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Combining a Renewable Portfolio Standard with a  

Cap-and-Trade Policy: A General Equilibrium Analysis 

Jennifer F. Morris
1
, John M. Reilly and Sergey Paltsev 

Abstract 

Many efforts to address greenhouse gas emissions combine a cap-and-trade system with other 

measures such as a renewable portfolio standard. In this paper we use a computable general 

equilibrium (CGE) model, the MIT Emissions Prediction and Policy Analysis (EPPA) model, to 

investigate the effects of combining these policies. We find that adding an RPS requiring 20 percent 

renewables by 2020 to a cap that reduces emissions by 80% below 1990 levels by 2050 increases the 

net present value welfare cost of meeting such a cap by 25 percent over the life of the policy, while 

reducing the CO2-equivalent price by about 20 percent each year. 
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1. INTRODUCTION 

Most economists see incentive-based measures such as a cap-and-trade system or an 

emissions tax as cost-effective instruments for limiting greenhouse gas (GHG) emissions (for 

example, Baumol and Oates, 1988; Tietenberg, 1990; Stavins, 1997; Palmer and Burtraw, 2005; 

Dobesova et al., 2005). In actuality, many efforts to address GHG emissions combine a cap-and-

trade system with regulatory instruments, such as a renewable portfolio standard (RPS). 

Examples include the European Union’s 20-20-20 goal and the Waxman-Markey bill (H.R. 

2454) passed by the U.S. House of Representatives in 2009. Here we investigate how a 

renewable portfolio standard (RPS) interacts with a cap-and-trade policy.  

To do this, we use a computable general equilibrium (CGE) model. An advantage of such a 

model is that it captures all of the interactions and ripple effects throughout the economy. We use 

the MIT Emissions Prediction and Policy Analysis (EPPA) model, which was developed to 

evaluate the impact of energy and environmental policies on global economic and energy 

systems, and augment it to better represent renewable electricity technologies. 
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A renewable portfolio standard (also called a renewable electricity standard or RES) is a 

policy that requires that a minimum amount of electricity come from renewable energy sources, 

such as wind, solar, and biomass. Most commonly the RPS is in terms of percentage of 

electricity sold, as capacity- and production-based requirements do not ensure that renewable 

electricity is actually produced and used. The energy sources qualifying as ―renewable‖ to meet 

the standard can vary. Wind, solar (solar thermal and photovoltaic), biomass, and geothermal are 

generally always eligible. Hydroelectricity may or may not be eligible. A commonly proposed 

rule is that existing hydroelectric generation does not count, but incremental new hydroelectricity 

does (EIA, 2007). Municipal solid waste and landfill gas are sometimes included. Some argue 

that the standard should be expanded to a low-carbon portfolio standard, including technologies 

like nuclear, coal plants with carbon capture and storage (CCS), or even, as is the case in 

Pennsylvania, integrated coal gasification combined cycle plants without CCS, but almost none 

of the existing RPS policies or proposals consider these technologies eligible.
2
   

Many RPS programs utilize tradable renewable electricity certificates (RECs) to increase the 

flexibility and reduce the cost of meeting the target. A REC is created when a specified amount 

(e.g. kilowatt-hour or megawatt-hour) of renewable electricity is generated, and it can be traded 

separately from the underlying electricity generation. REC transactions create a second source of 

revenue for renewable generators, which functions like a subsidy. RECs also offer flexibility to 

retail suppliers by allowing them to comply by either directly purchasing renewable electricity or 

by purchasing RECs. Banking and borrowing of RECs may also be allowed for flexibility.  

Renewables have generally not been well represented in macroeconomic models because the 

variability of the resource is not captured. We reformulate the representation of renewables to 

include the need for back-up generation capacity when the renewable resource is not available.  

We then develop a system that allows REC trading within the model.  We then use the revised 

model to investigate the role and cost of an RPS requirement as part of a broader GHG reduction 

policy. 

