defined as the equilibrium surface warming due to increase in atmospheric CO2 concentrations, vary
over a rather wide range. A large number of simulations with the MIT climate model of intermediate
complexity with forcings of different nature have been carried out to study to what extent sensitivity to
changes in CO2 concentration represent sensitivities to other forcings. Sensitivity of the MIT model can be
changed by changing the strength of the cloud feedback.

Simulations with the versions of the model with different sensitivities show that the sensitivity to changes
in CO2 concentration provides a reasonably good measure of the model sensitivity to other forcings with
similar vertical stratifications. However the range of models’ responses to the forcings leading to the cooling
of the surface is narrower than the range of models’ responses to the forcings leading to warming. This is
explained by the cloud feedback being less efficient in the case of increasing sea ice extent and snow cover.
The range of models’ responses to the forcings with different vertical structure, such as increase in black
carbon concentration, is also smaller than that for changes in CO2 concentration.
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1. INTRODUCTION

The MIT 2D climate model has been used in a number of climate change related studies in
recent years. Forest et al. (2002) used the model to obtain a probability distribution for climate
sensitivity consistent with the climate record for the 20th century. This distribution then has been
used by Webster et al. (2003) for studying uncertainty in future climate change. In both cases, a
number of different forcings were considered. In simulations performed by Forest et al. (2002),
the model was forced by changes in CO2, sulfate aerosol and ozone. In an ongoing study (Forest
et al., 2005) changes in solar constant, volcanic aerosol and vegetation cover are also included.
In projections of future climate, changes in different greenhouse gases, ozone, sulfate aerosol and
black carbon are taken into account. Climate sensitivities of different versions of the MIT
climate model were, however, defined based exclusively on changes in CO2 concentration.
Therefore, it is important to evaluate to what extent model sensitivity to changes in CO2

characterizes sensitivity to other forcings.
The dependency of the climate system response to external forcing on the nature of the forcing

has been a subject of a number of recent studies (e.g., Forster et al., 2000; Cook and Highwood,
2004; Hansen et al., 1997; Ramaswamy and Chen, 1997). It was shown that the change in surface
air temperature, ∆Ts, in response to changes in atmospheric CO2 concentration, solar constant or
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surface albedo (and some others) is proportional to the adjusted radiative forcing at the
tropopause, Fa, regardless of the nature of the forcing, or:

∆Ts = λFa, (1)

where λ is a climate sensitivity. This is not, however, the case for forcings with significantly
different vertical structures such as forcings associated with changes in the concentration of
ozone or absorbing aerosols (e.g., Hansen et al., 1997). This poses the question of whether model
sensitivity to changes in CO2 concentration characterizes model sensitivities to different forcings,
especially to forcings of the second kind.

A number of the equilibrium climate change simulations with versions of the MIT model with
different climate sensitivities for a variety of forcings have been performed for this study. A brief
description of the model is given in Section 2. Dependence of the model response on the vertical
stratification of forcing is discussed in Section 3. In Section 4 results of the simulations with the
versions of the model with different sensitivities are discussed. Conclusions are given in Section 5.

2. MODEL DESCRIPTION

The MIT 2D atmospheric model (Sokolov and Stone, 1998) is a zonally averaged statistical-
dynamical model developed from the GISS GCM Model II (Hansen et al., 1983). The model
includes parameterizations of all the main atmospheric physical processes as well as
parameterizations of heat, moisture and momentum transports by eddies. The version used in this
study has a latitudinal resolution of 7.8 degrees and 9 vertical layers. Each cell can contain up to
four different surface types: land, land ice, ice-free ocean and ocean ice. The model calculates
surface temperature, surface and radiative fluxes, and their derivatives with respect to surface
temperature separately for different surface types.

A zonally averaged mixed layer model was used as an ocean component in the previous version
of the MIT climate model. In the version used in this study, the atmospheric model is coupled to a
mixed layer ocean model with a horizontal resolution of 7.8˚ in latitude and 10˚ in longitude. The
mixed layer depth is prescribed based on observations as a function of time and location.

