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CONSTRAINING CLIMATE MODEL PARAMETERS
FROM OBSERVED 20TH CENTURY CHANGES

Chris E. Forest∗, Peter H. Stone, and Andrei P. Sokolov

Abstract

We present revised probability density functions for climate model parameters (effective
climate sensitivity, the rate of deep-ocean heat uptake, and the strength of the net aerosol forc-
ing) that are based on climate change observations from the 20th century. First, we compare
observed changes in surface, upper-air, and deep-ocean temperature changes against simu-
lations of 20th century climate in which the climate model parameters were systematically
varied. The estimated 90% range of climate sensitivity is 2.to 5. K. The net aerosol forcing
strength for the 1980s has 90% bounds of -0.70 to -0.27 W/m2. The rate of deep-ocean heat
uptake corresponds to an effective diffusivity,Kv , with a 90% range of 0.04 to 4.1 cm2/s.
Second, we estimate the effective climate sensitivity and rate of deep-ocean heat uptake for
11 of the IPCC AR4 AOGCMs. By comparing against the acceptable combinations inferred
by the observations, we conclude that the rate of deep-oceanheat uptake for the majority of
AOGCMs lie above the observationally based median value. This implies a bias in the pre-
dictions inferred from the IPCC models alone. This bias can be seen in the range of transient
climate response from the AOGCMs as compared to that from theobservational constraints.
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1 INTRODUCTION

The recognition that anthropogenic activity is causing global warming (Houghtonet al., 2001;
Solomonet al., 2007) has emphasized the importance of developing climatemodels with predictive
capability. In recent decades considerable effort has beendevoted to evaluating state-of-the-art
climate models from this point of view. A good summary of thiswork is given in Chapter 8 of the
latest IPCC report (Randallet al., 2007). Much of the work has focused on evaluating the models’
ability to simulate the annual mean state, the seasonal cycle, and the inter-annual variability of
the climate system, since good data is available for evaluating these aspects of the climate system.
However good simulations of these aspects do not guarantee agood prediction. For example,
Stainforthet al. (2005) have shown that many different combinations of uncertain model sub-grid
scale parameters can lead to good simulations of global meansurface temperature, but do not lead
to a robust result for the model’s climate sensitivity.

A different test of a climate model’s capabilities that comes closer to actually testing its predic-
tive capability on the century time scale is to compare its simulation of changes in the 20th century
with observed changes. A particularly common test has been to compare observed changes in
global mean surface temperature with model simulations using estimates of the changes in the
20th century forcings. The comparison often looks good, andthis has led to statements such as:
”...the global temperature trend over the past century ....can be modelled with high skill when both
human and natural factors that influence climate are included” (Randallet al., 2007). However the
great uncertainties that affect the simulated trend (e.g.,climate sensitivity, rate of heat uptake by
the deep-ocean, and aerosol forcing strength) make this a highly dubious statement. For example, a
model with a relatively high climate sensitivity can simulate the 20th century climate changes rea-
sonably well if it also has a strong aerosol cooling and/or too much ocean heat uptake. Depending
on the forcing scenario in the future, such models would generally give very different projections
from one that had all those factors correct.

There have in recent years been a number of studies using the observed 20th century tempera-
ture to calculate probability density functions (PDFs) forthe above mentioned uncertain parame-
ters (Andronova & Schlesinger, 2001; Forestet al., 2002, 2006; Knuttiet al., 2003). A meaningful
test of a model’s capabilities can be provided by comparing properties of different state-of-the-art
models with their values, as implied by 20th century changes. Forestet al. (2006) have presented
such a comparison for the models used in the IPCC TAR but not for those models used in the IPCC
AR4. Here, we present an update of the Forestet al. (2006) results, in which we use the 20th cen-
tury observations to constrain the effective climate sensitivity rather than the equilibrium climate
sensitivity, while simultaneously constraining the oceanheat uptake and aerosol forcing; and we
also now analyze 11 of the IPCC 4AR models for which the necessary data is available. Recent
improvements made in the climate model have caused the model’s effective and equilibrium sen-
sitivities to differ significantly from each other when the climate sensitivity is large. The effective
sensitivity is obviously more relevant for describing 20thcentury changes. Section 2 describes the
version of the MIT climate model used in the present study, Section 3 describes the method for
constraining climate model parameters, Section 4 gives theresults, and Section 5 summarizes and
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discusses the results.

