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Climatology and Trends in the Forcing of the Stratospheric Zonal-Mean Flow

Erwan Monier* and Bryan C. Weare†

Abstract

The momentum budget of the Transformed Eulerian-Mean (TEM) equation is calculated using the European
Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40). This study outlines the
considerable contribution of the dissipative forcing, identified as a gravity wave drag, to the forcing of the
zonal-mean flow. A trend analysis shows that, in recent times, the onset and break down of the Northern
Hemisphere (NH) stratospheric polar night jet occur later. This temporal shift is associated with long-term
changes in the planetary wave activity that are mainly due to synoptic waves. In the Southern Hemisphere
(SH), the polar vortex shows a tendency to persist further into the SH summertime. This is explained by a
statistically significant decrease in the intensity of the stationary EP flux divergence over the 1980–2001
period. The prevailing theory explaining the long-term changes in the stratospheric polar vortex postulates
that ozone depletion leads to a strengthening of westerly winds which in turn causes the reduction in wave
activity in high latitudes. We show that the strongest component in the dynamical response to stratospheric
ozone changes is in fact the feedback of planetary wave activity on the zonal wind. Finally, we identify
long-term changes in the Brewer-Dobson circulation that are mainly caused by trends in the planetary
wave activity during winter and by trends in the gravity wave body force otherwise.
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1. INTRODUCTION

Understanding stratospheric dynamics, its variability and interaction with photochemical
processes has become increasingly important for the climate community. In the last decade, there
has been growing evidence that the stratosphere can significantly influence the tropospheric
weather and climate (Haynes, 2005). Baldwin and Dunkerton (2001) found that large circulation
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anomalies in the lower stratosphere precede tropospheric anomalies in the Arctic and North
Atlantic Oscillations, and in the location of storm tracks. Therefore, variations in the general
circulation of the stratosphere could provide additional tropospheric extended-range forecasting
skills (Baldwin and Dunkerton, 2001; Kuroda, 2008). There are many theories describing how the
stratosphere can impact the troposphere, such as the downward reflection of wave flux (Perlwitz
and Harnik, 2003) or the downward control (Song and Robinson, 2004). (Hartley et al., 1998;
Black, 2002) have shown that any change in the potential vorticity (PV) in the lower stratosphere
induces instantaneous changes in wind and temperature at the tropopause that lead to feedbacks
on the troposphere. Also, several studies reveal that the Arctic Oscillation (AO) can propagate
downward from the stratosphere to the troposphere (Baldwin and Dunkerton, 1999; Kuroda and
Kodera, 1999, 2004; Limpasuvan et al., 2005). Finally, Ineson and Scaife (2009) show that the
stratosphere plays a significant role in the European climate response to El Niño-Southern
Oscillation (ENSO). For these reasons, a comprehensive understanding of the stratospheric
dynamics variability and its causes is necessary in order to fully appreciate the potential impact of
the stratosphere on climate change.

In addition, several studies have shown that the stratospheric dynamics have undergone
significant changes in the last few decades. The Southern Hemisphere (SH) stratosphere exhibits
a trend towards stronger westerly winds in the summer-fall season, producing a delay in the
breakup of the polar vortex (Thompson and Solomon, 2002; Renwick, 2004). Karpetchko et al.
(2005) show that wave forcing is not responsible for this long-term change and the trend is mainly
attributed to Antarctic ozone depletion. As ozone loss in the polar region leads to an enhanced
meridional temperature gradient near the subpolar stratosphere, it also results in the strengthening
of westerly winds through thermal wind balance. Likewise, long-term trends in the Northern
Hemisphere (NH) stratospheric dynamics have been identified. Hu and Tung (2003) detect a
significant decline in wave activity in the higher latitudes, which starts from the early 1980s and
exists only in late winter and springtime. This is consistent with the findings of Karpetchko and
Nikulin (2004) who show a decrease in the vertical propagation of waves into the NH stratosphere
in January and February. Additionally, Karpetchko and Nikulin (2004) reveal an increase in
vertical propagation of waves in November and December. A study of the long-term changes in
stratospheric wave activity by Kanukhina et al. (2008) indicates an intensification in the
stationary planetary wave number 1 activity in the lower stratosphere polar region over the last 40
years. Hu and Tung (2003) propose a similar mechanism as in the SH whereby ozone depletion
induces stronger westerly winds which refract planetary waves toward low latitudes and cause the
reduction in wave activity in high latitudes. However, Karpetchko and Nikulin (2004) do not find
any statistically significant trend in the winter zonal winds. Thus, there is still a lot of uncertainty
in the source and the mechanism responsible for the various trends seen in the stratospheric
dynamics.

The aim of this study is to investigate the role of the dynamical forcing in driving the
stratospheric zonal-mean flow and its long-term changes, using a thorough budget analysis of the
Transformed-Eulerian Mean (TEM) formulation of the momentum equation with the European
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Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40). The TEM
formulation offers a useful diagnostic to interpret the forcing of the zonal-mean flow by eddies
(Andrews et al., 1983). This work provides a deeper look into the contribution of planetary
waves, their stationary and transient components, as well as gravity waves, to the forcing of the
stratospheric zonal-mean zonal wind and the residual mean meridional circulation. Such analysis
is vital as the impacts of ozone depletion and wave activity variability on the long-term changes in
stratospheric dynamics are not yet fully understood. This paper is organized as follows. The data,
the equations and the basic description of the various eddy flux terms involved in the TEM
formulation are briefly introduced in Section 2. Section 3 provides the results of the budget
analysis of the climatology and trends of the stratospheric zonal-mean flow and its dynamical
forcing. Finally, the discussion and concluding remarks are presented in Section 4.