The heat flux felt by the ocean model at the point (i, j) is calculated as:

))(),()(()(),( jTszjiTsj
T

F
jFjiF HZ

HZH −
∂
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+= , (2)

where )( jFHZ  and )( jT
FHZ

∂
∂  are zonally averaged heat flux and its derivative with respect to

surface temperature; ),( jiTs  and )( jTsz  are the surface temperature and its zonal mean.

The mixed layer model also uses parameterized vertically averaged horizontal oceanic heat
transport, the so-called Q-flux. This flux has been calculated from the simulation in which sea
surface temperature and sea ice distribution were relaxed to their present-day climatology.

As was shown by Sokolov and Stone (1998), the MIT climate model simulates reasonably
well the zonally averaged features of the present-day atmospheric circulation. Both equilibrium
and transient responses to an increase in CO2 concentration produced by the model are similar, in
terms of global averaged values and zonal distributions, to the responses obtained in simulations
with the 3D general circulation models (GCMs).
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3. MODEL RESPONSE TO DIFFERENT FORCINGS, DEPENDENCY ON VERTICAL
STRUCTURE OF THE FORCING

A number of 150 year duration equilibrium simulations with the MIT climate model with
different forcing have been carried out (Table 1). During the last 20 years of the simulations,
data required for the radiation calculation have been saved and then used to calculate changes in
radiation fluxes and climate feedbacks associated with changes in different climate variables,
namely surface temperature, lapse rate, water vapor, cloud cover and surface albedo. Feedbacks
were calculated following procedure proposed by Wetherald and Manabe (1988).

To evaluate the model response to changes in black carbon (BC) concentration, an equilibrium
climate change simulation (10BC) has been carried out, using changes in black carbon loading
simulated by the MIT climate-chemistry model (Wang et al., 1998). Projected changes in BC are
rather small and so are forcings associated with these changes. To obtain a statistically significant
response changes in BC loading were multiplied by 10. Such an increase in BC leads to a positive
forcing of 2.4 W/m2 at the tropopause and strong negative forcing of –4.0 W/m2 at the surface
(Figure 1). In spite of such a strong cooling at the surface, surface temperature actually increases
by 1.76K in this simulation. This is explained by the vertical distribution of the BC forcing.

As was shown by Hansen et al. (1997), the effectiveness of forcing with respect to surface
warming depends on the altitude at which the forcing is applied. They carried out simulations
applying a forcing of 4 W/m2 at each layer of the model and at the surface. Results of those

Table 1. Design parameters for the MIT climate model simulations used in this study.

Simulation Type of forcing

Forcing at the
tropopaus

(W/m2)

Forcing at
the surface

(W/m2)

Surface
warming

(K)
λλλλ

K/(W/m2)

2xCO2 Doubled-CO2 concentration 3.76 0.8 2.18 0.58
0.5xCO2 Halved-CO2 concentration –3.76 –0.56 –2.14 0.57
2%S0 2% increase in solar constant 4.72 3.56 2.28 0.48
–2%S0 2% decrease in solar constant –4.72 –3.56 –2.22 0.47
ALB Increase in surface albedo –3.39 –3.85 –1.54 0.45
STRAER Increase in stratospheric aerosol

concentration
–3.92 –4.08 –1.87 0.48

10BC Change in black carbon simulated by the MIT
climate-chemistry model multiplied by 10

2.36 –4.44 1.76 0.75

LWBC Fixed longwave forcing with vertical structure
of the global and annual mean black
carbon forcing

2.36 –4.44 1.76 0.74

LWBCL3 Fixed longwave forcing with the same
changes at the top of the atmosphere
(TOA) and at the surface as in LWBC, but
with “absorbing layer” shifted to 800 hPa

2.36 –4.44 1.23 0.52

LWBCL6 Fixed longwave forcing with the same
changes at the TOA and at the surface as
in LWBC, but with “absorbing layer”
shifted to 320 hPa

2.36 –4.44 0.64 0.27
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Figure 1. Vertical distribution of (a) radiative fluxes and (b) heating rates in simulations with doubled

CO2 and simulations with “black-carbon-like” (“BC-like”) forcing.
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Figure 2. Dependence of surface air temperature increase on the altitude at which forcing was
applied, as simulated by the MIT 2D model (triangles), and the GISS AGCM (squares).