2 MIT 2D CLIMATE MODEL

The model used in this study is the climate component of the MIT Integrated Global System
Model, Version 2 (Sokolovet al., 2005). This model is an updated version of the model described
in Sokolov & Stone (1998). Here we give a brief summary of the model and of the changes made
since Forestet al. (2006)

The model consists of a zonally averaged atmospheric model coupled to a mixed layer Q-flux
ocean model, with heat anomalies diffused below the mixed layer. The atmospheric model is
derived from the Goddard Institute for Space Studies (GISS)Model II general circulation model
(GCM) (Hansenet al., 1983) and uses parameterizations of the eddy transports ofmomentum,
heat and moisture by baroclinic eddies (Stone & Yao, 1987, 1990). The model uses the GISS
radiative transfer code which contains all radiatively important trace gases as well as aerosols. The
surface area of each latitude band is divided into fractionsof land, ocean, land-ice and sea-ice,
with the surface fluxes computed separately for each surfacetype. The version used here has 4
degree latitudinal resolution and 11 layers in the vertical. The zonal averaging and the relatively
low meridional and vertical resolution are necessary to make the model computationally efficient
enough so that we can carry out simulations totalling hundreds of thousands of years, as required
by our methodology (see next section). The ocean mixed layermodel and the thermodynamic
sea-ice model have 4 degree by 5 degree latitude-longitude resolution and are described by Hansen
et al. (1984).

The climate sensitivity of the MIT model can be varied by changing the strength of the cloud
feedback (Sokolov, 2006), differences in which have been shown to be the main reason for the
differences in model climate sensitivity between different AOGCMs (e.g., Cesset al., 1990; Col-
man, 2003). The rate of mixing thermal heat anomalies into the deep ocean is controlled by the
global mean value of the vertical diffusivity coefficient for mixing anomalies (Kv ). Sokolov &
Stone (1998) and Sokolovet al.(2003) have shown that the large-scale response of a given coupled
atmosphere-ocean GCM (AOGCM) to forcings typical of the 20th and 21st century can be dupli-
cated by the MIT 2D model with an appropriate choice of these two parameters for any scenario.
This ability to mimic the AOGCMs is what allows us to use the MIT 2D model to explore how
consistent different AOGCMs are with observed 20th centurytemperature changes.

The method for changing cloud feedback in the model has been changed from the method used
previously. In the earlier versions of the model the cloud cover at all levels was changed by a fixed
fraction, which depended on the changes in global mean surface temperature (Sokolov & Stone,
1998). In the present version high cloud covers and low cloudcovers are changed in opposite
directions by a constant factor, which is again dependent onchanges in the global mean surface
temperature. The new method is described by Sokolov (2006),who shows that this method is in
better agreement with changes simulated by AOGCMs, and doesnot change the 2D model’s ability
to mimic global scale temperature changes simulated by AOGCMs.

3



Change of Annual Mean Global Mean SAT (C)

100 200 300 400 500

 Years from start of simulation

1.00

2.00

3.00

4.00

5.00

6.00

7.00

 D
eg

re
e 

C
en

ti
g
ra

d
e

S=5.0 fixed Z=110

S=5.0 with CLM

S=5.0 without CLM

S=7.0 fixed Z=110

S=7.0 with CLM

S=7.0 without CLM

Figure 1: Global-mean surface air temperature in simulations by MIT2D climate model with
(blue) and without (green) the CLM land-surface model for aninstantaneous doubling of CO2
concentration. The response by an energy balance model witha 110 meter deep ocean mixed-layer
is shown by thin black line.

The most significant change that has been made in the current version of the MIT 2D climate
model is the replacement of the old GISS land surface scheme by the Community Land Model
(CLM2.1) described by Bonanet al. (2002). (See Schlosseret al. (2007) for the description of
the coupling to the 2D model.) This improved the simulation of evaporation and removed the
tendency of the land model to be too hot in summer, due to excessive evaporation in spring causing
the land to dry out. This was also a problem in the parent GCM. However the slower response of
the land evaporation to warming in the new model significantly altered the transient response of
the IGSM to an external forcing.Figure 1 shows changes in surface air temperature in simulations
with an instantaneous doubling of CO2 concentration. Whileevaporation from land is too small to
directly affect the global surface energy budget in a significant way, a small rate of land evaporation
response to surface warming leads to a delay in the increase of atmospheric water vapor. This, in
turn, causes slower warming by reducing the incoming longwave radiation at the surface.