2. DATA AND METHODOLOGY

2.1 Data

In this study, we use the six-hourly ERA-40 re-analysis (Uppala et al., 2005) in order to
calculate the various terms involved in the Transformed Eulerian-Mean formulation of the
momentum equation. These terms include flux quantities like the Eliassen-Palm flux and the
residual mean meridional circulation. The ERA-40 was chosen because it provides a complete set
of meteorological data, over the whole globe on a 2.5◦ x 2.5◦ grid and over a large time period
(1957–2001). Several studies have demonstrated the quality and usefulness of the ERA-40 data in
the stratosphere. The annual cycle of the lower stratosphere in the ERA-40 compares well with
other re-analysis datasets and the ERA-40 representation of the QBO is excellent up to 10 hPa
(Pascoe et al., 2005). The monthly mean ERA-40 temperatures and zonal winds in the lower
stratosphere compare well with the NCEP-National Center for Atmospheric Research (NCAR)
reanalysis-1 after 1979 (Karpetchko et al., 2005). In addition, Knudsen et al. (2004) show that
winter-averaged polar stratospheric cloud (PSC) areas in the NH, obtained from the ERA-40 and
from the Free University of Berlin (FUB) analysis, which is largely independent of satellite data,
agree well in most years. The ERA-40 dataset shows several weaknesses, such as an enhanced
Brewer-Dobson circulation (van Noije et al., 2004; Uppala et al., 2005) or vertically oscillating
stratospheric temperature biases over the Arctic since 1998 and over the Antarctic during the
whole period (Randel et al., 2004). Also, the ERA-40 re-analysis is unrealistic in the SH
stratosphere during the pre-satellite era (Renwick, 2004; Karpetchko et al., 2005). Nonetheless,
the ERA-40 re-analysis provides a reasonably reliable dataset in the lower stratosphere during the
satellite era. For this reason, the climatological analysis of the wave forcing of the stratospheric
zonal-mean flow is performed over the years 1980 to 2001 and for pressure levels up to 10 hPa.
Finally, the National Oceanic and Atmospheric Administration (NOAA) interpolated Outgoing
Longwave Radiation (OLR) daily dataset (Liebmann and Smith, 1996) is used as a proxy for
convection.
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2.2 Methodology

2.2.1 Transformed Eulerian-Mean formulation

This study uses the Transformed Eulerian-Mean (TEM) formulation of the momentum
equation in log-pressure and spherical coordinates in order to accurately diagnose the eddy
forcing of the stratospheric zonal-mean flow. In spherical geometry, the TEM zonal momentum
equation is (based on Equation 3.5.2a from Andrews et al. (1987)):

∂u

∂t︸︷︷︸
Momentum tendency

= fv?︸︷︷︸
Coriolis force

− v?

a cosφ

∂

∂φ
(u cosφ)− w?uz︸ ︷︷ ︸

Advective terms

+
1

ρ0a cosφ
∇ · ~F︸ ︷︷ ︸

EP flux divergence

+ X︸︷︷︸
Residual term

(1)

In Equation 1 and in the following equations, u is the zonal wind and the terms v?, w? are,
respectively, the horizontal and vertical components of the residual mean meridional circulation
defined by (Equations 3.5.1a and 3.5.1b from Andrews et al. (1987)):

v? = v − 1

ρ0

∂

∂z

(
ρ0
v′θ′

θz

)
(2)

w? = w +
1

a cosφ

∂

∂φ

(
cosφ

v′θ′

θz

)
(3)

where the overbars and primes indicate respectively the zonal means and departures from the
zonal mean. θ is the potential temperature, v is the meridional wind and w is the vertical wind.
∇ · ~F is the divergence of the Eliassen-Palm (EP) flux vector and represents the divergence of the
eddy heat and eddy momentum fluxes. The EP flux vector ~F is defined by (Equations 3.5.3a and
3.5.3b from Andrews et al. (1987)):

~F (φ) = ρ0a cosφ

(
uz
v′θ′

θz
− v′u′

)
(4)

~F (z) = ρ0a cosφ

[(
f − 1

a cosφ

∂

∂φ
(u cosφ)

)
v′θ′

θz
− w′u′

]
(5)

Finally, X represents unspecified horizontal components or friction or other dissipative
mechanical forcing (such as gravity wave drag), which is calculated as the residual of the other
terms.

Dunkerton (1978) showed that the Brewer-Dobson circulation should be interpreted as a
Lagrangian mean circulation and could be approximated by the residual mean meridional
circulation of the TEM equations. As a result, the residual mean meridional circulation is often
used as a diagnostics for the Brewer-Dobson circulation (Callaghan and Salby, 2002; Nikulin and
Karpechko, 2005; Miyazaki and Iwasaki, 2005; Eichelberger and Hartmann, 2005). Thus the
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various processes forcing the zonal momentum tendency that are investigated in this study are
separated into four categories: the Coriolis force due to the Brewer-Dobson circulation, the
advection of zonal momentum by the Brewer-Dobson circulation, the divergence of the EP flux or
planetary wave forcing, and the dissipative forcing. Additionally, from here on, when we refer to
the EP flux divergence, or∇ · ~F , we indicate the EP flux forcing term in Equation 1, including the
weight by the density, the Earth’s radius and cosine of latitude. The signs shown in Equation 1 are
included in the various displayed terms. Each term is calculated using the six-hourly ERA-40
dataset. Finally, all derivatives are computed using centered finite differences.

