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The hydroxyl radical (OH), which has an average atmospheric concentration of

106 radicals/cm3 and a very short lifetime,1 is arguably the most important free radical in the

troposphere. It is the primary removal mechanism for most gases entering the atmosphere,

and therefore, determines the lifetimes of these species. Tropospheric OH is formed by H2O

(water vapor) reacting with O (1D) produced by ozone photo-dissociation, and by NO (nitric

oxide) reacting with the hydroperoxy radical (HO2). Major OH sinks include reactions with

CO, CH4, and several other hydrocarbons.2 Climatic changes affecting the water vapor

concentration, anthropogenic emissions of CO, NO, and hydrocarbons, and changes in the

fluxes of solar ultraviolet radiation entering the troposphere therefore can all affect OH radical

concentrations. Anthropogenic emissions of CH4, NO, and CO have increased since the

Industrial Revolution, and estimates indicate, these trends will continue in the future.3,4 The

possibility of changes in global OH concentrations due to increased emissions and variations

in climate is therefore an important issue in atmospheric chemistry and global climate studies.

We have developed a coupled global atmospheric chemistry and climate model to better

assess science and policy issues related to global change.5 Using this model we have predicted

the evolution of tropospheric concentrations of OH and other species along with climate

parameters, based on a set of economic model predictions for anthropogenic emissions of

chemically and radiatively important trace gases in the next 120 years.6 These predictions for
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tropospheric OH concentrations indicate the potential for substantial future changes affecting

both atmospheric chemistry and climate.

Design of Model and Numerical Experiments

In this study we use a global atmospheric chemistry model interactively coupled with a

climate model.4 It is two-dimensional with 24 latitude bands and nine pressure levels (two in

the stratosphere, seven in the troposphere), with time steps of 20 minutes for climate

dynamics and transport of chemicals and 3 hours for gaseous phase chemistry. The chemistry

model contains 25 chemical species, including CO2, CH4, chlorofluorocarbons, N2O, CO,

O3, NOx, HOx, SO2, and sulfuric acid, and 41 gas-phase and 12 heterogeneous reactions.

These chemical processes, along with emissions, dry and wet deposition, transport by winds,

mixing, and convection, serve as local sinks or sources of various chemical species in the

atmosphere. The climate model provides wind speeds, air pressure, temperature,

precipitation, convection parameters, and radiative fluxes at each model grid point and every

time step for the chemistry model. Concentrations of CO2, N2O, CH4, chlorofluorocarbons,

and sulfate aerosols predicted by the chemistry model, in turn, are used in the climate model to

calculate atmospheric radiative fluxes.

To illustrate a range of plausible OH predictions and interactive features involving

emissions, chemistry, and climate related to OH, we conducted nine experiments using three

separate emission predictions from an economic model,6 in combination with three selected

sets of chemistry and climate model assumptions.7 The emission predictions and model

assumptions are labeled high (H), reference (R), or low (L), according to their predicted

effects on Earth’s surface temperature in the year 2100. In order to investigate the effects of

including the chemistry-climate interaction, we also carried out three additional runs using

high, reference, and low emissions but using the 1990 values of radiative forcing in all years

beyond 1990 (designated “no-forcing” (NF) runs). Note the changing atmospheric

                                         
(continued) …of anthropogenic emissions changed with time. For CO, NO, and SO2, their latitudinal
distributions of emissions are also functions of time in the model. Three anthropogenic emission sets,
representing plausible high, reference and low predictions, used in this study are from runs of the MIT
Emission Prediction and Policy Analysis (EPPA) Model (see Prinn, R.G. et al., 1998, ibid., and Yang, Z. et
al., 1996, MIT Joint Program on the Science and Policy of Global Change Report No. 24). The integrated
emissions from 1977 to 2100 in the high, reference and low cases are 1912, 1654, and 1368 Pg (C)
respectively for CO2, 110, 105, and 100 Pg for CH4, and 98, 97, and 96 Pg (C) for CO.

7 See Prinn, R.G. et al., 1998, ibid. Specifically, we made three plausible assumptions concerning: (A) the
intensity of aerosol radiative forcing (including both direct and indirect effects) along with (B) the speed of
oceanic uptake of CO2 and heat; and (C) the sensitivity of the climate model to doubling of CO2 in an
equilibrium run. The aerosol radiative forcing per unit aerosol mass in the high and low cases is 200% and
50% respectively of its value in the reference case. Oceanic vertical diffusion coefficients for heat and CO2 are
five times larger or smaller than their reference value for fast or slow oceanic uptake, respectively. The
climate model sensitivity is 3.5 oC for the high, 2.5 oC for the reference, and 2.0 oC for the low case.
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concentrations of chemicals in these runs are predicted using the same methods as in the above

nine runs.