The differences in the response to an external forcing between the two versions of the 2D model
result in different relations between equilibrium (Seq ) and effective (Seff ) climate sensitivities.
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Effective vs. Equilibrium Climate Sensitivity
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Figure 2: Comparison of effective and equilibrium climate sensitivities for the MIT 2D climate
model with (blue diamonds) and without (red triangles) the CLM land-surface model. The three
values for each equilibrium sensitivity correspond toKv equal to 0.25, 2.25, and 6.25 cm2/s. The
red and blue lines are the averages of these three values. Theblack line indicates where the two
sensitivities are equal.

Effective sensitivity is defined asSeff = F2x

λeff
, whereF2x is the forcing due to CO2 doubling

andλeff is the climate feedback parameter estimated at the time of CO2 doubling in a scenario
where CO2 increases by 1% per year (Murphy, 1995). In effect the slower increase of evaporation
when the climate warms delays the onset of the positive watervapor feedback in the simulation
with the new model, and reducesSeff relative toSeq . In the earlier versions of the model the
two sensitivities were essentially equal. Since the 20th century changes are transient, it is clearly
preferable to use them to constrainSeff rather thanSeq . Figure 2 shows the relationship between
Seff andSeq in the new model. The two sensitivities are virtually equal for Seq < 3 degrees but
Seff is considerably less thanSeq for large values ofSeq .
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3 METHODS

3.1 Estimation of probability distributions

The methodology for quantifying uncertainty in climate system properties follows the basic method
in Forestet al. (2001, 2002, 2006) with the modifications required to use theclimate model. This
can be summarized as consisting of two parts: simulations ofthe 20th century climate record and
the comparison of the simulations with observations using optimal fingerprint diagnostics. First,
we require a large sample of simulated records of climate change in which climate parameters have
been systematically varied. Second, we employ a method of comparing model data to observations
that appropriately filters “noise” from the pattern of climate change. The variant of optimal finger-
printing proposed by Allen & Tett (1999) provides this tool and yields detection diagnostics that
are objective estimates of model-data goodness-of-fit. In the use of the temperature change diag-
nostics and the estimation of the posterior probability distribution, the methodology is identical
to that in Forestet al. (2006). The three temperature change diagnostics that we use are: (i) the
decadal mean surface temperature changes over 4 equal-arealatitude bands for the period 1946-
1995 referenced to the 1905-1995 climatology; (ii) the trend in the global mean ocean temperature
(down to 3 km depth) during 1948-1995; and (iii) the latitude-height pattern of the zonal mean
upper air temperature difference between the 1961-1980 and1986-1995 periods. The likelihood
functions based on each diagnostic are combined using Bayes’ Theorem.

The description of the climate model experiments, the ensemble design, and the algorithm for
estimating the joint PDFs are in Forestet al. (2001, 2002, 2006). There are two major differences
from Forestet al. (2006) that were required when using the new model. First, a land-use change
data set for the twentieth century was not included in these simulations because none was available
in the new model’s format. However, the contribution of thisforcing to the total 20th century
forcing is very small (Solomonet al., 2007). Thus, the set of applied climate forcings was reduced
to: greenhouse gas concentrations, sulfate aerosol loadings, tropospheric and stratospheric ozone
concentrations, solar irradiance changes, and stratospheric aerosols from volcanic eruptions. We
refer to this set of forcings as GSOSV. (Details on these forcings are in the auxiliary material in
Forestet al. (2006).)

The second change was required to accommodate the change from equilibrium to effective
climate sensitivity. BecauseSeff has an upper bound at about 8 K in the new climate model, we
truncate the distribution at 8 K rather than 10 K as was done inour previous studies. Thus, for
the uniform prior cases, the cumulative probability above 8K will differ from the results in Forest
et al.(2006). In the case where an expert prior is used forSeff , the prior has near zero probability
above 8 K and the results are basically unaffected.

When conducting 20th century simulations, we use differentvalues of the strength of the cloud
feedback which changes bothSeff andSeq . WhileSeff is a more appropriate measure of transient
climate response, results from our previous studies were presented in terms ofSeq because, first,
Seq andSeff were virtually the same for older versions of the model and second, there is a one
to one correspondence betweenSeq and the strength of the cloud feedback. For the new model,
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Table 1: Values of Seff and Kv for AOGCMs used in the IPCC AR4 (top) and TAR (bottom).