2.2.2 Stationary and transient components

Because stratospheric dynamics are primarily driven by planetary waves, whether directly or
indirectly, it is useful to decompose the zonal momentum forcing into contributions from
stationary and transient waves. Stationary planetary waves are excited by the orography (Charney
and Eliassen, 1949), especially in the NH, as well as by land-sea heating contrasts, which vary on
the season time scale. Planetary transient waves, on the other hand, have smaller time scales
ranging from a few days to a couple weeks and dominate synoptic weather patterns. The
stationary components are computed by averaging temperature and wind fields over a month and
then calculating the various terms of the TEM formulation. Once the stationary component is
removed from the total term, which is calculated every six hours, only the contribution from the
transient waves is left (Madden and Labitzke, 1981).

3. CLIMATOLOGY OF THE STRATOSPHERIC ZONAL-MEAN FLOW

3.1 Seasonal cycle of the zonal momentum budget

Figure 1 presents the annual cycle of the zonal-mean zonal wind, its tendency and forcing
terms, averaged between 100 and 10 hPa for the 1980–2001 period. The annual cycle of the zonal
flow shows distinct and well-known features such as the wintertime stratospheric polar night jets,
strongest in the SH, and the latitudinal migration of the stratospheric tropical easterlies with the
seasons (Oort, 1983; Andrews et al., 1987; McWilliams, 2006). In the NH, the maximum in the
stratospheric polar vortex westerlies occurs between December and February and is centered on
60◦N, while weak easterlies are present from May to July. In the SH, the maximum in the
westerlies occurs later in the winter than in the NH, between July and September, and is centered
on 60◦S. The zonal momentum tendency displays a clear seasonal cycle in the NH with an
increase from July until December and a decrease from January until June with two distinct peaks
(in the polar region and in the subtropics). In the SH, the momentum tendency presents a more
complex structure with an increase lasting longer than in the NH, from January until August and a
brief and intense decrease from September to December taking place mainly in the midlatitudes
and polar region.

The Coriolis force due to the Brewer-Dobson circulation is characterized by a westward
forcing all year long except right along the Equator where its forcing is close to zero. The
Coriolis force displays a pronounced seasonal cycle in the NH with a broad maximum in the
midlatitudes from November to January and a minimum in June and July. In the SH, the Coriolis
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Figure 1. Annual cycle of the stratospheric zonal wind, zonal wind tendency and each forcing term in the
TEM momentum equation averaged between 100 and 10 hPa. Dashed (solid) lines and blue (brown)
colors represent negative (positive) values while the bold solid line represent the zero-line. Contour
spacing is 6 m s−1 for the zonal wind and 0.5 m s−1 day−1 for the zonal wind tendency. Note that the
zonal wind tendency and advective terms are weak compared to the other terms and are therefore
multiplied by 5.

forcing presents two distinct peaks, weaker than in the NH, a brief and sharp maximum centered
on 60◦S from October to December and the other in the subtropics from May to July. Although
much weaker than the other forcing terms, the advection of zonal momentum by the
Brewer-Dobson circulation shows a clear seasonal annual cycle with the strongest forcing
occurring in the wintertime. The advective terms correspond to a westward forcing in the polar
region and an eastward forcing in the tropics in both SH and NH. The EP flux divergence consists
of a continuous eastward forcing, strongest in the midlatitudes and present in both hemispheres.
Like the Coriolis force, the EP flux divergence experiences a broad maximum from early winter
until late spring in the NH and a sharp and brief peak in spring in the SH. Finally, the dissipative
term contributes to a westward forcing during wintertime in the subtropics and polar regions.

The fact that the forcing of the stratospheric zonal wind takes place mainly in wintertime,
particularly in the NH, is consistent with the finding of Charney and Drazin (1961) who showed
that planetary Rossby waves can only propagate upward toward the stratosphere when the zonal
wind is westerly but not too strong, which occurs in the wintertime in the NH. In the SH winter,
the westerly winds are much stronger than in the NH and as a result they inhibit the vertical
propagation of planetary waves into the stratosphere. This leads to a delay in the forcing of the
stratospheric zonal wind. The EP flux divergence, which represents the westward force on the
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zonal-mean flow due to vertically propagating planetary waves breaking and dissipating into the
stratosphere, is primarily responsible for the deceleration of the polar night jets. This deceleration
is partially balanced by the Coriolis force due to the Brewer-Dobson circulation. While the
advective terms have small magnitudes compared to the EP flux and Coriolis terms, they have the
same magnitude as the zonal momentum tendency and thus cannot be entirely neglected. Finally,
the dissipative forcing displays magnitudes similar to the EP flux term, particularly in the NH
wintertime, and thus contribute to breaking down the polar night jets.

3.2 Vertical structure of the zonal momentum budget

An example of the vertical structure of the zonal-mean zonal wind, its tendency and forcing
terms for the months of January-February-March (JFM) in the NH, when the polar vortex is
breaking down, is presented in Figure 2. The mean zonal winds exhibit strong westerlies in the
subtropical lower stratosphere, corresponding to the top of the subtropical jet stream, and in the
upper stratosphere over the subpolar region, where the stratospheric polar night jet is located. At
the same time, the zonal momentum tendency acts to decelerate the strong westerlies in the polar
region, leading to the break down of the polar vortex. Figure 2 shows that the EP flux divergence
is negative over the whole region, with the strongest deceleration in the subtropical lower

Figure 2. Zonal-mean zonal wind, zonal wind tendency and its forcing terms in the NH averaged over
JFM 1980–2001. Dashed (solid) lines and blue (brown) colors represent negative (positive) values while
the bold solid line represent the zero-line. Contour interval is 0.5 m s−1 day−1 for the mean zonal wind
tendency and the forcing terms and 6 m s−1 for the mean zonal wind. Note that the zonal wind tendency
and advective terms are weak compared to the other terms and are therefore multiplied by respectively
5 and 3.
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stratosphere and subpolar upper stratosphere, and is largely balanced by the Coriolis force. The
relatively small impact of the advective terms is mainly confined to the upper stratosphere in the
polar region and to the tropics below 70 hPa. Finally, the dissipative forcing presents a clear
deceleration in the latitude band between 20-40◦N centered around 100 hPa with a maximum of
around 2 m s−1. It also shows a strong deceleration in the upper stratosphere polar region which
reaches values larger than 3 m s−1 near 10 hPa. The magnitudes of these values confirm that the
dissipative term plays a role in the momentum budget and thus requires a careful interpretation.