This paper is organized as follows: In Section 2 we describe the CGE model we use, and how 

we modified it to better represent renewable technologies and to implement an RPS requirement. 

Section 3 assesses the impacts of an RPS policy, both alone and combined with a cap-and-trade 

policy, and considers the sensitivity of the results to the costs and availability of generating 

technologies. In Section 4 we offer some conclusions. 

                                                 
2
 Another RPS design option is ―tiered‖ targets. Tiered targets establish different sets of targets and timetables for 

different renewable technologies (for example, one target for solar and another for wind and biomass). The 

purpose of tiers is to ensure that an RPS provides support to not just the least-cost renewable energy options, but 

also to other ―preferred‖ resources such as solar power (DeCarolis and Keith, 2006). This design option would 

tend to make compliance with the target more expensive by mandating technologies other than the least-cost 

renewables.  
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2. ANALYSIS METHOD 

2.1 The Emissions Prediction and Policy Analysis (EPPA) Model 

 The EPPA model is a multi-region, multi-sector recursive-dynamic representation of the 

global economy (Paltsev et al., 2005). The level of aggregation of the model is presented in 

Table 1. Non-energy activities are aggregated to seven sectors, and the energy sector is modeled 

in more detail. All production sectors of the economy interact through a full input-output 

structure. The synthetic coal gas industry produces a perfect substitute for natural gas. The oil 

shale industry produces a perfect substitute for refined oil. Electricity generation technologies 

produce perfectly substitutable electricity except for renewables which are modeled as producing 

an imperfect substitute. The electricity generation technologies in red are new additions to the 

model from this work, and the basis for including this reformulation is discussed below. Biomass 

use is included both in electric generation and in transport where a liquid fuel is produced that is 

assumed to be a perfect substitute for refined oil.    

Table 1. EPPA Model Details. 

Country or Region
†
  Sectors Factors 

Developed Final Demand Sectors Capital  

   United States (USA) Agriculture  Labor  

   Canada (CAN) Services  Crude Oil Resources 

   Japan (JPN) Energy-Intensive Products  Natural Gas Resources 

   European Union+ (EUR) Other Industries Products  Coal Resources 

   Australia & New Zealand (ANZ) Transportation  Shale Oil Resources 

   Former Soviet Union (FSU) Household Transportation  Nuclear Resources 

   Eastern Europe (EET) Other Household Demand Hydro Resources 

Developing Energy Supply & Conversion Wind/Solar Resources 

   India (IND)  Electric Generation Land 

   China (CHN)     Conventional Fossil   

   Indonesia (IDZ)      Hydro   

   Higher Income East Asia
 
(ASI)      Nuclear   

   Mexico (MEX)      Wind, Solar   

   Central & South America (LAM)      Biomass   

   Middle East (MES)      Advanced Gas (NGCC)   

   Africa (AFR)      Advanced Gas with CCS   

   Rest of World (ROW)       Advanced Coal with CCS   

      Wind with Gas Backup  

         Wind with Biomass Backup   

   Fuels  

      Coal  

       Crude Oil, Shale Oil, Refined Oil   

      Natural Gas, Gas from Coal  

      Liquids from Biomass  

       Synthetic Gas    
† 

Specific detail on regional groupings is provided in Paltsev et al. (2005). 
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The model includes representation of abatement of CO2 and non-CO2 greenhouse gas 

emissions (CH4, N2O, HFCs, PFCs and SF6) and the calculations consider both the emissions 

mitigation that occurs as a byproduct of actions directed at CO2 and reductions resulting from 

gas-specific control measures. Targeted control measures include reductions in the emissions of: 

CO2 from the combustion of fossil fuels; the industrial gases that replace CFCs controlled by the 

Montreal Protocol and produced at aluminum smelters; CH4 from fossil energy production and 

use, agriculture, and waste; and N2O from fossil fuel combustion, chemical production and 

improved fertilizer use. More detail on how abatement costs are represented for these substances 

is provided in Hyman et al. (2003).  