Predicted Trend of Tropospheric OH Concentration in the 21st Century

Our nine simulations show that the tropospheric-mean OH concentration may decrease

16.5-31.1% from its current level by the year 2100. In our reference run, the tropospheric-

mean OH concentration started from 10.9 × 105 radicals/cm3 in 1977 and decreased to

8.2 × 105 radicals/cm3 in 2100. The sharpest decline is predicted between the years 2000 and

2040 (Figure 1, left panel).

The increase of atmospheric CH4 predicted for the next century (Figure 1, right panel) is

found to be mainly responsible for the predicted decline in tropospheric OH concentration.

Our analyses show that the ratio of photochemical destruction of CO molecules in the

troposphere to that of CH4 molecules (both are mainly destroyed by reaction with OH) falls

from its current value of 2.6 to 2.1 near the end of the next century. The global rate of CH4

photochemical destruction is also found to be significantly higher in the year 2100 than

currently. Observational data for various gases, including CO, CH4, and O3, from stations at

different latitudes have been used to evaluate the model’s performance.5 These evaluations

show that model-simulated surface concentrations and trends of these gases since the late

1970s and through to the early 1990s fairly closely approximate zonal-average observations,

thus providing some confidence in the model predictions for the future.
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Figure 1. Annually averaged and tropospheric-mean values of the concentrations of OH radicals
(right panel, 105 radiacal/cm3) and mole fractions of CH4 (left panel, ppm) predicted by the
model. The results are from five selected runs from the full set of 12 (Table 1): the LHH and
HLL runs that give the highest and lowest OH concentrations, respectively, at 2100 among the
“forced” runs; the reference run RRR; and the run HRR-NF that predicts the largest OH
depletion among the three “no-forcing” runs and its corresponding “forced” run HRR.
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Tropospheric OH Concentrations and CH4 and CO Emissions

Results from numerical experiments using various emission predictions with the same

chemistry-climate model parameters are used to identify the impact of emissions on future

trends in tropospheric OH concentrations (Table 1, Groups A, B, and C). Higher emissions

for the various gases (including CH4 and CO) lead to lower tropospheric OH concentrations

for the same climate model settings. For example, in runs at the reference climate model

settings, the predicted 124-year-average (from 1977 to 2100) tropospheric OH concentrations

for the high, reference, and low emission predictions are 8.96, 9.06, and 9.22 × 105

radicals/cm3, respectively. The tropospheric-mean OH concentrations at the end of the runs

(i.e., December 2100) for these three scenarios are 7.87, 8.16, and 8.27 × 105 radicals/cm3,

when runs are started from the same level in 1977. Note that higher emissions lead to a

warmer climate and higher water vapor concentrations which along with higher NOx

concentrations that favor an increase of OH concentrations. This partially offsets the OH

depletion due to the rising CH4 and CO levels. The contribution of the climate change to this

offset is quantified by comparing these “no-forcing” runs (Table 1, Group D) with the

corresponding “forced” runs (Table 1, Group B). This comparison shows that the increased

water-vapor concentrations associated with a climate warming offset about 14 to 17% of the

emission-induced reductions in OH concentration. The Group B to D comparison also shows

that whether we consider the two-way interaction of chemistry and climate or not, the model

gives similar differences in the OH depletion among runs with different emissions.

Specifically, the climate effects on the OH concentrations among the runs with different

emissions but the same climate model settings do not differ enough to offset the differences

generated by the CH4 and CO emissions.

Tropospheric OH Concentrations and Climate Change

Comparing results from sensitivity tests using the same emission scenario but different

chemistry-climate model settings, we find that a warm climate leads to high OH concentrations

due to increases in atmospheric water vapor (Table 1, Groups E, F, and G). For example, in

tests using the reference emission scenario, the 124-year-averaged OH concentrations in the

troposphere for high, reference, and low climate warming cases are 9.42, 9.06, and 8.86 ×
105 radical/cm3, respectively. The difference between the high and low cases is about 6%—

about twice the difference seen in the above emission sensitivity runs (3%). This result

indicates that changes in various chemistry-climate model parameters modify the rate of

decrease OH in the troposphere even more than changes in emission scenarios, over the

investigated parameter ranges.
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Table 1.  Relative changes of selected variables†