3.3 Dissipative term

The dissipative forcing consists of friction and any wave forcing not included in the divergence
of the EP flux, such as gravity wave drag or wave breaking. Although many studies crudely
parameterize the effects of wave dissipation using a simple Rayleigh friction coefficient
(Schoeberl and Strobel, 1978; Holton and Wehrbein, 1980; Seol and Yamazaki, 1999), thus
assuming a deceleration linear to the mean zonal wind, Shepherd and Shaw (2004) found that a
Rayleigh friction introduces a nonphysical momentum sink. Also, according to Haynes (2005), it
is difficult to argue that such a friction is at all relevant in the stratosphere. This budget analysis
reveals that the dissipative term shows similarities in sign and structure to a Rayleigh friction but
that its magnitude is one order magnitude too large to be explained by friction (if assuming a
Rayleigh friction coefficient of 1/(80 days) in the stratosphere like in Holton and Wehrbein
(1980)). Furthermore, the patterns of the dissipative forcing in this study are similar to the
structure of orographic gravity wave drag reported in several studies. For example, a January
simulation of orographic gravity wave drag in the Canadian Middle Atmosphere Model (CMAM)
shows a deceleration of 2-3 m s−1 day−1 centered around 100 hPa in the latitude band between
30-50◦N (McFarlane, 2000). Such gravity wave drag in the subtropical region is in reasonable
agreement with similar studies (Palmer et al., 1986) and radar measurements (Fritts and
Alexander, 2003). In addition, the CMAM simulation also shows a gravity wave drag in the upper
stratosphere, with maximum deceleration close to 5 m s−1 day−1 above 10 hPa at midlatitudes and
near the polar region. Therefore, the dissipative term in the subtropics, mid-latitudes and in the
polar region seems a reasonable representation of the orographic gravity wave drag. In the
ERA-40, the influence of subgrid-scale orography on the momentum of the atmosphere is
represented by a combination of lower-troposphere drag created by orography and vertical
profiles of drag due to the absorption and reflection of vertically propagating gravity waves
generated by stably stratified flow over the subgrid-scale orography. The scheme is described in
detail in Lott and Miller (1997).

Figure 3 shows a vertical cross-section of the dissipative term in the tropics for the months of
January and July, as well as its annual cycle superposed onto OLR anomalies. The dissipative
forcing exhibits positive values near the Equator for both months, corresponding to westerly
acceleration. Since the prevailing winds are easterly in the tropical region, the dissipative forcing
decelerates the zonal-mean zonal wind. In January, the drag force is located south of the Equator
and reaches 0.4 m s−1 day−1 above 100 hPa while it is located north of the Equator in July and
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Figure 3. Latitude-height cross-section of the dissipative term in the TEM momentum equation for (a)
January and (b) July. Dashed (solid) lines and blue (brown) colors represent negative (positive) values
while the bold solid line represent the zero-line. Contour interval is 0.1 m s−1 day−1. (c) Annual cycle of
the dissipative term (black contour lines) overlaid on the OLR departures from the annual mean aver-
aged between 25◦S-25◦N (color shading with white contour lines). Dashed (solid) black lines represent
negative (positive) values while the bold solid line represent the zero-line for the dissipative term. Blue
(brown) colors with dashed (solid) white lines represent negative (positive) values for the OLR. Contour
interval is 0.1 m s−1 day−1 for the dissipative term and 5 W m−2 for the OLR.

shows stronger accelerations, reaching up to 0.5 m s−1 day−1. These results are similar to
zonal-mean zonal wind tendency due to the gravity wave drag forced by subgrid-scale cumulus
convection in the National Center for Atmospheric Research Community Climate Model (NCAR
CCM3) presented by Chun et al. (2004). The seasonal cycle of the dissipative forcing displays a
migration of the westerly acceleration with latitude across the Equator between boreal and austral
summers that mirrors that of OLR. In effect, the dissipative forcing over the tropics exhibits
westerly acceleration following the Inter-Tropical Convergence Zone (ITCZ), with magnitudes
consistent with a gravity wave drag forced by convection. This confirms that the dissipative term
displays the characteristics of a gravity wave drag, whether forced by orography or convection.
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3.4 EP flux term

While the dissipative term seems to contribute to the break down of the polar vortex, the main
forcing in the deceleration of the zonal wind in the NH wintertime is the EP flux divergence. An
example of the vertical structure of the EP flux vector, the EP flux divergence and its horizontal
and vertical components for JFM is shown in Figure 4. A distinct property of the EP flux
divergence is the competition between its two components, which largely cancel each other in the
extratropics. ∇ · ~F (φ) is dominated by the horizontal divergence of the meridional eddy
momentum flux and∇ · ~F (z) is controlled by the vertical divergence of the meridional eddy heat
flux (Andrews et al., 1987). Figure 4 underlines the fact that while the eddy momentum flux and
eddy heat flux have opposite contributions, they do not act separately but in combination, with a
net impact resulting in a westward body force that breaks down the polar vortex in the NH
wintertime. In addition, the presence of a greater land area and topography distribution in the NH
results in a stronger contribution from stationary processes, which are forced by topography and
land-sea heating contrasts. The main difference between the stationary and transient components
resides in the presence of a distinct divergence of the transient EP flux in the polar region upper
stratosphere. While considerable divergence of EP flux can happen during sudden stratospheric
warming events (Palmer, 1981), it is unclear why it is removed from the climatology mean.

