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Constraining Uncertainties in Climate Models Using Climate Change Detection Techniques

Chris E. Forest1†, Myles R. Allen2†, Peter H. Stone1 and Andrei P. Sokolov1

Abstract

Different atmosphere-ocean general circulation models produce significantly different projections of
climate change in response to increases in greenhouse gases and aerosol concentrations in the
atmosphere. The main reasons for this disagreement are differences in the sensitivities of the models
to external radiative forcing and differences in their rates of heat uptake by the deep ocean. In this
study, these properties are constrained by comparing radiosonde-based observations of temperature
trends in the free troposphere and lower stratosphere with corresponding simulations of a fast, flexible
climate model, using techniques based on optimal fingerprinting. Parameter choices corresponding
either to low sensitivity, or to high sensitivity combined with slow oceanic heat uptake are rejected.
Nevertheless, a broad range of acceptable model characteristics remains, such that climate change
projections from any single model should be treated as only one of a range of possibilities.

Climate change detection studies are conducted by running a climate model under a set of
prescribed forcings and then using statistical techniques to determine whether the simulated
pattern of climate change is distinguishable in the observations at some level of confidence
[e.g., references 1, 2, 3, 4, 5]. To date, such studies have not attempted to quantify how
a positive detection result relates to our level of confidence in projections of future climate.
In part, this is because the detection diagnostics are not directly linked to the properties of the
climate system known to be important for climate-change projections. The two most important
of these properties are the equilibrium climate sensitivity to changes in radiative forcings [6]
and the rate of heat uptake by the deep ocean [7, 8, 9]. Together, these properties determine
the decadal-to-century timescale response to a change in forcing.

This paper presents a method for constraining these properties by comparing the modeled
response to anthropogenic forcings over the 1961–1995 period against climate observations of
this period. One key aspect of our study is that we can vary both our model’s climate sensitivity
(by varying the cloud feedback) and its rate of mixing heat into the deep ocean, and thus determine
how the comparison with observations depends on these factors. This would not be possible with
the most sophisticated models available, the coupled atmosphere-ocean general circulation models
(AOGCMs), owing to their computational requirements and fixed representation of physical
processes. A second key aspect is the use of an objective approach to model-data comparison,
based on the “optimal fingerprinting” algorithm used in the detection of climate change, to quantify
likely ranges for these properties in probabilistic terms. Other estimates of such constraints have
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been subjective or qualitative [e.g., see 10, 11, 12]. For example, the Intergovernmental Panel
on Climate Change (IPCC) estimates that the climate sensitivity, S, lies in the range of 1.5˚C to
4.5˚C, but the IPCC does not specify the probability that the sensitivity lies in this range [11].

To determine constraints, we use the MIT 2D statistical-dynamical climate model [8, 9] in
conjunction with estimates of climate variability from the control integration of the Hadley Centre’s
second-generation coupled AOGCM, HadCM2 [13]. The MIT 2D model consists of a zonally-
averaged version of the Goddard Institute for Space Studies (GISS) Model II atmospheric general
circulation model [14] coupled to a Q-flux mixed-layer diffusive ocean model. The current version
of the model has 24 latitude bands ( ∆φ  = 7.826˚) and 11 vertical layers with 4 layers above the
tropopause so that the response to changes in stratospheric ozone concentrations can be modeled
to a first approximation. The model uses the GISS radiative transfer code, which accounts for all
radiatively important trace gases as well as aerosols. The surface area of each latitude band is
divided into a percentage of land, ocean, land ice, and sea ice with the surface fluxes computed
separately for each surface type. This allows for appropriate treatment of radiative forcings
dependent on underlying surface type such as anthropogenic aerosols. Similar to AOGCMs but in
contrast with energy balance models, the model contains full representations of the atmosphere’s
moisture, heat, and momentum cycles, and thus includes the most important of the nonlinear
dynamical interactions between components of the atmospheric system [8].

The climate sensitivity, S, of the MIT model can be varied by varying the cloud feedback [8].
Differences in cloud feedback appear to be the primary cause of the different climate sensitivities of
AGCMs [15, 16]. The global-mean vertical thermal diffusivity below the ocean’s mixed layer, Kv,
is an external parameter in the MIT model, and thus the rate at which the model mixes heat into the
deep ocean can be varied by changing Kv. The global response of a given 3D coupled ocean-
atmosphere GCM for different forcings can be reproduced accurately by the MIT 2D model with
an appropriate and unique choice of these two parameters (Fig. 1). Published values of 3D GCM
model sensitivities range from 1.9˚ to 5.2˚C [11, 16]. Comparisons between time-series of
transient climate changes calculated with the MIT model and with 3D AOGCMs show that the
AOGCM’s equivalent vertical diffusivities range from 0.0 to 25.0 cm2/s (Fig. 1).