simulations are shown in Figure 2 together with the results of analogous simulations with the
MIT 2D model. Both models show a similar dependency, but the GISS model is noticeably more
sensitive to the forcings applied in the low troposphere and at the surface. The two top layers
(8 and 9) and a part of layer 7 are located in the stratosphere and, as indicated by Hansen et al.
(1977), when the forcing is applied in those layers an adjusted forcing on the tropopause is
significantly smaller than the applied forcing. Therefore, only results for simulations with
forcings in the 6 lowest layers are discussed below. The two feedbacks that show the largest
differences are lapse rate feedback and cloud feedback (Table 2). The lapse rate feedback is
negative in all simulations. It is weakest for the forcing in layer two and becomes much stronger
when the forcing is applied in the top layers. These differences to a large extent are offset by
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Table 2. Strengths of different feedbacks in simulations with 4 W/m2 forcing applied
at different heights (lapse rate, LR; water vapor, Q; clouds, CL; surface albedo, ALB).

L Height (hPa) LR Q LR+Q CL ALB L+Q+C+A

0 984 –0.34229 1.50329 1.16100 –0.13143 0.35204 1.38161
1 958 –0.27586 1.48009 1.20423 0.23215 0.30544 1.74183
2 894 –0.14481 1.44507 1.30026 0.37037 0.28929 1.95993
3 786 –0.29161 1.48904 1.19743 –0.08282 0.32935 1.44397
4 633 –0.42274 1.55814 1.13540 –0.14018 0.33824 1.33346
5 468 –0.61640 1.70413 1.08773 –0.28229 0.34565 1.15109
6 320 –0.97663 2.00795 1.03132 –0.72512 0.37552 0.68172

changes in the water vapor feedback, but the sum of these two feedbacks is still 30% larger for
the forcing in the second layer than for the forcing in layer 6. The cloud feedback is positive
when the forcing is applied in the two lowest layers and also becomes strongly negative when the
forcing is applied in the top layers.

Cloud cover decreases in all simulations. Surface warming leads to the decrease in high
clouds. The decrease in high clouds, due to their relatively small albedo and large difference
between temperature of the cloud top and surface temperature, leads to the decrease in the net
radiative flux at the top of the atmosphere (TOA) and to the negative cloud feedback. Warming
of a particular model layer causes an additional decrease in cloud cover in that layer. Thus, a
decrease of low clouds, caused by forcing at the second layer, leads to positive cloud feedback.

The feedbacks shown in Table 1 and later in the paper are calculated as changes in the
radiation balance at the tropopause associated with changes in a particular climate variable, such
as clouds or water vapor, divided by the change in surface air temperature caused by the
particular forcing. These were calculated following the procedure proposed by Wetherald and
Manabe (1988). We note that in some studies (e.g., Hansen et al., 1984; Schlesinger and
Mitchell, 1987) feedbacks are normalized by surface air temperature feedback.

Hansen et al. (1997) refer to cloud feedback associated with absorbing aerosol as the
“semi-direct” aerosol effect. Changes related to the tropospheric warming can be separated from
changes caused by surface warming in a number of ways. For example, by performing parallel
simulations with fixed surface temperature (Cook and Highwood, 2004). It also can be done
from the results shown above assuming that changes caused by warming of a particular
atmospheric layer and changes caused by surface warming are additive and that the latter are
proportional to surface temperature increase.

In Table 3 the first three columns show changes in surface temperature and radiation fluxes at
the tropopause due to changes in lapse rate and water vapor (together) and clouds. “Semi-direct”
forcings, shown in columns four and five, are calculated in the following way:

T
T

HHF
L

S

S

XL

X

L

X
∆

∆
−=

0

0

(3)

where H
L

X  is the change in radiation flux due to the change in variable X (CLD or LR+Q) in

the simulation with forcing applied at a layer L and ∆T
L

S  is the change in surface air temperature
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Table 3.  Changes in radiation fluxes at the tropopause due to changes in clouds and lapse rate and
water vapor and their fractions not related to surface warming.