Under the WKBJ (Wentzel-Kramers-Brillouin-Jeffreys) approximation and when dealing with
planetary waves with small latitudinal and vertical wavelength, it can be shown that the EP flux
vector is proportional to the local group velocity projected onto the meridional plane (Edmon Jr
et al., 1980). Thus, ~F can be thought as a diagnostic tool for the net propagation of energy by
planetary waves from one region, at one latitude and one height, to another. Figure 4 indicates
that, in the NH wintertime, the vertical component of the EP flux vector, dominated by the
meridional eddy heat flux, is oriented upward and decreases with height, leading to a net
convergence. In other words, as Rossby planetary waves propagate upward into the stratosphere,
their energy weakens with height through dissipation. Concurrently, the horizontal component of
the EP flux vector shows that planetary waves propagating into the stratosphere are bent away
from the stratospheric polar night jet toward the Equator at midlatitudes and toward the pole in
the lower stratosphere polar region, leading to a strong divergence of the meridional eddy
momentum flux superposed onto the location of the strong westerlies. Consequently, the
cancellation between the components of the EP flux divergence is the result of the refraction of
planetary waves around the stratospheric polar night jet. Indeed, the effective index of refraction
for the planetary waves depends primarily on the distribution of the zonal mean wind with height
and energy can be reflected in regions where the zonal wind is westerly and large, like the
stratospheric polar night jet (Charney and Drazin, 1961).

A similar analysis of the EP flux terms for the SH reveals that the main difference between the
two hemispheres is the stronger contribution of transient wave forcing. The contribution of
stationary processes is mostly limited to the polar region, where the presence of the asymmetric
Antarctic topography and ice-sea heating contrasts drives stationary wave activity (Parish et al.,
1994; Lachlan-Cope et al., 2001).
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Figure 4. Same as Figure 2 but for the EP flux divergence, its horizontal and vertical components, and
the EP flux vector, including stationary and transient components. Blue (brown) colors with dashed
(solid) white lines represent negative (positive) values for ~F (φ). Dashed (solid) black lines represent
negative (positive) values while the bold solid line represent the zero-line for ~F (z). Contour spacing is
0.5 m s−1 day−1 for the EP flux divergence and its horizontal and vertical components, 106 kg s−2 for
~F (φ) until 5x106 kg s−2 and 5x106 kg s−2 above, and 104 kg s−2 for ~F (z). Note that the horizontal and
vertical components of the EP flux divergence are large compared to the EP flux divergence and are
therefore multiplied by 0.5.
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3.5 Correlations of zonal momentum forcing

To gain more insight into the relative contribution of the forcing terms to the zonal wind
variability, spatial correlation coefficients between the forcing terms are calculated and shown in
Figure 5. This analysis is similar to the statistics presented in Pfeffer (1992), but is extended to a
22-year daily climatology, includes an analysis of the stratosphere and focuses only on one
hemisphere at a time to account for the strong seasonality of the wave-mean flow interaction in
the stratosphere. Figure 5 reveals that, in the troposphere, the spatial correlation coefficients have
little seasonal variability. Overall, the tropospheric zonal momentum tendency is highly
correlated with∇ · ~F (φ) but not with∇ · ~F (z). Meanwhile, the Coriolis and advective terms
exhibit a high negative correlation with∇ · ~F (z), reflecting the fact that the wave drag exerted by
∇ · ~F (z) is consumed by driving the Brewer-Dobson circulation, thereby negating its effect on the
eddy-induced momentum tendency. Even though the horizontal EP flux is much smaller than its
vertical component in the troposphere, it explains most of the temporal variability of the mean
zonal flow. This fact is due to the latitudinal and vertical distribution of the stratification
parameter that gives more weight to the forcing by the divergence of the horizontal EP flux than
to the forcing by the vertical EP flux (Pfeffer, 1987). In the troposphere,∇ · ~F (z) and ∇ · ~F (φ)

have very different impacts on the mean zonal flow and are not at all correlated.
In the stratosphere, the correlation coefficients present a strong seasonality due to the absence

of planetary wave propagation into the stratosphere at midlatitudes in summer. As a result, the
contribution of the sum of the Coriolis, advective and dissipative terms to the zonal momentum
tendency is very strong in the summertime, with correlation above 70%. ∇ · ~F (φ) and ∇ · ~F (z)

present a moderate anti-correlation, implying they act in combination. As a result, the momentum
tendency is more correlated to∇ · ~F than to each of its components. This analysis identifies the
more intricate role of the vertical EP flux divergence in driving the zonal current in the
stratosphere. The correlation between the momentum tendency and∇ · ~F is strongest in March,
when it reaches 50%. Finally, unlike in the troposphere, the Coriolis and advective terms are
poorly correlated with∇ · ~F (z) or even∇ · ~F . Instead they show a high negative correlation with
the dissipative term, which corresponds to gravity wave activity. Therefore, this analysis suggests
that, in the Northern Hemisphere, gravity waves may play an equally large role as planetary
waves in driving the Brewer-Dobson circulation. The same correlation analysis was done to the
Southern Hemisphere and yields similar results so the same interpretation can be applied to the
stratospheric wave forcing in the SH.