Index Model Kv Seff

1 CGCM3.1(T47) 2.9 3.4
2 ECHO-G 1.3 2.8
3 GFDL-CM2.0 4. 2.2
4 GFDL-CM2.1 4. 2.2
5 INM-CM3.0 0.7 2.0
6 MIROC3.2(medres) 4.0 4.8
7 GISS-EH 1.7 2.2
8 CCSM3 3.4 2.2
9 GISS-ER 3.1 2.2

10 HadCM3 1.9 3.6
11 PCM 2.1 1.9
12 HadCM2 3.0 2.8
13 ECHAM3 1.6 2.4
14 MRI (old) 7.5 3.2
15 CSM 3.8 1.9

Seff is very different fromSeq (for high values), so results of the present study are presented in
terms ofSeff . The value ofSeff for a given strength of cloud feedback depends slightly onKv .
On figures below, we use values ofSeff averaged overKv .

3.2 Matching procedure for AOGCMs.

As discussed earlier, the large-scale response of the MIT model is controlled by the parameters,
Seff (or Seq ) andKv . This flexibility provides the ability to match the large-scale response of
AOGCMs by choosing appropriate combinations of these two parameters. Fits for the models
were obtained based on the data for surface air temperature (SAT) and thermosteric sea level rise
from the simulations with 1% per year increase in CO2 concentration. Unfortunately the required
data are available for only nine (9) AR4 models as part of the CMIP3 dataset (Meehlet al., 2007).
Fits for the HadCM3 and five TAR models are based on the resultsfrom CMIP2 simulations.
In Figure 3, the values ofSeff required to match models’ responses are compared with values
of Seff published for the corresponding models. Effective sensitivities for the AR4 models were
estimated from the data on “top of the atmosphere fluxes” fromthe archived CMIP3 dataset (Meehl
et al., 2007) using values of the adjusted radiative forcing due toCO2 doubling (F2X) given in
Table 8S.1 from the IPCC AR4. Values ofSeff for CMIP2 models were taken from the literature.
It should be noted that for some modelsF2X is not available and in these cases, a forcing of 3.71
Wm−2 was used.Table 1 gives the 2D model’s values ofSeff andKv that match the performance
of the listed models.
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Figure 3: Comparison of effective climate sensitivity estimated from AOGCM simulations vs
effective climate sensitivity required to fit the AOGCM transient response. Blue diamonds refer to
AR4 models and red triangles refer to TAR models.
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Table 2: Fractiles for marginal PDFs with and without expert prior on Seff .

0.05 0.50 0.95 Mean Mode
Expert Prior Seff 2.0 2.8 5.0 2.9 2.4

Kv 0.04 0.78 4.1 0.97 0.49
Faer -0.27 -0.50 -0.70 -0.50 -0.55

Uniform Prior Seff 2.1 4.0 7.4 4.1 3.0
Kv 0.12 1.7 6.1 1.7 2.2

Faer -0.32 -0.58 -0.77 -0.56 -0.65

Heat uptake in the oceans is sometimes measured by a coupled model’s heat uptake efficiency,
E, (Gregory & Mitchell, 1997). We have compared our measure,Kv , with E estimated for the
nine coupled AOGCMs using the CMIP3 datasets. They are correlated, with a correlation of 0.837.

4 RESULTS

4.1 Posterior distributions using the new model, IGSM2

The one-dimensional marginal distributions from the current analysis (Figure 4) and the Forest
et al.(2006) estimates (their Figure 2) are very similar and indicate the model responses are nearly
identical. The fractiles forSeff , Kv , andFaer are inTable 2. The aerosol forcing remains well
constrained. The distribution for climate sensitivity with the expert prior, as before, has a well-
defined mode at 2.8 K while the upper tail remains significant.The expert prior on climate sensi-
tivity remains an important feature of the results with a reduction in the likelihood above 4.5 from
42 to 8 percent in the new results. As before,Kv is well constrained by the three diagnostics with
the surface temperature providing a strong constraint on the upper bound. The two-dimensional
marginal distributions are shown inFigure 5 for the S-

√
Kv parameter space. The positions of the

climate models’ heat uptake generally remain significantlyto the right of the median and mode
for the distribution. Given that the mode is an estimate of the most likely value, the AR4 models
appear to have a positive bias in their ocean heat uptake, although we have not been able to obtain
the data necessary to calibrate 10 of the AR4 models.