∆∆∆∆Ts HLR+Q HCLD FLR+Q FCLD FSMD FCOR λλλλCOR

2.08 2.26584 –0.3253 0 0 0 4 0.52
2.77 3.11389 0.58923 0.0964 1.02244 1.11884 5.11884 0.54
3.02 3.67666 1.04652 0.38683 1.51883 1.90567 5.90567 0.51
2.24 2.52665 –0.27084 0.08651 0.07948 0.166 4.166 0.54
2.02 2.16239 –0.35792 –0.03809 –0.042 –0.08009 3.91991 0.52
1.92 2.01108 –0.63741 –0.08046 –0.33713 –0.4176 3.5824 0.54
1.55 1.59897 –1.23355 –0.08952 –0.99114 –1.08066 2.91934 0.53

in the same simulation. The “corrected” forcing is calculated as a sum of adjusted and total
“semi-direct” forcings and the model sensitivity, λ, is calculated from Equation 1. As can be seen,
sensitivity defined in such a way shows practically no dependency on forcing and is very close to
values obtained in simulations with changes in CO2, solar constant or stratospheric aerosol load.

The change in radiation fluxes caused by an increase in the loading of black carbon leads to
warming concentrated in the two lowest model layers with a maximum around 950 hPa (see
Figure 1b). This warming causes a positive feedback that is strong enough to overcome direct
cooling at the surface. As was shown by Hansen et al. (1997) and Cook and Highwood (2004),
the climate impact of the increase in BC concentration strongly depends on the vertical
distribution of black carbon.

To evaluate a dependency of the MIT model response to the vertical stratification of the
“black-carbon-like” (“BC-like”) forcing, three simulations with long wave (LW) forcing have
been carried out. In the first simulation (LWBC), LW forcing with the same vertical distribution
as an annual mean global mean forcing due to changes in BC has been used. Despite differences
in the nature as well as in spatial and temporal patterns of the forcing between simulations 10BC
and LWBC, global mean annual responses are very similar in these simulations. Forcings applied
in the other two “BC-like” simulations (LWBCL3 and LWBCL6) have the same change at the
tropopause and at the surface but the “absorbing layer” is shifted up (see Figure 1). As a result
the maximum changes in the heating are concentrated at about 800 and 320 hPa. These forcings
lead to a noticeably smaller surface warming, namely 1.23K and 0.64K instead of 1.76K.

The decrease in low clouds in the LWBC simulation (Figure 3), while smaller in magnitude
than the decrease in high clouds, is nevertheless strong enough to produce positive cloud
feedback (Table 4). The change in air temperature in the LWBC simulation (Figure 3b), while
smaller than in the simulation with forcing applied directly at the surface (SRF), has a similar
shape throughout most of the troposphere. In the other two simulations, especially in LWBCL6
simulation, the warming increases faster with height. Differences in the vertical structure of the
forcing also affect changes in the hydrological cycle. Changes in both relative humidity and
heating due to moist convection show a strong dependence on the vertical structure of the forcing
(Figure 4). Those differences are reflected in the strengths of different feedbacks (Table 3). Such
strong negative lapse rate and cloud feedbacks in a simulation with the forcing concentrated in
the upper troposphere lead to the total feedback being negative.
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Figure 3. Changes in (a) clouds and (b) air temperature in simulations with surface and “BC-like” forcings.
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Figure 4. Changes in (a) relative humidity and (b) heating rate due to moist convection in simulations
with surface and “BC-like” forcings.
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Table 4. Strengths of different feedbacks in simulations with SRF and “BC-like” forcings.

Forcing LR Q LR+Q CL ALB L+Q+C+A

LWBC –0.405 1.630 1.225  0.361 0.269 1.855
LWBCL3 –0.719 1.789 1.070 –0.134 0.294 1.230
LWBCL6 –2.253 1.827 0.574 –1.254 0.325 –0.356

Table 5. The same as Table 3, but for simulations LWBC, LWBCL3 and LWBCL6.

∆∆∆∆Ts HLR+Q HCLD FLR+Q FCLD FSMD FCOR λλλλCOR

1.78 2.48891 0.54926 0.55181 0.912128 1.463938 3.833938 0.464275
1.23 1.74422 –0.27575 0.405662 –0.025 0.380658 2.750658 0.447166
0.71 0.99252 –1.03182 0.219856 –0.88708 –0.66722 1.702776 0.416966

“Semi-direct” forcings in the last three simulations are shown in Table 5. As can be seen from
the table, if the components of the cloud feedback and the combined lapse rate and water vapor
feedbacks that are not related to surface warming are treated as forcing, Equation 1 provides a
good estimate of model sensitivity.