2.2 Representing Renewables and Renewable Policy 

Renewables were represented in the EPPA model as an imperfect substitute for other 

electricity to reflect the intermittency of the resource and variability in supply from better and 

more easily accessible sites to those where the resource was less dependable and more remote. A 

well-known property of the constant elasticity of substitution (CES) function used is that it is 

share-preserving, thus tending to limit renewable penetration to not much beyond initial shares.  

In fact, the amount of fairly high quality wind is not a limiting factor in the U.S. The main issue 

is intermittency and in some cases remoteness, but this can be overcome with new transmission 

and either back-up capacity or through effective storage. High volume and relatively long-term 

battery storage is not currently practical, and even pumped hydro and compressed air energy 

storage appear fairly expensive. Hence we chose to represent these technologies as requiring 

backup capacity.   

We add two new renewable backstop technologies: large scale wind with natural gas backup 

and large scale wind with biomass backup. They are modeled as perfect substitutes for other 

electricity because the backup makes up for intermittency. The additional costs for large scale 

wind (transmission and backup or storage) are incorporated into the costs of the new 

technologies. This represents in our model the real cost of the variable resource, and findings that 

natural gas generation capacity is crucial for the operation of a large-scale wind system (e.g. 

Decarolis and Keith, 2006). For these technologies, we follow a convention of specifying a CES 

production function that requires specification of cost shares of each input.  

We distinguish between renewables at low penetration levels and at large scale. For low 

penetration rates we retain the specification of renewables as an imperfect substitute for 

conventional electricity (Paltsev et al., 2005). This specification allows expansion of existing 

renewables with gradually increasing costs of integrating variable resources into the 

conventional grid. To represent the possibility of greater renewable penetration, we add the two 

new wind technologies where backup capacity is required with installation of the renewable 

generation capacity.  The backup capacity allows the renewable source to be dispatched as 

needed, utilizing the backup capacity to make up for the variability of the renewable resource.  
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Table 2. Cost Calculation of Electricity from Various Sources. 

  

Units 
Pulverized 

Coal 
Solar 

Thermal 
Solar 

PV 
Wind Biomass NGCC 

Wind 
Plus 

Biomass 
Backup  

[1] 

Wind 
Plus Gas 
Backup 

[1] 

"Overnight" Capital Cost  $/kW 2058 5021 6038 1923 3766 948 5689 2871 

Capital Recovery Charge  % 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 

Fixed O&M $/kW 27.5 56.78 11.68 30 64.5 11.7 94.5 41.7 

Variable O&M $/kWh 0.0045 0 0 0 0.0067 0.002 0.0067 0.002 

Project Life Years 20 20 20 20 20 20 20 20 

Capacity Factor % 85 35 26 35 80 85 42 42 

(Capacity Factor Wind) %             35 35 

(Capacity Factor Biomass/NGCC) %             7 7 

Operating Hours Hours 7446 3066 2277.6 3066 7008 7446 3679.2 3679.2 

Capital Recovery Required $/kWh 0.02 0.14 0.23 0.05 0.05 0.01 0.13 0.07 

Fixed O&M Recovery Required $/kWh 0.00 0.02 0.01 0.01 0.01 0.00 0.03 0.01 

Heat Rate BTU/kWh 9200 0 0 0 9646 6752 9646 6752 

Fuel Cost $/MMBTU 1 0 0 0 1 4 1 4 

(Fraction Biomass/NGCC) %             8.8 8.2 

Fuel Cost per kWh $/kWh 0.0092 0 0 0 0.0096 0.0270 0.001 0.0022 

Levelized Cost of Electricity $/kWh 0.041 0.158 0.231 0.063 0.071 0.041 0.165 0.082 

Transmission and Distribution  $/kWh 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.03 