An alternative explanation for the strong anti-correlation between the dissipative term and the
Coriolis and advective terms is the Brewer-Dobson circulation, which has a strong bias all year
long in the ERA-40 (van Noije et al., 2004; Uppala et al., 2005). When calculating the dissipative
term as the residual of the other forcing terms, a bias in the Brewer-Dobson circulation could lead
to an artificial bias of opposite sign in the residual term, resulting in a strong anti-correlation
between both terms. However, since the structure and magnitude of the dissipative term are
consistent with a gravity wave drag, any bias introduced by the Brewer-Dobson circulation seems
to be weak. For this reason, we consider in the following work that the dissipative term is indeed
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Figure 5. Time variations of spatial correlations over the Northern Hemisphere in the troposphere (blue
lines), up to 250 hPa, and in the stratosphere (brown lines), between 150 and 10 hPa, between the
different terms and their components of the TEM momentum equation. Correlation coefficients were
calculated every 6 hours over the time period 1 Jan 1980–31 Dec 2001.
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representative of the gravity wave activity.

4. TRENDS IN THE WAVE FORCING OF THE STRATOSPHERIC ZONAL-MEAN
MOMENTUM

4.1 Zonal-mean zonal wind

The long-term trends and interannual variability of the lower and middle stratosphere
zonal-mean zonal wind are investigated in Figure 6. The variances and trends are calculated after
the zonal-mean zonal wind is averaged between 100 and 10 hPa. The zonal wind displays a large
variance, representing its interannual variability, in the tropics all year long that corresponds to
the Quasi-Biennial Oscillation (QBO). The tropical variability shows a maximum in variance
during the NH late spring, which is consistent with the fact that the onset of both easterly and
westerly QBO phases occurs mainly during NH late spring at the 50 hPa level (Dunkerton, 1990;
Baldwin et al., 2001). Since the period of the QBO is variable and because the duration of each
phase at any level is long compared with the transition time, the strongest variability tends to
occur near the phase transition. Outside of the tropics, the zonal wind variance is large in the
polar region and is associated with the breakdown of the polar night jet, from early winter until
early spring in the NH and limited to the late spring in the SH. The trend analysis reveals a
long-term increase in the SH zonal wind from November until January, indicating that the SH
polar vortex tends to persist longer in recent summers than in the earlier part of the record. In
particular, the SH zonal wind has increased in December at a rate of 3.5 m s−1 per decade and at a
99% significance level (calculated using a Student’s t-test). This result is in agreement with

Figure 6. Annual cycle of the zonal wind sample variance and trend. The variances and trends are cal-
culated after the zonal wind is averaged between 100 and 10 hPa. Dashed blue (solid brown) lines
represent negative (positive) values while the bold solid line represents the zero-line. Light grey (dark
grey) shading represents the 85% (95%) statistical significance level of the trends. Contour spacing is
10 m2 s−2 for the variance and 1 m s−1 per decade for the trend.
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several studies (Thompson and Wallace, 2000; Thompson and Solomon, 2002; Renwick, 2004;
Karpetchko et al., 2005). Several recent years (1998, 1999 and 2001) display strong westerlies
close to 10 m s−1 in December, compared to the 22-year mean which is close to zero. In the NH, a
clear and significant negative trend in the zonal wind is present in the late fall and early winter
while positive trends occur during the breakdown. This indicates a temporal shift in the timing of
the NH polar vortex which is pushed further into the winter. In December, the zonal wind has
weakened at a rate of over 4 m s−1 per decade, with a 95% statistical significance level.
Meanwhile the March westerlies have strengthened, at a rate close to 3 m s−1 per decade, with a
87% significance level. While that trend shows a moderate statistical significance in this analysis,
it is similar to results by Thompson and Wallace (2000) who show that the westerlies near 55◦N
have increased by as much as 10 m s−1 over 30 years (1968-1997) at 50 hPa. The modest
statistical significance found in this work is likely due to the averaging done over pressure levels.

4.2 Wave forcing of zonal momentum budget

Figure 7 shows the annual cycle of the linear trends over 1980–2001 of the momentum
tendency and its forcing terms. In the NH, positive trends in the Coriolis and advective terms are
present from April until November and are largely balanced by opposite trends in the dissipative
terms. In winter, the Coriolis and advective terms experience negative trends that are offset by
positive trends in the EP flux divergence, which correspond to a long-term weakening of the
planetary wave activity. The intensification of the Brewer-Dobson circulation seen in spring,
summer and fall is consistent with the response to a doubled CO2 climate (Eichelberger and
Hartmann, 2005; Butchart et al., 2006; Haklander et al., 2008) and appears to be primarily driven