Comparison of the changes in precipitation show that while large-scale precipitation increases
in all simulation, convective precipitation decreases in both LWBCL3 and especially in
LWBCL6 (Figure 5). Changes in precipitation not related to increases in surface temperature
were calculated using an equation similar to Equation 3. These changes are negative for all
forcings (Table 6). Results for simulations with doubled CO2 are consistent with the findings of
Sugi and Yoshimura (2004), who showed that precipitation decreases in simulations with
increased CO2 concentration and fixed sea surface temperature.
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Figure 5. Changes in convective and large scale precipitation in simulations SRF, CO2 and three
“BC-like” simulations.

Table 6. Change in total precipitation and the fraction not related to surface warming.

Forcing Ts (K) Pr (mm/day) dPr/Prc (%) Pr (mm/day) dPr/Prc (%)

SRF 2.08 0.236 8.26 0 0
CO2 2.18 0.187 6.54 –0.065 –2.28
LWBC 1.78 0.072 2.52 –0.133 –4.66
LWBCL3 1.23 0.018 0.63 –0.124 –4.34
LWBCL6 0.71 –0.013 –0.46 –0.095 –3.34
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4. CHANGING SENSITIVITY OF THE MIT MODEL

The sensitivity of the MIT climate model is varied by changing the strength of the cloud
feedback (Hansen et al., 1993; Sokolov and Stone, 1998). Namely, the cloud fractions used in
the radiation calculation are calculated as:

C = C0 ⋅ (1.0 + k ⋅ ∆Tsrf), (3)

where C0 is the cloud cover calculated by the model, and ∆Tsrf is the difference in global mean
surface air temperature from its value in a control climate simulation. By changing the parameter
k, different sensitivities are obtained. For example, with k equal to 0.04 and –0.03, the
sensitivities to the CO2 doubling are 1.4 and 4.1K, respectively. The natural sensitivity of the
model (that is, for k = 0) is 2.2K.

Use of Equation 3, however, leads to the simultaneous increase/decrease in both high and low
clouds, which, as mentioned above, have effects of opposite sign on climate sensitivity. As such,
if Equation 3 with k = –0.03 is applied to low and middle clouds only, the model sensitivity
increases up to 5.0K. On the other hand, if only high clouds are changed then the sensitivity
decreases to 1.9K. And finally, if k = –0.03 is used for low and middle clouds and k = 0.03 for
high clouds, the sensitivity of the model becomes 6.9K.

Changing high and low clouds in opposite directions allows for obtaining the same sensitivity
with smaller values of k compared to using the same value of k for all clouds. As such, for
sensitivity of 4.1K the value of k = –0.02, instead of –0.03, is required. It decreases the artificial
changes in cloud cover in simulations with different sensitivities.

Figure 6 shows a comparison of the results from the doubled-CO2 equilibrium simulations
using the versions of the MIT model with different sensitivities with the results obtained in
similar simulations with different GCMs (Meleshko et al., 1999; Senior and Mitchell, 1993;
Washington and Meehl, 1993; Yao and Del Genio, 1999). Results from the simulations in which
the sensitivity of the MIT model was changed using the same value of parameter k for all clouds
are shown by diamonds. Triangles indicate result from the simulations in which k of opposite
signs were used for high and low clouds. The results of GCMs are shown by squares. Overall the
latter way of varying sensitivity of the MIT model produces better agreement with GCMs and
was used in the simulation discussed below.

The strengths of different feedbacks for four versions of the MIT model are shown in Table 7.
Not surprisingly, changes in sensitivity are mainly associated with differences in cloud feedback.
Changes in the lapse rate feedback to large extent are compensated by changes in the water vapor
feedback. Such compensation between lapse rate and water vapor feedbacks in the doubled-CO2

simulations is a feature shown by practically all models (e.g., see Colman, 2003).

Table 7. Feedbacks in doubled-CO2 simulations with different climate sensitivities.