We can also explore the possible bias in the AR4 models’ predictions from our distributions.
We show the distributions for TCR and SLR (respectively, changes in SAT and thermosteric
sealevel rise averaged over years 61-80 in simulations with1% per year increases in CO2 con-
centration) as estimated from our new distribution and alsoas estimated for the AOGCMs (Figure
6). Taking the means of the PDFs and the AOGCM distributions, we find that the AOGCMs ap-
pear biased low for TCR. There is also a high bias in the AOGCMsfor SLR, but this is partly
compensated by their low warming bias.
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Figure 4: The marginalposteriorprobability density function for the three climate system proper-
ties for two cases with the new model. In each panel, the marginal pdfs are shown for the GSOSV
forcings. In one case (black), uniform priors are used on allparameters and in the second case
(blue), an expert prior on climate sensitivity (Webster & Sokolov, 2000) is used with uniform pri-
ors elsewhere. Marginal distributions are estimated by integrating the density function over the
remaining two parameters and renormalizing. The whisker plots indicate boundaries for the per-
centiles 2.5-97.5 (dots), 5-95 (vertical bar at ends), 25-75 (box ends), and 50 (vertical bar in box).
The mean is indicated with the diamond and the mode is the peakin the distribution. The values
for Seff andKv for the AR4 AOGCMs are shown as diamonds below the whisker plots.
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p(S,Kv): IGSM2.2 Uniform and Expert CS priors
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Figure 5: The marginalposteriorprobability density function for GSOSV results with uniform
(shading) and expert prior onS (thick contours) for theS -Kv parameter space. The shading
denotes rejection regions for a given significance level — 10%, and 1%, light to dark, respectively.
The positions of AOGCMs (diamonds and squares) represent the parameters in the MIT IGSM2
model that match the transient response in surface temperature and thermal expansion component
of sea-level rise under a common forcing scenario. Model names and parameter values are listed
in Table 1. LowerKv values imply less deep-ocean heat uptake and hence, a smaller effective heat
capacity of the ocean. Eleven AOGCMs used in the IPCC AR4 report (black diamonds) and four
used only in the IPCC TAR (from Sokolovet al.(2003)) (green squares) represent the models with
sufficient information available. The median and mode (red circles) are shown for the case with
the expert prior.

11



a: p(TCR)

0 1 2 3 4
TCR (K)

0.00

0.05

0.10

0.15

0.20

F
re

q
u

e
n

c
y
 p

e
r 

0
.1

 C
 b

in

b: p(SLR)

0 10 20 30
Sea level rise (cm)

0.00

0.02

0.04

0.06

0.08

0.10

F
re

q
u

e
n

c
y
 p

e
r 

0
.1

 C
 b

in

Figure 6: (a) p(TCR|data) and (b)p(SLR|data) from 2D model results based on 1000 member
Latin Hypercube sample. The values of TCR and SLR for the AOGCMs in Table 1 are shown with
blue diamonds for the AR4 models and red triangles for the TARmodels.

4.2 Robustness of the ocean heat-uptake results

Since there is a significant discrepancy between the AOGCMs’simulations of ocean heat uptake
and the uptake we estimate from observations, we have explored the sensitivity of our posterior
distribution forKv to various diagnostics. First we show inFigure 7 how our 1D marginal dis-
tributions change when we remove information associated with the three different diagnostics. In
particular, we compare our standard results based on all 3 diagnostics with what happens if: (i)
we leave out the upper-air diagnostic, (ii) we leave out the deep-ocean temperature change diag-
nostic, and (iii) we replace the surface temperature changediagnostic using 4 latitude bands, z4,
by one using only hemispheric averages, z2, but still retaining the decadal time series. In the last
case we retain the contrast in hemispheric temperature averages that reflects the aerosol forcing
being larger in the Northern Hemisphere, but remove the polar amplification component in the
z4 diagnostic. In all cases we see that the PDFs forSeff andFaer are not much affected and we
conclude that these PDFs are relatively robust. However in the case of theKv distribution we see
that removing any of the diagnostics weakens the constraintonKv , with the removal of the deep-
ocean temperature diagnostic showing the most effect. Nevertheless the mode forKv is relatively
robust, and indeed it is smallest when the deep-ocean temperature diagnostic is removed. Thus all
the diagnostics contribute to the discrepancy between our estimate of the deep-ocean heat uptake
and the uptake simulated by the AOGCMs, although the discrepancy is most significant when the
deep-ocean temperature diagnostic is included.