The MIT model is forced with changes in greenhouse gas, anthropogenic aerosol, and
stratospheric ozone concentrations to produce a simulated climate record for the 20th century.
The greenhouse gas and sulfate aerosol forcings are the same as those used in the HadCM2
“GSO” experiments [5]. The direct impact of sulfate aerosols is accounted for by increasing the
surface albedo [17]. This increase corresponds to a globally averaged forcing of – 0.5 W/m2 in
1986 as compared to pre-industrial times. The version of the MIT 2D model with fully interactive
chemistry [18] can handle aerosols in a more realistic way: we used this simple albedo-based
parameterization for compatibility with previous studies. This also reduces the computational cost
of the large number of runs that had to be performed because the climate-chemistry version of the
MIT model is much more computationally demanding than the one used in this study. The changes
in ozone concentrations are prescribed according to the GISS ozone concentration data set [1]. Not
considered are the effects of changes in tropospheric ozone, which could partially offset aerosol
effects. We also do not explicitly consider the effects from natural forcings, but the diagnostic
used was specifically tailored by references [5, 19], to limit their impact.
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Temperature increase at time of doubling for 1%/ yr CO2 increase

Figure 1. Response in the global mean surface temperature at the time of doubling of CO2 for simulations with
1% per year increase in CO2 concentration (contours). The S and Kv values for six AOGCMs are also shown
(diamonds). For a given AOGCM, the model sensitivity was typically obtained from the literature and a set of
MIT 2D model runs were performed to estimate the value of Kv that gave a transient response matching published
AOGCM experiments with prescribed forcing, usually a 1% per year increase in CO2 concentration. The results for
the GFDL, MPI, and NCAR W&M models are described in ref. 8. For the HadCM2 model, the sensitivity and
transient run data were obtained through personal communications [6]. The sensitivity for the NCAR CSM model
was obtained through personal communication and the transient run data were taken from ref. 29. The parent GISS
model is also included, although its ocean component is a Q-flux mixed-layer diffusive model similar to the ocean
component of the MIT model.

We compare the height-latitude pattern zonal-mean temperature changes in the troposphere and
lower stratosphere as simulated by the MIT 2D model with similarly-estimated trends from the
UKMO radiosonde dataset [20]. The radiosonde data were used to calculate annual mean, zonal
mean temperature fields on a latitude-height grid (Fig. 2). Because data were unavailable for certain
regions and times, a missing-value mask was obtained for both space and time. The MIT model
results were regridded to the observational grid, and then sampled using the observational data
mask to compute the 1961–1980 and 1986–1995 period means. Thus, the fingerprint pattern is
the latitude-height pattern of temperature change between the two period means. This fingerprint
matches that used in the Hadley Centre study [5] so results can be compared. The averaging
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periods were chosen to accommodate the 1958–1995 record of radiosonde data. Additionally,
the averaging periods exclude the years following major volcanic eruptions, 1963–4 and 1992,
to reduce their effect on the computed averages [see 19].

We produce a large number of simulations spanning the two-dimensional parameter space
(S and Kv), and evaluate the degree of correspondence between individual simulations and the
observational record using a goodness-of-fit criterion (noise-weighted residual sum of squares)
identical to that used in optimal fingerprinting [2, 19, 21]. In this manner, a location in the model’s
parameter space is identified that best fits the observational record. More importantly, by varying
parameters about this best fit, we can determine which parameter-combinations lead to simulations
that are inconsistent with observations at a given level of confidence, and thereby assign a
confidence region to the parameters that determine the model’s climate properties.

The “noise” in this problem is the natural unforced fluctuations of the climate system. Internal
variability in the MIT 2D model is somewhat lower than typical of AOGCMs (hence our use of an
AOGCM for uncertainty analysis), but to further reduce noise in the predicted response to the
climate forcings we generated four-member ensembles. The model runs were started in 1860 with
the prescribed forcing and run through 1995. At the beginning of 1940, the model was stopped
and its state perturbed by adding deviations from a control run to create the additional members of
the ensemble. The model perturbations were created from the model state output every 10 years
from a control run with present-day fixed conditions. Three perturbation runs were started in 1940
for a total of four runs with the given forcing and parameter settings. Our results are based on 61
different pairs of parameter choices, and thus required a total of 18,544 years of simulated climate
changes: hence, the need for an efficient model. The characteristics of climate noise are estimated
from the control run of the HadCM2 model, one of the few AOGCMs for which extended control
integrations are currently available [22]. Although there is no data available for checking the
adequacy of this model for simulating the variability of our chosen fingerprint, its variability on
shorter time scales compares well with observed variability [22, 23].