Figure 7. Annual cycle of the trends in the momentum tendency and its forcing terms, for the (left) NH
and the (right) SH. The trends are calculated after the momentum tendency and its forcing terms are
averaged between 100 and 10 hPa and between 50◦-70◦. Trends that are statistically significant at the
90% level are indicated with a cross.
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by long-term changes in the gravity wave drag. The temporal shift in the polar vortex can be
attributed to a decrease in the EP flux in late fall and winter, followed by an increase in early
spring. The trends in the planetary wave forcing precede the trends in the zonal wind by one
month, showing causality. In November, the EP flux divergence has decreased at a rate of
0.15 m s−1 day−1 per decade and a significance level of 82% while it has increased in February at
a rate of 0.21 m s−1 day−1 per decade and significance level of 70%. These weak levels of
significance are possibly due to the large averaging area (100 to 10 hPa and 50◦-70◦) so that
further analysis without the averaging is necessary to determine whether the trends in the
planetary wave activity are real or not. In the SH, the Coriolis and advective terms exhibit positive
trends in summer and fall and negative trends elsewhere. Like in the NH, these long-term changes
are largely balanced by trends of opposite signs in the dissipative forcing, except when the trends
in the EP flux divergence are large (in November and December). The persistence of the polar
vortex in the SH late spring can be explained by a significant trend in the zonal momentum
tendency in November associated with a long-term weakening of the wave activity. In November,
the EP flux divergence has decreased at a rate of 0.46 m s−1 day−1 per decade at the 97.5%
statistical significance level. While Karpetchko et al. (2005) find no decrease in the heat flux and
conclude that the planetary wave forcing is not responsible for the more persistent polar vortex,
they solely focus on the month of October. This analysis shows that a weakening in the planetary
forcing does indeed take place, but in the month of November. While the trends in the Coriolis
and advective terms mirror that of the dissipative term over most of the year in both hemispheres,
they do not during the NH winter and during the SH late spring. This further demonstrates that
the relationship between the Brewer-Dobson circulation and the dissipative term is not
constrained by an artificial bias due to the enhancement of the Brewer-Dobson circulation, which
is present all year long in the ERA-40. Instead, it points toward a physical interaction where
gravity wave drag plays a significant role in driving the residual mean meridional circulation
when the planetary wave activity is weak.

Figure 8 shows latitude-height cross-sections of the trends in the EP flux vector and its
divergence in the SH for the month of November, with the contribution of stationary and transient
waves. It indicates a strong and significant decrease in the intensity of the EP flux divergence in
the polar region between 100 and 10 Pa, statistically significant at the 90% level. In addition, the
trends in the vertical component of the EP flux demonstrates that significantly less energy is being
transported vertically into the stratospheric polar region by planetary waves, especially by
stationary waves. Meanwhile, trends in the horizontal component of the EP flux are weak and not
significant. A similar analysis is done for the month of February in the NH and shown in
Figure 9. A significant decrease in the strength of the EP flux divergence is present in the
subpolar and polar region below 100 hPa and above 20 hPa with competing contribution from
stationary (intensification) and transient (weakening) waves. Overall, the trend analysis of the EP
flux divergence is noisy and does not paint a clear picture. However, the EP flux vector exhibits
more distinct patterns. Significantly less energy is transported vertically into the stratosphere by
transient waves in the later years. Meanwhile a positive trend in the vertical component of the
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Figure 8. Trends in the EP flux vector and its divergence, including stationary and transient components,
for the month of November in the SH. Dashed (solid) lines represent negative (positive) values while the
bold solid line represent the zero-line. Light blue (light brown) color represents the 80% statistical sig-
nificance level of negative (positive) trends. Dark blue (dark brown) color represents the 90% statistical
significance level of negative (positive) trends. Contour spacing is 0.2 m s−1 day−1 per decade for the
EP flux divergence, 2x105 kg s−2 per decade for ~F (φ) and 2x103 kg s−2 per decade for ~F (z).

stationary EP flux vector is present north of 60◦, consistent with the findings of Kanukhina et al.
(2008), but this trend is not statistically significant and thus should be disregarded. Moreover, this
analysis shows a significant tendency toward more poleward refraction of stationary waves in the
polar region and of transient waves at mid-latitudes. The study of the trends in the NH EP flux
forcing for the month of November (not shown) reveals an increase in wave activity, which is
statistically significant at midlatitudes and at several pressure levels in the polar region. This
increase is principally due to transient waves propagating from the troposphere into the
stratosphere significantly more in the later years. Concurrently, the equatorward refraction of
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Figure 9. Same as Figure 8 but for the month of February in the NH. Contour spacing is 0.5 m s−1 day−1

per decade for the EP flux divergence, 5x105 kg s−2 per decade for ~F (φ) and 5x103 kg s−2 per decade
for ~F (z).

planetary waves is greatly increased.
The systematic analysis of trends in the EP flux vector and its divergence reveals tendencies

consistent with that of the polar night jet. While the statistical significance and the contribution of
the stationary and transient components differ between the two hemispheres, a significant
decrease in the planetary wave activity occurs one month before the strongest and most significant
positive trend in the zonal-mean zonal wind that correspond to a delay in the breakdown of the
polar vortex. Also, in the NH early winter, an increase in planetary wave activity is followed, a
month later as well, by a decrease in the strength of the polar vortex. Finally, the increase and
decrease of wave activity in the NH early winter and late winter, respectively, are very similar in
nature while simply opposite in sign.
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5. DISCUSSION AND CONCLUSION

A careful analysis of the budget of the TEM momentum equation in the ERA-40 re-analysis
was carried out. It provides further insight into the role of the planetary wave and gravity wave
forcing on the stratospheric zonal-mean flow. The resolved terms in the momentum equation are
the zonal momentum tendency, the Coriolis force and advective terms due to the Brewer-Dobson
circulation, and the Eliassen-Palm flux divergence, which is a measure of the planetary wave
forcing. In addition, a dissipative forcing term is calculated as the residual term in the TEM
momentum equation. The climatology of the resolved forcing terms is consistent with the
wave-mean flow interaction theory, as the EP flux divergence contributes to the breakdown of the
polar vortex while being balanced by the Coriolis force due to the Brewer-Dobson circulation. In
addition, the dissipative forcing displays the correct features of a gravity wave drag, including
location, seasonality and magnitude compared to model simulations and measurements. As a
result, the momentum budget based on the TEM framework presented in this study provides a
reasonable method to investigate the dynamical forcing in the stratosphere over the whole globe
and over long time periods using re-analysis datasets. The momentum budget outlines the
considerable contribution of the dissipative forcing in driving the stratospheric circulation, as it
exhibits magnitudes similar to that of the EP flux divergence in some regions of the stratosphere.
Gravity waves may play an equally large role as planetary waves in driving the Brewer-Dobson
circulation, especially during spring, summer and fall. Therefore, the gravity wave drag should
not be entirely dismissed from research related to the wave forcing of the stratospheric dynamics.