Cost of Electricity $/kWh 0.061 0.178 0.251 0.083 0.091 0.061 0.195 0.112 

Cost Relative to Coal   1.00 2.92 4.11 1.36 1.50 1.01 3.20 1.84 

          

[1] A combined wind and biomass plant (or wind and gas plant) assumes that there is 1 KW installed capacity of biomass (gas) for every 1 KW 
installed capacity of wind, and assumes the wind plant has a capacity factor of 35% and the biomass (gas) plant has a capacity factor of 7%, 
operating only as needed to eliminate the variability of the wind resource. 
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Cost details and the levelized cost estimates for renewable and other generation technologies 

are provided in Table 2, including in the final line the cost relative to pulverized coal generation. 

Overnight capital and fixed and variable operation and maintenance (O&M) costs were taken 

from EIA data (2009), as were heat rates. Capacity factors for the traditional plants and fuel costs 

were taken from a study conducted by Lazard Ltd. (Lazard, 2008). The capital recovery rate of 

8.5% was calculated as the rate that gives the constant capital recovery necessary each year over 

the life of the plant in order to recover capital costs, taking into account discounting, and is 

consistent with Stauffer (2006).  

For the wind with backup technologies, we assume that for every KW installed capacity of 

wind one KW of installed capacity of the backup (either gas or biomass) is required.  Reflecting 

typical load curves and wind generation curves, we assume the capacity factor for the backup is 

7 percent and that of the wind portion of the installation is 35 percent.  Thus, about 17 percent of 

the electricity produced is from the backup and 83 percent is from wind. Capital, O&M and fuel 

costs of a wind plant are combined with those of a gas or biomass plant in the levelized cost 

calculation for wind with backup. The cost of transmission and distribution (T&D) for 

conventional sources is estimated at $0.02 per kWh (McFarland et al., 2002), and we add an 

extra $0.01 for large scale wind with backup to account for transmission from ideal wind sites 

that are often some distance from load.  The resulting costs relative to coal generation are shown 

in the final row of the Table 2. 

We follow Paltsev et al. (2005) and model the initially limited capacity for the construction of 

new technologies with an initial endowment of a technology-specific fixed factor that increases 

as a function of installed capacity. This creates short-run adjustment costs that slow the rate of 

installation in early periods. The data in Table 2, along with the fixed factor, allow for the 

calculation of input cost shares, which are used in EPPA. The CES nest structure and input cost 

shares are shown in Figure 1 for wind with gas backup and wind with biomass backup (in 

parentheses). The elasticity of substitution between wind and the backup technology is zero 

(Leontief), reflecting the requirement of complete back-up.  

We implement the RPS by requiring that each unit of conventional electricity submit 

renewable electricity credits (RECs) in proportion to the RPS constraint as an additional input to 

production. RECs are produced jointly with the renewable electricity, as shown in Figure 1. If 

the RPS is 20%, the production of every unit of conventional electricity requires 0.2 RECs. Wind 

with biomass backup is considered fully renewable so each unit of generation also produces one 

REC. However, wind with gas backup only produces 0.83 of a REC with each unit of generation 

because only 83 percent of electricity is from wind and the remaining 17 percent is from gas 

which does not qualify as renewable. The gas is also subject to any carbon policy, and carbon 

permits or a carbon tax payment covering the amount of gas used must accompany production 

from wind with gas backup.  
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Figure 1. Production Function for Wind with Backup Technologies. 

Note: Cost share parameters are shown beneath the inputs for wind with gas backup, and in 

parentheses for wind with biomass backup. K----. and L---- are capital and labor, respectively, for 

the wind generation or for the backup; σj are elasticities of substitution, j indicating the different 

nests; electricity (ELEC) and renewable electricity credits (REC) are joint outputs. The dashed-line 

nest with land as an input applies only to biomass backup. The dotted-line nest, with gas and 

carbon permit, applies only to gas backup.  