Test Set Test R(OH) R(Ts) R(CO) R(CH4) R(LCH4) R(H2O)

HHH -20.7 37.4 102.9 180.5 123.9 33.4
A RHH -19.3 31.3 89.2 152.8 105.5 27.4

LHH -16.5 27.5 73.2 125.7 89.6 23.6

HRR -28.5 20.0 124.7 206.5 119.7 14.9
B RRR -24.9 19.2 103.6 173.2 105.6 15.3

LRR -23.0 16.2 87.1 142.7 88.6 12.0

HLL -31.1 12.2 133.0 220.3 120.3 7.6
C RLL -29.1 10.5 114.5 185.3 103.5 6.7

LLL -25.7 10.0 93.5 152.2 89.9 6.7

HRR-NF -32.6 0.1 135.6 221.3 119.3 0.4
D RRR-NF -30.0 -0.4 115.5 186.4 102.9 0.2

LRR-NF -26.8 0.2 96.0 152.5 87.4 0.7

HHH -20.7 37.4 102.9 180.5 123.9 33.4
E HRR -28.5 20.0 124.7 206.5 119.7 14.9

HLL -31.1 12.2 133.0 220.3 120.3 7.6

RHH -19.3 31.3 89.2 152.8 105.5 27.4
F RRR -24.9 19.2 103.6 173.2 105.6 15.3

RLL -29.1 10.5 114.5 185.3 103.5 6.7

LHH -16.5 27.5 73.2 125.7 89.6 23.6
G LRR -23.0 16.2 87.1 142.7 88.6 12.0

LLL -25.7 10.0 93.5 152.2 89.9 6.7

† Relative change of a given variable x is defined as R(x) = (x2100 – x1977)/x1977 × 100%. Here x1977

and x2100 represents the value of x at year 1977 and year 2100, respectively. Results from 12
tests are listed in this table. Groups A, B, and C are designed to show the impact of different
emission scenarios. Results are then rearranged into groups E, F, and G to show the impact of
climate variations on the relative changes of these variables. Group D lists results from three
“no-forcing” runs (denoted by “NF”) where the radiative forcing beyond 1990 in the
climate model is kept constant at 1990 levels. We use three characters (e.g., HRR) to label a test
as listed in the Test column: the first character represents the emission level, the second the
combination of the rate of oceanic uptake of heat and CO2 and the aerosol forcing intensity,
and the third the sensitivity of the climate model. H denotes the high, R the reference, and L
the low case. For the second and the third characters, H and L denote choices leading to higher
or lower temperature changes from 1977 to 2100 compared to the reference (R) choice. Here
OH represents the tropospheric average concentration of OH in 105 radicals/cm3, Ts the global-
mean surface temperature, CO and CH4 the tropospheric mole fraction of CO (ppb) and CH4

(ppm), respectively, LCH4 the annual photochemical loss rate of CH4 (Tg/year), and H2O the
tropospheric average concentration of water vapor in g/kg.

Summary and Conclusions

Our research indicates that if CH4 and CO emissions continually increase as expected

through the next century, the tropospheric concentration of OH could decrease by as much as

29% from its current value. As a result, the lifetime of CO in the year 2100 is predicted to

lengthen by 0.6 months beyond its current value of 2 months, and the CH4 lifetime in 2100

would exceed its current value (9 years) by 2.5 years in the reference (RRR) case.
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Although the higher water-vapor concentrations associated with a warmer climate help

offset a certain amount (about 14 to 17% according to this research) of emission-induced

reductions in OH concentration, none of the predicted climate changes prevent the predicted

reduction in tropospheric OH concentrations and related increases in CO and CH4 lifetimes.

Our research indicates that sustaining OH at current levels will require a cessation or reversal

of the predicted trends of increasing emissions of CO and especially CH4 in the future.

Quantitative differences between this work and earlier work2 exist, due to the more

comprehensive approach including economic and climatic predictions used in this research.

Our results indicate that effects on OH of the increase of CH4 emissions, based on the

prediction of the economic development model,6 are more substantial than those caused by the

increase of CO emissions. Consequently, lowering the future emissions of CH4 is more

important for limiting future depletion of tropospheric OH than lowering the emissions of CO.

Future emissions of CH4 are thus very important to both climate change and tropospheric

chemistry change (represented by the OH concentrations).