∆∆∆∆Teq LR Q LR+Q CL ALB

1.39 –0.052 1.365 1.313 –1.030 0.334
2.18 –0.195 1.488 1.293 0.068 0.258
4.50 –0.289 1.577 1.288 0.959 0.241
7.45 –0.308 1.633 1.325 1.208 0.311
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In Figure 7, the climate feedbacks in four versions of the MIT model are compared with
feedbacks in a number of GCMs. Data for different GCMs reported in Colman (2003) were used.
Individual feedbacks in all four simulations, with the exception of cloud feedback in the
simulation with sensitivity 1.4K, fall in the range shown by GCMs.

5. MODEL SENSITIVITY TO CO2 INCREASE AS A MEASURE OF MODEL
SENSITIVITY TO OTHER FORCINGS

Published results of the simulations with different GCMs do not provide a definitive answer
as to whether models’ sensitivities to increase in CO2 concentration (SCO2) reflect sensitivities to
other forcings. Models’ responses to changes in solar constant and surface albedo are in general
consistent with their sensitivities to changes in CO2 concentration. Comparison of simulations
with changes in black carbon or ozone is complicated by differences in simulation design. As
such, both Hansen et al. (1997) and Cook and Highwood (2004) performed simulations with
changes in black carbon; however, magnitudes and vertical structures of those changes were
different. Joshi et al. (2003) compared responses of three GCMs (UREAD, ECHAM4 and LMD)
to an increase in CO2 concentration, solar constant and upper tropospheric ozone. The
magnitudes of changes were chosen such as to produce a forcing of 1 W/m2 in all cases. For all
three cases the strongest response to forcing was produced by the LMD model, and the weakest
response by the UREAD model. The differences in sensitivity between models, however, depend
on forcing. The ratios of surface warming simulated by the UREAD and LMD models to that
simulated by the ECHAM4 for different forcing are shown in Table 8. The ratio of sensitivities
to ozone is smaller than the ratio of sensitivities to CO2 for the UREAD model, while larger for
the LMD model. Overall, however, ratios for a given model differ by less than 20%.

To see how well sensitivities of the different versions of the MIT model to the CO2 doubling
reflect their sensitivities to other forcings, five additional simulations with sensitivities given in
the first row of Table 9 have been carried out for each forcing. Table 9 shows ratios of the
surface air temperature (SAT) changes in those simulations to the SAT change in the simulation
with a standard sensitivity for each forcing.

Sensitivity to CO2 forcing serves as a good measure for sensitivities to the 2%S0 and SRF
forcings but noticeably overestimates sensitivities to forcings causing a decrease in surface
temperature (–2%S0, 0.5xCO2, ALB and STRAER; see Table 1). As such, the ratio of the SAT
changes in the STRAER simulation with SCO2 = 7.45K is about half as large as in the
corresponding 2xCO2 simulation. High sensitivities to changes in CO2 concentration are
primarily caused by large positive shortwave cloud feedback. A significant increase in sea ice

Table 8. Ratios of surface air temperature changes in the simulations
 with UREAD and LMD GCMs to those in the simulations with ECHAM4.

Forcing UREAD/ECH LMD/ECH

CO2 0.47 1.38
S0 0.38 1.30
O3 0.41 1.62
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Table 9. Ratios of SAT changes in the simulations with low and high
sensitivities to those in the simulations with standard sensitivity.

SCO2 0.48 1.39 4.50 5.62 7.45
2xCO2 0.22 0.63 2.06 2.58 3.42
SRF 0.22 0.61 1.93 2.60 3.29
2%S0 0.21 0.6 1.96 2.39 3.39
–2%S0 0.20 0.59 1.53 1.69 1.83
0.5xCO2 0.19 0.59 1.41 1.69 1.82
ALB 0.20 0.59 1.44 1.56 1.82
STRAER 0.16 0.51 1.41 1.52 1.65
10BC 0.19 0.61 1.81 2.15 2.40
LW_BC 0.22 0.61 1.80 2.13 2.47

and snow cover in the last four simulations decreases the effect of changes in clouds on
shortwave radiation and therefore decreases the efficiency on an additional cloud feedback. As a
result the range of sensitivities to such forcing is narrower than the range of sensitivities to
changes in CO2 concentration.