3. ECONOMICS OF RENEWABLE PORTFOLIO STANDARDS 

To explore the economics of renewable portfolio standards we focus on policies in the U.S. In 

particular, this work focuses on a cap-and-trade policy of 80% below 1990 levels by 2050.
3
 This 

core case is labeled as 167 bmt, which is the cumulative number of allowances made available 

between 2012 and 2050 in billions of metric tons (bmt), or gigatons, of carbon dioxide 

equivalent (CO2-e) emissions.
4
  

Throughout this analysis the cap covers the emissions of the six categories of greenhouse 

gases identified in U.S. policy statements and in the Kyoto Protocol (CO2, CH4, N2O, SF6, HFCs, 

and PFCs), with the gases aggregated at the 100-year Global Warming Potential (GWP) rates 

used in US EPA (2006). All prices are thus CO2-equivalent prices (noted CO2-e), and are in 2005 

dollars. Banking and borrowing are allowed, the cap applies to all sectors of the economy except 

                                                 
3
 This level of reduction is generally relevant given recent Congressional efforts to introduce a cap and trade policy. 

For analysis of the cost of the Waxman-Markey bill (H.R. 2454) see Appendix C to Paltsev et al. (2009).  
4
 A complete set of results for this scenario and two other core scenarios and for variation in system features over 

such dimensions as coverage, banking and borrowing, trade restrictions, revenue recycling, and agricultural 

markets is provided in Paltsev et al. (2008). Paltsev et al. (2009) also provides analysis focusing on the 167 bmt 

case. 
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emissions from land use, and no credits for CO2 sequestration by forests or soils are included. 

The policy scenarios provide no possibility for crediting reductions achieved in systems outside 

of the U.S., such as the Kyoto-sanctioned Clean Development Mechanism (CDM) or other 

trading systems such as the EU Emission Trading Scheme (ETS).
5
  

 3.1 Impact of RPS Policy 

3.1.1 General  RPS  

Next we utilize the new RPS constraint to test the impact of RPS policies. We simulated 

general RPS policies that require either 5, 10, 15 or 20% renewables each year from 2015 to 

2050. In this set of scenarios, a 20% RPS would start in 2015 requiring 20% renewables and 

would have that same requirement until 2050. There are only slight variations in the emissions 

paths for the various levels of RPS added to the 167 bmt cap-and-trade, which are due to 

differences in banking as it interacts with the RPS. All cases show net banking, with GHG 

emissions below allowances in early years and exceeding allowances in later ones. By design, all 

cases meet the 167 bmt cumulative cap for the period 2012 to 2050. 

Figure 2 shows the effect of adding the various levels of RPS requirements to the 167 bmt 

cap-and-trade policy on welfare change and CO2-e price in 2030. In the figure 0% RPS is the 167 

bmt cap only. As the level of RPS added to the cap-and-trade policy increases, the welfare loss 

increases. Comparing the no RPS case to the 20% RPS, welfare loss increases from less than 1% 

to nearly 1.7%, representing about a 70% increase in cost.  Beyond 2030, the difference in 

welfare change due to the RPS level decreases because there has been significant time to adjust 

to the policy and make investments in renewable technologies that bring down costs in the later 

years. As the figure shows, an RPS combined with a cap-and-trade policy achieves the same 

emissions as a cap-and-trade only policy but at a greater cost.  

Alternatively, as the level of RPS added to the cap increases, the CO2-e price decreases. The 

price is 107/tCO2-e under the cap-and-trade alone and $85/tCO2-e under the cap with a 20% 

RPS. This represents a 21% decrease in price. While the CO2-e price can be a general indicator 

of the strength and cost of a greenhouse gas mitigation policy, if that policy combines cap-and-

trade with other policies then the CO2-e price can be a misleading indicator of the amount of 

emissions controlled and the total cost of the policy. In this case, for a fixed GHG reduction 

CO2-e prices are lower the larger the RPS. On the other hand, the total cost to the economy, 

measured as change in welfare, is larger the larger the RPS, with no gain in emissions reductions. 