The trend analysis shows that there is a statistically significant weakening of the Northern
Hemisphere stratospheric polar night jet in December and a moderately significant strengthening
in March, hinting at a delay of the breakdown of the polar vortex. Both changes in the strength of
the westerly winds follow changes in the planetary wave activity, mainly due to transient waves,
with a delay of one month. This is consistent with the findings of Karpetchko and Nikulin (2004)
who observed a decrease in the heat flux in January and February in the NCEP-NCAR-reanalysis.
In their study, Karpetchko and Nikulin (2004) fail to link the trend in the wave activity to changes
in the zonal-mean zonal wind because they only investigate trends in the polar night jet at the
same period, and not a month later. This underlines the importance of a thorough analysis of the
seasonality of the long-term changes in the stratospheric dynamics. In the Southern Hemisphere,
the polar vortex also shows a tendency to persist further into the SH summertime. This is
explained by a statistically significant decrease in the intensity of the stationary EP flux
divergence. Thus, the two hemispheres differ in the source of the decrease in wave activity:
transient waves in the NH and stationary waves in the SH.

Several studies have attributed the delay in the breakdown of the SH polar vortex (Thompson
and Solomon, 2002; Renwick, 2004) to ozone depletion. Weare (2009) showed that there is a
distinct symmetric mode between the zonal wind and ozone in the SH and that this mode contains
a clear long-term trend. Hu and Tung (2003) advance a mechanism whereby ozone depletion
leads to an enhanced meridional temperature gradient near the subpolar stratosphere,
strengthening westerly winds. The strengthened winds would then refract planetary waves toward
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low latitudes and cause the reduction in wave activity in high latitudes. It is also possible that the
ozone depletion directly impacts the vertical propagation of planetary waves and in turn the zonal
wind, as suggested by the ozone-modified refractive index for vertically propagating planetary
waves introduced by Nathan and Cordero (2007), which accounts for how ozone photochemistry,
ozone transport, and Newtonian cooling can combine to modify wave propagation and drag on the
zonal-mean flow. While the strongest ozone trends over Antarctica take place from September to
November (Monier and Weare, 2010), the significant long-term changes in the zonal wind are
limited to the months November, December and January. This indicates a delay of two months in
the dynamical response of ozone depletion in the SH. The absence of any significant trends in the
zonal wind in September and October can be explained by the absence of eddy feedback. During
these months, the polar vortex is too strong to allow any vertical propagation of planetary waves
into the stratosphere so that trends in the planetary wave forcing are suppressed. Meanwhile, in
November when the polar vortex begins to break down, the vertically propagating waves can be
modulated by the strength of the westerlies (associated with ozone depletion) and provide a
strong positive feedback. In the NH, there is no delay between the ozone trend and the trends in
the zonal wind because the the timing of the ozone depletion coincides with the break down of the
polar vortex, in March (Monier and Weare, 2010). As a result, this analysis underlines the vital
role of planetary wave feedback in the dynamical response to ozone changes in the stratosphere.
Furthermore, this study shows that the dominant cause for the decrease in wave activity seems to
be a reduction in the vertical propagation of planetary waves and not a meridional bending as
proposed in Hu and Tung (2003). Especially, in the NH, the decrease in wave activity is
associated with a tendency for more poleward refraction and not equatorward.

Finally, long-term changes in the residual mean meridional circulation were found in both
hemispheres. In the NH, the Brewer-Dobson circulation significantly intensifies from spring to
fall as a result of increasing gravity wave drag. In winter, the strength of the residual circulation
weakens due to a decrease in the planetary wave activity. Meanwhile, the residual mean
meridional circulation intensifies in the SH during summer and fall and weakens during winter
and spring. These trends are driven by opposite trends in the dissipative term, except in November
and December when the long-term changes in the planetary wave forcing are large. This is
consistent with the fact that gravity wave driving is believed to dominate outside of the wintertime
in the stratosphere, when the EP flux divergence is small (Fritts and Alexander, 2003). This
underlines the considerable role of gravity waves in driving the Brewer-Dobson circulation and its
long-term changes. This is on par with the findings of McLandress and Shepherd (2009) who
show that parameterized orographic gravity wave drag account for 40% of the long-term trend in
annual mean net upward mass flux at 70 hPa.

While many studies rely solely on planetary waves to explain the stratospheric dynamics, this
budget analysis draws attention to the need to account for gravity waves. As a result, a strong
emphasis should be put on developing models with strong capabilities to accurately simulate
gravity waves, both orographic and convectively forced. There are many more issues that need to
be addressed regarding long-term changes in the stratospheric dynamics. Since ozone depletion
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can directly alter planetary wave activity in the stratosphere through ozone photochemistry, ozone
transport, and Newtonian cooling, there is a need for more theoretical and applied studies to
investigate these mechanisms. Similarly, the impact of climate change due to increasing
anthropogenic emissions of greenhouse gas on the wave activity in the stratosphere needs to be
better resolved. Finally, some limitations of the zonally-averaged framework are made clear in
this study and it is perhaps time to expand such budget analysis using a 3D formulation of EP flux
divergence and gravity wave drag.
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