Second, we looked at how sensitive our estimate of the ocean heat uptake is to newly discovered
errors in the observed ocean temperature trend which were not taken into account in our results
given above. In our standard analysis we used the ocean trendand error estimates given by Levitus
et al. (2005). It has recently come to light that the XBT data that they used in their analysis con-
tained systematic errors (Gouretski & Koltermann, 2007). The Gouretski and Koltermann analysis
indicates that the Levitus et al. trend should be reduced by 37%, while a more recent analysis re-

12



p(CS): posteriors

0 2 4 6 8 10 12
Climate Sensitivity (K)

-0.2

0.0

0.2

0.4

0.6
D

e
n

s
it
y

p(KV): posteriors

0 2 4 6 8
SQRT( Effective Oceanic Diffusion ) (Sqrt(cm2/s))

-0.2

0.0

0.2

0.4

0.6

D
e

n
s
it
y

p(FA): posteriors

-1.5 -1.0 -0.5 0.0 0.5
Net Aerosol Forcing (W/m2)

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

D
e

n
s
it
y

All diagnostics
Z2 + UA + DO diagnostics
Z4 + DO diagnostics
Z4 + UA diagnostics

Figure 7: Posterior distributions using alternative combinationsof climate change diagnostics.
Standard diagnostics (black) using surface (z4), upper-air (UA), and deep-ocean (DO) tempera-
tures; z2 + UA + DO (blue), hemispheric averages replace fourequal-area zonal bands; z4 + DO
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ported at the AGU meeting in December, 2007, indicates it should be reduced by 24% (J. Antonov,
personal communication). We repeated our analysis with thetrend reduced by 37% and a (larger)
error estimate taken from Gouretski and Koltermann. The results (not shown) had the mode for
Kv reduced to a value consistent with that when the ocean diagnostic was removed (Figure 7)
and the distribution was somewhat broadened, but not as muchas when the ocean diagnostic was
removed. Thus the discrepancy in the models’ heat uptake remains.

Finally we note two recent studies based on the Levituset al. (2005) analysis of the ocean heat
uptake that also indicate that AOGCMs are overestimating the 20th century heat uptake. Pierce
et al. (2006) compared 20th century simulations of the heat uptakeusing the PCM and HadCM3
models with the Levituset al. (2005) results using the observational data mask. Their Figure
11 shows that both models are overestimating the ocean heat uptake, particularly below the mixed
layer. Andrews & Allen (2007) compared the performance of the AR4 AOGCMs with 20th century
changes in surface temperature and ocean heat uptake, and found that the AOGCMs were generally
overestimating the effective heat capacity of the climate system, which is of course equivalent to
mixing heat into the ocean too efficiently.

5 DISCUSSION AND CONCLUSIONS

We present two new results in this paper. First, we have estimated theSeff andKv values that
correspond to eleven (11) of the AR4 AGOCMs models. This serves to characterize the “ensem-
ble of opportunity” (EOP) in terms of both equilibrium and transient responses. Together, these
two properties provide a good metric for comparing the behavior of different AOGCMS with one
another and with respect to the distributions for these properties as estimated from climate change
observations. Second, we present the updated probability distribution for the three climate system
properties,θ = {Seff , Kv, Faer}, with Seq replaced bySeff . These distributions are similar to
those from Forestet al. (2006), because the forcings are almost identical (no land-use change in
the present case) and the climate change diagnostics were identical.

From the positions of the AOGCMs within this distribution, we can estimate the AOGCMs’
projections under specific forcing scenarios. As noted by many (e.g., Prinnet al., 1999), the
total uncertainty in the climate change projections is a combination of the uncertainties in both
the forcings and the climate system response. By considering the AOGCM positions within the
context of thep(θ|∆T, CN) distributions, one can infer the range of uncertainty in theclimate
system response that is represented by their projections. Furthermore, we can track the change in
the uncertainty implied by the projections in the various IPCC reports. As shown in Figure 5, the
projections from both the TAR and AR4 indicate a significant shift in the climate model response
as estimated by the AOGCMs and their means, medians, and ranges. Although the complete set of
models is not available, we still find a clear indication thatthe AOGCMs, as a whole, overestimate
the rate of deep-ocean heat uptake as implied by the observations. We quantify this by considering
the distributions of TCR and SLR (Figure 6) obtained by usinga Latin Hypercube sample from
the posterior distribution with an expert prior onSeff . The range of both TCR and SLR implied
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by the AR4 AOGCMs is narrower than that based on observational constraints, while the latter is
still narrower than the IPCC AR4’s official projections. We also see that the AR4 results appear
biased low for temperature change while biased high for sea level rise. This is expected given the
positions of the AOGCMs in the joint distribution ofSeff -Kv .
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