 

 

  

                                                 
5
 Because there can be trade effects from policies abroad, we specify climate policies in other regions. We follow the 

convention of the Energy Modeling Forum (EMF) (Clarke et al., 2009) and specify the following policies: 

developed countries reduce to 50% below 1990 levels by 2050; China, India, Russia, and Brazil start in 2030 on 

a linear path to 50% below their 2030 emissions level by 2070; and the rest of the countries delay action beyond 

the 2050 horizon of our study. There is no emissions trading among regions.  
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Figure 2. Impact of Various Levels of RPS Targets Added to a 167 bmt Cap-and-Trade 
Policy: (a) Welfare Change in 2030 and (b) CO2-e Price in 2030. 

 

 We illustrate the effect of the RPS on CO2-e prices using a hypothetical marginal abatement 

cost (MAC) curve. In Figure 3a the MAC without RPS represents a cap-and-trade only policy: a 

target (the cap) is set for a specific amount of emissions reductions. The resulting CO2-e price 

(PCap) is where the cap meets the MAC curve. The MAC with RPS represents a cap-and-trade 

policy with the addition of a binding RPS. The additional renewables required beyond that which 

the cap-and-trade would bring forth creates a horizontal shift of the MAC curve to the right, by 

the amount of carbon reduced by the additional renewables. The shifted curve now results in a 

lower CO2-e price (PCap+RPS).  

Turning to the full cost of the RPS, Figure 3b demonstrates the general impact of the RPS on 

the electricity market under marginal cost pricing of electricity, and assuming a constant returns 

to scale conventional generation technology. Mandating more renewables increases the price of 

electricity, reducing the total quantity of electricity demanded and the amount of fossil 

electricity. Area A+B+C+D represents the loss in consumer surplus because of the higher 

electricity price. Area A is the gain to renewable producers due to the RPS. Area C is the gain to 

remaining fossil producers who receive the higher electricity price. This leaves area B+D as 

deadweight loss from the RPS policy—area B is loss from inefficient production (forcing more 

expensive renewables instead of cheaper fossil production) and area D is loss from lower 

consumption due to the higher price.  
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Figure 3a. MAC Curves with and without an RPS. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3b. Impacts of an RPS Policy with Marginal Cost Pricing of Electricity. A: gain to 

producers of renewable electricity, B: deadweight loss, C: gain to producers of fossil-
based electricity, D: deadweight loss, A+B+C+D: reduction in consumer surplus. 
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 As noted, the illustrated case is for marginal cost pricing. Markets for electricity distribution 

are regulated and so consumers would not see a rate that reflected the marginal cost of 

renewables but rather a cost that averaged in the marginal cost of renewables, reflected in a 

RECs market.  Using terms from Figure 3b, a representation of this pricing structure is:  

     
                       

   

      
    

Where P
AC 

is the average cost price of electricity, P
rps

 is the marginal cost of renewable 

electricity and P is the (constant) marginal cost of fossil electricity. Only the change in Qrenew 

matters as the original amount of renewables is already rolled into the marginal cost in the 

market outcome. Consider an example where at the market price (P) renewables make up 5% of 

total electricity. An RPS target of 15% increases the share of renewables by 10%. If at       
   

 

renewables are 40% more expensive than fossil electricity, the electricity price would increase by 

4% (.10*.40) under average cost pricing, instead of the full 40% in full marginal cost pricing. In 

relation to Figure 3b, this is a smaller price increase so area D loss would be smaller due to less 

reduced demand, area C would be much less implying less transfer from consumers to producers, 

and area B loss would be the same size. The EPPA model assumes marginal cost pricing which 

tends to have a greater price response but also a greater carbon response due to a larger decrease 

in fossil electricity demand. 