We start by defining the estimated residual, ũ , for a particular choice of parameter values,
S and Kv, as follows:

˜ – ˜u y xS K S Kv v, ,( ) = ( ) (1)

where y is the vector of observations over a given period and x̃(S, Kv) is the ensemble-mean
simulation of the MIT 2D model corresponding to those parameter values. Following standard
practice in climate change detection, we assume the dominant contribution to this residual is
internal climate variability. Those studies that have considered the impact of observational error
on these scales find its effect to be relatively minor [24], and the diagnostic used was specifically
chosen to minimize the impact of other external climate forcings such as solar variability and
volcanic eruptions. Because variability simulated by the HadCM2 model is demonstrably too low
on small spatial scales [23, 25], both y and x are projected onto the first κ empirical orthogonal
functions (EOFs) of the control prior to computing ũ . We now define the noise-weighted residual
sum-of-squares, r̃  2  by:

˜ ˜ ˆ ˜r CT
N

 2  = −u  u1 (2)

where ĈN
 1−  is the estimated inverse of the noise covariance matrix obtained from successive
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segments of “pseudo-observations” extracted from the control run for the climate model [19].
The EOFs were estimated from a separate portion of the control run, which is essential to avoid
“artificial skill.”

If there are m free parameters to be adjusted, we expect r̃  2  at the unknown location of the true
parameter values to exceed r̃  2  at the observed minimum according to

∆  2r̃  ~ m Fm,ν , (3)

where ν is the degrees of freedom of the estimate ĈN , discussed at length in [19]. Mapping r̃  2  as
a function of S and Kv, and comparing ∆  2r̃  with the standard F-distribution [26] thus provides a
means of assigning objective confidence intervals to these parameters.

We carried out simulations for 1860 to 1995, varying S from 0.4 to 11.0 K and Kv from 0.0
to 160.0 cm2/s. We then calculated the fingerprint diagnostic and r̃  2  statistics by comparison
with the radiosonde record. Simulated patterns of climate change are shown (Fig. 2) for three
versions of the MIT model that correspond to relatively high, medium, and low responses to a
given forcing. The high-response case corresponds to high S and low Kv, and vice versa for the
low response. The response shows cooling in the stratosphere associated mainly with a prescribed
decrease in stratospheric ozone concentrations as well as upper-tropospheric tropical warming and
high-latitude warming associated with increased greenhouse gas concentrations. The response also
shows reduced warming in the Northern Hemisphere associated with cooling from aerosol changes
as compared to the response with no aerosol changes (not shown). In all, the response is
qualitatively similar to zonally averaged results from AOGCMs [5]. As further evidence that the
zonally averaged model provides a reliable simulation, we note the similarity between the 2D
model’s fingerprint and that of the Hadley Centre’s coupled AOGCM [see Fig. 2 in ref. 5].
When the MIT model uses the ozone data from the HadCM2-GSO experiment and the appropriate
S and Kv to match HadCM2, the pattern correlation and congruence [5] between the MIT and
HadCM2-GSO fingerprints is 0.8.

The distribution of r̃  2  (Fig. 3) indicates that we can discriminate between regions of parameter
space using this diagnostic, but the constraint is not strong enough to place clear bounds on S and
Kv in all directions. The shaded regions represent the 80th, 95th, and 99th percentile confidence
regions (corresponding to ∆  2r̃  = 3.7, 7.8, and 13.9, respectively) and indicate that two regions
can be rejected with 95% confidence. The first is the high-response region at the upper left, which
corresponds to both high S and low Kv. The second region is for S less than 0.6 K for all values
of Kv. We examined the dependency of this distribution on κ, to remove possible effects from
small-scale features of variability in higher order EOFs. After examining the EOF structures, we
truncated at κ = 6; this truncation includes the patterns of variability that contain the largest spatial
scales and are most likely to be sampled well by the HadCM2 control run. This change in κ does
not affect the low-response rejection region but does reduce somewhat the area of rejection for
high-response cases (Fig. 3B). We also estimated the r̃  2  distribution by using only lower
tropospheric temperature changes (lowest 3 layers) and found little difference in the results (not
shown). Thus, the results do not depend strongly on reproducing the observed cooling in the
stratosphere. This is reassuring because, on physical grounds, we would expect this stratospheric
cooling to be almost independent of S and Kv (being primarily a radiative effect). Moreover, we
have grounds to distrust the simulation of stratospheric variability in HadCM2 [23].
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Figure 2. Vertical patterns of temperature change from 1961–1980 to 1986–1995 simulated by three versions of
the MIT model and from radiosonde observations (D). The three versions correspond to relatively high (S = 4.5 K,
Kv = 0.16 cm2/s) (A), medium (S = 3.0 K, Kv = 2.5 cm2/s) (B), and low (S = 1.6 K, Kv = 40.0 cm2/s) (C) responses
of the MIT model. Contour interval is 0.1 K and negative contours are dashed.
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Figure 2 (continued). Vertical patterns of temperature change from 1961–1980 to 1986–1995 simulated by the MIT
model (C) and from radiosonde observations (D). The above simulation corresponds to relatively low (S = 1.6 K,
Kv = 40.0 cm2/s) responses of the MIT model. Contour interval is 0.1 K and negative contours are dashed.
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Using the full latitude-height pattern of temperature changes, only the NCAR W&M model is
rejected with 95% confidence. All other 3D AOGCMs (Fig. 1) are within the region of plausible
parameters. Previous detection studies [4, 5] have indicated that a positive detection implies a
non-zero climate sensitivity. Our result goes a step further by rejecting the possibility of negative
feedbacks strong enough to cause S to be less than 1.2 K (at the 80% confidence level) or 0.6 K
(at the 95% confidence level). The utility of these constraints is illustrated further when we
consider the uncertainty of the climate system response to future forcings. Projections of future
climate corresponding to the acceptable parameter values still vary considerably, as illustrated in
Fig. 1. For example, for the scenario in which CO2 increases 1% per year, comparison of
Figs. 1 and 3A indicates an 80% probability that global warming, at the time of doubling,
would range from 1.1˚ to 2.8˚, and a 95% probability that it would range from 0.5˚ to 3.3˚.