Since differences in sensitivities between different versions of the MIT climate model are
entirely due to differences in cloud feedback, the MIT model will exaggerate difference in
sensitivities to positive and negative forcing.1 At the same time, differences in the strength of
cloud feedbacks also account for large part of differences in climate sensitivities between
different GCMs (Cess et al., 1990; Colman, 2003), and the interaction between cloud and surface
albedo (discussed above) might be relevant for other models.

As shown in Section 3, changes in the radiation fluxes associated with changes in different
climate variables, and therefore strengths of different feedbacks in “BC-like” simulations, only
partially relates to the surface warming and partially to the warming at the height of the
“absorbing” layer. The component of feedbacks not related to surface warming are rather close
in magnitude in the simulations with different SCO2 (Table 10) making the range of the model’s
sensitivity to “BC-like” forcings smaller than for CO2 forcing. Model sensitivities calculated
from Equation 1 using “corrected” forcing are again close to the sensitivities in corresponding
simulations with CO2 or direct surface forcings.

Changes in precipitation not related to the surface warming (see Section 3) also show very
weak dependence on SCO2, as a result the total changes in precipitation depend linearly on the
increase in surface temperature (Figure 8).

Table 10. Ratios of “corrected” forcings in the “BC-like” simulations with
low and high sensitivities to those in the simulations with standard sensitivity.

SCO2 0.48 1.39 4.50 5.62 7.45
LWBC 1.01 0.98 0.89 0.82 0.75
LWCBL3 0.8 1 0.87 0.79 0.75
LWBCL6 0.77 0.77 0.92 0.89 0.79

                                                  
1 As a result the MIT model might underestimate impacts of decrease in solar constant or increase in stratospheric

aerosol due to volcanic eruptions. It should be kept in mind that forcings used in the above described simulations
(see Table 1) are much stronger than the observed ones. For the weaker forcings, this effect will much weaker.
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Figure 8. Changes in precipitation in “BC-like” simulations with different sensitivities.

6. CONCLUSIONS

Simulations with the MIT climate model show, similar to the findings of previous studies
(e.g., Hansen et al., 1997; Cook and Highwood, 2004), a strong dependence of the model
response on vertical structure of the imposed forcing. Heating in the lowest 1500 meters
produces much stronger surface warming than an equivalent heating of the upper layers. Such
dependency of surface warming on the altitude of heating is explained by differences in cloud
and joint water vapor/lapse rate feedbacks. If, however, changes in radiation fluxes associated
with the above surface warming are treated as a “semi-direct” forcing, then the total forcing
provides a good measure for the increase in surface temperature.

Simulations with versions of the MIT model with different strengths of cloud feedback show
that model sensitivity to the increase in CO2 concentration reasonably well characterizes the
model’s sensitivity to other positive forcing with similar vertical structure. In the case of the
forcings leading to surface cooling, an increase in the strength of cloud feedback is less efficient
due to an increase in sea ice extent and snow cover, and associated with that, an increase in
surface albedo. Since differences in cloud feedback are one of the main reasons for the
differences in sensitivities between different GCMs, this implies that the range of the models’
responses to such forcing as increase in stratospheric aerosol or decrease in solar constant might
be narrower that the range of responses to CO2 increase.

Sensitivity to changes in the CO2 concentration is defined by the strength of climate feedbacks
related to surface warming. A distinguishing feature of the simulations with “black-carbon-like”
forcings is a presence of additional feedbacks related to the warming at the location of
“absorbing” layer (“semi-direct” forcing). Therefore, sensitivities defined through doubled-CO2

simulations may not provide good estimates for the sensitivities to forcing with different vertical
structures. As such, the range of the MIT model responses to changes in black carbon
concentration and “BC-like” forcings is also smaller than to changes in CO2. The latter is
explained by “semi-direct” forcings having similar magnitude in the simulations with different
strengths of cloud feedback. Large differences, however, occur for values of SCO2 outside of the
range produced by existing GCMs.

Acknowledgment: I would like to thank Rob Colman for providing data on the feedbacks in different
GCMs and Chris Forest for useful comments.
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