3.1.2 Phased in RPS 

To provide further insight into policy options more similar to those being considered in the 

U.S., we consider an RPS that is phased in. We represent an RPS with targets of 9.5% in 2015 

and 20% in 2020 to 2050. To help put these RPS targets into context, it is helpful to look at the 

penetration of renewables under business as usual assumptions. Today in the U.S., renewables 

are responsible for roughly 3% of electricity production, according to EIA data. The model used 

in this analysis predicts the non-hydroelectric renewable share under business as usual to be 

around 3%, falling somewhat in later years as other generation sources expand more rapidly to 

meet growing demand. This result is similar to other studies. For example, Palmer and Burtraw 

(2005), using the Haiku electricity market model, have a baseline forecast of generation by non-

hydro renewables of 3.1% of total generation by 2020.  

Figure 4 shows the GHG emissions paths for the 167 bmt cap-and-trade only policy, the RPS 

alone according to the targets described above, and the combination of the cap and RPS. The 

RPS alone does not significantly reduce emissions, and results in 308 bmt cumulative emissions 

over the course of the policy. The cap alone and the cap with the RPS both result in 167 bmt 

cumulative emissions.   

Combining the RPS with the cap results in higher welfare costs than the cap alone (see Figure 

5). Even though the RPS is phased in, it is more binding in early years, with substantially higher 

welfare costs through about 2035. In later years the RPS is no longer binding and welfare 

changes are similar for the cap alone and the cap with RPS. This happens because the rapid 
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increase in the requirement creates additional short term adjustment costs that disappear as this 

capacity expansion constraint becomes less binding.  However, because of the larger welfare 

losses in early years, the net present value (NPV) of welfare cost of this combined RPS and cap 

policy is worse than a cap alone. The NPV of welfare change over the policy period is -1.16% 

for the cap alone and -1.44% for the cap with the RPS. This represents a 25% cost increase as a 

result of adding the RPS to the cap-and-trade. This means that adding an RPS to a cap achieves 

the same amount of emissions reductions but at significantly greater costs. The RPS alone has a 

NPV of welfare change of -0.71%, which is costly considering how few emissions reductions it 

achieves. 

 

 

 

 

 

 

 

 

 

Figure 4. GHG Emissions Paths. 

 

 

 

 

 

 

 

 
 

Figure 5. Impact of Different Policies: (a) Welfare Change and (b) CO2-e Price. 
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Although adding the RPS to the cap increases the welfare cost, it decreases the CO2-e price 

(see Figure 5). With the cap alone the price starts at about $60 per ton CO2-e in 2015 and rises to 

$235 per ton CO2-e in 2050. When the RPS is added to the cap the initial 2015 price is reduced 

to $48 per ton CO2-e and rises to about $191 per ton CO2-e in 2050, a reduction of about 19%.  

Figure 6 compares the electricity generation by source of the reference, cap only, cap plus 

RPS, and RPS only cases. Wind with backup and other renewables together achieve the RPS 

target. Adding the RPS to the cap reduces generation by coal and natural gas. The RPS requires 

that these cheaper generation sources be replaced by more expensive renewables. In the cap 

alone, renewables are only about 3% of generation in all years. Natural gas combined cycle 

(NGCC) and reducing electricity use are determined to be the most cost-effective strategies for 

reducing emissions. In the cases with an RPS, other renewables ramp up in early years to meet 

the renewables target. However, as the target becomes more stringent wind with backup 

(particularly gas backup) becomes more cost-effective than the other renewables. This occurs 

because there is an increasing penalty on other renewables as they increase as a percentage of 

total generation (because of assumptions about intermittency discussed in Section 2.2). In the 

case of the RPS only policy, coal use is still significant as the policy is not stringent enough to 

further reduce coal generation.  

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Electricity Generation by Source: (a) Reference (b) 167 bmt, (c) 167 bmt with 

RPS, and (d) RPS Only. 
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For the cap with RPS, renewables actually expand beyond the 20% required by the RPS, 

rising to almost 40% of total electricity in 2050. This happens because in earlier years the RPS 

required the development of wind with backup. This increased the level of fixed factor in later 

years, lowering the adjustment costs at a time when renewables are becoming more economic 

relative to fossil technologies due to the increasing CO2-e price. Thus by the later years of the 

policy it is more cost-effective to continue to expand renewables with backup than to start to 

develop CCS, expand NGCC, or further reduce use.  