We note that uncertainty in the tropospheric aerosol forcing remains substantial (0.0 to
−2.5 W/m2 when possible indirect effects are included [11]) and was not addressed here.
We have also not explicitly considered the possible influence of natural external forcings, although
the diagnostic used was designed to minimize their impact by focusing on decadal means and
excluding years contaminated by volcanic eruptions. In using ∆  2r̃  statistics to assign confidence
intervals to model parameters, we are assuming that the statistical properties of climate variability
simulated by the HadCM2 model are both accurate [23] and independent of the parameters being
estimated. This is clearly a simplification because we have reason to believe on physical grounds
that a high-S, low-Kv climate would display greater variability than a low-S, high-Kv climate.
Given, however, the uncertainties inherent in estimating climate variability from an AOGCM,
quantifying the dependence of this variability on parameters is currently unfeasible.

These caveats indicate that our estimate of the uncertainty in S and Kv may be too low.
Conversely, by confining attention to the 35-year period for which atmospheric observations
are available, and not making use of the longer surface temperature record, we may be giving a
somewhat inflated estimate of these uncertainties. In a complementary study by Allen et al. [27],
surface observations were directly compared with GCM simulations and the estimates of
uncertainty were interpreted in terms of simple models, rather than by explicitly varying the
simulation model, as here. As a result, that study does not draw conclusions concerning climate
properties but focuses on the implications of the observed signal for the transient response under
a specific forcing scenario for the next 50 years.

Finally, Fig. 3 illustrates that our model’s response has distinct regions in which the statistics
vary smoothly, albeit with considerable noise (i.e., multiple minima within the acceptable region).
However, the sharp transition from the medium- to high-response cases suggests that the linearity
assumption behind standard statistical models, including ours, will not be valid if the “true” climate
system properties lie near such a border. Indeed, owing to an amplification by the ice-albedo
feedback [28], the model response shows a marked change in southern mid-latitudes that alters the
fingerprint and consequently increases r̃  2  values. Only if the “true” climate system behavior is far
from such a “border” in Fig. 3, will the assumption of Gaussian statistics be appropriate. Also, the
position of this “border” is dependent on the assumed aerosol forcing, uncertainty in which was
not considered here. Our results clearly emphasize the need to estimate the location of the “true”
climate system in this two-dimensional space.
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Figure 3: Dependence of r̃  2  (contours) on climate sensitivity (S) and oceanic heat uptake (Kv) for the model
response to forcing as compared to observations for κ = 12 (A) and 6 (B). Model runs were performed at parameter
locations shown by the + symbol. Contours extending to the boundary are based on model runs outside this region.
Contour interval below 15 is 1; above 20 it is 20. The shaded regions designate the boundaries of the 80th, 95th,
and 99th percentile regions corresponding to ∆  2r̃  values of 3.7, 7.8, and 13.9 respectively. This difference is with
respect to the minimum r̃  2  value of 8.2 at Kv = 20.0 cm2/s and S = 3.0 K. In each figure, all estimates of r̃  2  use
the same number of EOFs in the comparisons with observations. The truncation at 12 EOFs was chosen to match
ref. 5. We also show the results with κ = 6 that indicates the shape of the rejection region does not strongly depend
on the truncation number. Both observations and model data are weighted by the mass of the respective layers, which
reduces the effect of stratospheric variability on the EOF structure [19].
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