3.2 Sensitivity 

To test the sensitivity of the results above to the technology and cost assumptions made, we 

created three additional scenarios with different assumptions. In the first scenario case, the cost 

of CCS technologies is decreased (case denoted ―low ccs cost‖). For coal with CCS and gas with 

CCS the cost relative to conventional coal generation is decreased from 1.6 and 1.6 to 1.19 and 

1.17, respectively. In the past CCS was thought to be less expensive than current assessments 

and it is possible that developments take place that reduce cost estimates once again. In the 

second and third cases, the cost of all renewable technologies are increased by 25% (cases 

denoted ―high renew cost‖) and decreased by 25% (case denoted ―low renew cost‖). These cases 

explore the situations in which renewables cost more or less than expected.  

For the cap with RPS policy, coal with CCS dominates after 2030 when CCS costs are low. 

With high renewable costs, the electricity mix is very similar to that of the base cap plus RPS 

case, except renewables do not expand beyond the required target in 2050 because they are so 

expensive. With low renewable costs, renewables are very cost effective and expand well beyond 

their RPS requirement starting in 2035. In 2035 renewables are 45% of total electricity and 

increase to 72% by 2050.  This case implies the importance of bringing down the cost of large 

scale renewable technologies.  

 Figure 7 compares the welfare changes in the base case and sensitivity cases for the cap with 

RPS policy. The low CCS cost results in lower welfare costs. Because the RPS forces a 

significant percentage of renewables, the high renewable cost case significantly increases the 

welfare cost. Alternatively, the low renewable cost significantly decreases the welfare cost. For 

the RPS only, the same pattern emerges except the low CCS cost does not make a difference 

because an RPS alone policy does not bring in CCS. Of course, the cost of renewables drastically 

affects the cost of meeting a policy involving an RPS. In the case of a cap alone, the low CCS 

cost reduces welfare cost even more relative to the base case. The high renewable cost does not 

affect the welfare compared to the base case because the cap alone uses only small quantities of 

renewables. The low renewable cost brings large amounts of renewables into the cap only case 

and reduces welfare costs slightly compared to the base.  
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Figure 7. Welfare Change for 167 bmt with RPS. 

In terms of NPV welfare costs over the whole period, when an RPS is added to a cap the cost 
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of the policy. Even though the welfare costs are much higher with the high renewable costs, the 

CO2-e price is almost the same.  

 

Figure 8. CO2-e Prices. 
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the 20% RPS to the cap-and-trade policy increases the NPV welfare cost by 25 percent over the 

life of the policy. At the same time, the addition of the RPS reduces the CO2-e price by about 20 

percent each year, thereby hiding the additional welfare costs.  

When phasing in the RPS, it is more binding in early years, but no longer binding in later 

years. There is a benefit of the RPS because capacity expansion in early years increases the level 

of fixed factor in later years when renewables become economic. As a result renewables face 

lower adjustment costs in later years. However, because of the large welfare losses in early years, 

the NPV of welfare cost of this combined RPS and cap policy is still worse than a cap alone.  

Using different technology and cost assumptions increase or decrease the cost of the policies. 

When renewables are 25% more expensive, adding an RPS to a cap increases the cost of the 

policy over the whole period by 48%. This highlights a key issue with an RPS: it picks 

technology winners regardless of their cost-effectiveness. An RPS shifts investment away from 

the least-cost emission reduction options and toward these specific renewable technologies, 

which are not necessarily least-cost or even low-cost. Thus, by removing the flexibility to pursue 

the least costly emission reduction strategy, an RPS adds to the economy-wide cost of the policy. 
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