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Climatology and Trends in the Forcing of the Stratospheric Ozone Transport

Erwan Monier* and Bryan C. Weare†

Abstract

A thorough analysis of the ozone transport was carried out using the Transformed-Mean Eulerian (TEM)
tracer transport equation and the European Centre for Medium-Range Weather Forecasts (ECMWF) Re-
Analysis (ERA-40). In this budget analysis, the chemical net production term, which is calculated as the
residual of the other terms, displays the correct features of a chemical sink and source term, including loca-
tion and seasonality, and shows a good agreement in magnitude compared to other methods of calculating
ozone loss rates. This study provides further insight into the role of the eddy ozone transport and underlines
its fundamental role in the recovery of the ozone hole during spring. The trend analysis reveals that the
ozone hole intensification over the 1980–2001 period is not directly related to the trend in chemical losses,
but more specifically to the balance in the trends in chemical losses and transport. That is because, in the
SH from October to December, the large increase in the chemical destruction of ozone is balanced by an
equally large trend in the eddy transport, associated with a small increase in the mean transport. This
study shows that the increase in the eddy transport is characterized by more poleward ozone eddy flux by
transient waves in the midlatitudes and by stationary waves in the polar region. This is primarily due to
the presence of storm tracks in the midlatitudes and of the asymmetric Antarctic topography and ice-sea
heating contrasts near the pole. Overall, this study makes clear of the fact that without an increase in the
eddy ozone transport over the 1980–2001 period, the ozone hole over Antarctica would be drastically more
severe. This underlines the need for careful diagnostics of the eddy ozone transport in modeling studies of
long-term changes in stratospheric ozone.
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1. INTRODUCTION

In the 1920s, chlorofluorocarbons (CFC) started replacing more toxic compounds like
ammonia, chloromethane or sulfur dioxide as refrigerants as well as propellants in aerosol cans,

* MIT Joint Program on the Science and Policy of Global Change, Cambridge, MA (E-mail: emonier@mit.edu).
† Atmospheric Science Program, Department of Land, Air and Water Resources, University of California, Davis.

1



fire extinguishers or cleaning solvents. In 1974, CFCs were identified as the major source of
ozone-destroying stratospheric chlorine (Molina and Rowland, 1974), a chemical element that
was shown could engage in a catalytic cycle resulting in ozone destruction (Stolarski and
Cicerone, 1974). Since then, countless observational studies have reported that the total column
ozone has decreased over many regions of the globe since about 1980, with particularly severe
ozone depletion over Antarctica in the spring, leading to what is now referred to as the ozone
hole. Over Antarctica, extreme low temperatures during winter and early spring facilitate the
formation of polar stratospheric clouds (PSCs), which support chemical reactions that produce
active chlorine, which goes on to catalyze ozone destruction. The adoption of the Montreal
Protocol in 1987, banning the production of CFCs and other ozone depleting chemicals, has made
the ozone hole a scientific success story and was called the most successful international
environmental agreement.

However, Molina and Rowland (1974) and Rowland and Molina (1975) pointed out that CFCs
have very long atmospheric residence times and they would continue to deplete the stratospheric
ozone well into the twenty-first century. While there has been clear evidence of a recovery since
the late 1990s, this fact was well illustrated by recent observations of the 2006 ozone hole, the
largest to date. As a result, the study of ozone depletion is still drawing a large interest, especially
since scientists are starting to acknowledge the impact of climate change on the stratosphere. In
the recent past, many observational and modeling studies have focused on the ozone variability
and trend (Brunner et al., 2006; Garcia et al., 2007; Randel and Wu, 2007; Fischer et al., 2008;
Jiang et al., 2008a,b). They all take advantage of the increasing high quality and diversity of
models and observational datasets. The onset of comprehensive ozone and meteorological
re-analysis allowed for a better analysis of the dynamics of the ozone transport in the stratosphere.
While Sabutis (1997) restricted his analysis of the mean and eddy transport of ozone to the period
15 January 1979 to 10 February 1979, many subsequent studies of the dynamics of the
stratospheric ozone transport were extended to larger datasets (Cordero and Kawa, 2001; Gabriel
and Schmitz, 2003; Miyazaki and Iwasaki, 2005; Miyazaki et al., 2005). A large effort has also
been devoted to the estimation of chemical ozone loss rates from observations using various
techniques such as the Match technique (Becker et al., 1998; Sasano et al., 2000), ozone-tracer
correlations (Richard et al., 2001), lagrangian transport models (Manney et al., 2003) or chemical
transport model passive substraction (Feng et al., 2005a,b; Singleton et al., 2005, 2007).
However, there is still a great deal of uncertainties in the accurate measurement of ozone chemical
rate loss over large periods of time. Other areas of research include the impact of climate change
on ozone (Jiang et al., 2007) or more theoretical studies such as the impact of the wave- and zonal
mean-ozone feedback on the stratospheric dynamics, including the quasi-biennial oscillation
(QBO) (Cordero et al., 1998; Cordero and Nathan, 2000) and the vertical propagation of
planetary waves (Nathan and Cordero, 2007). Overall, there seems to be a lack of thorough
analysis of the impact of wave-induced transport on the long-term changes in stratospheric ozone
based on meteorologically consistent three-dimensional ozone datasets.

Thus the aim of this study is to investigate the role of the various dynamical forcing on the
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transport of zonal-mean ozone and its long-term changes, using a thorough budget analysis of the
Transformed-Mean Eulerian (TEM) formulation of the tracer transport equation with the
European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40). The
TEM formulation offers a useful diagnostics to interpret the forcing of the ozone transport by
eddies (Andrews et al., 1983). This work intends on providing a more comprehensive
understanding of the contribution of planetary waves, their stationary and transient components,
to the transport of ozone. Such analysis is vital as the impact of long-term changes in ozone and
wave activity on the dynamics of the stratosphere is not yet fully understood.

2. DATA AND METHODOLOGY

2.1 Data

In this study we use the six-hourly ERA-40 re-analysis (Uppala et al., 2005) in order to
calculate the various terms involved in the Transformed Eulerian-Mean formulation of the ozone
transport equation. These terms include flux quantities like the eddy flux vector and the residual
mean meridional circulation. The ERA-40 was chosen because it provides a complete set of
meteorological and ozone data, over the whole globe on a 2.5◦ x 2.5◦ grid and over a long time
period (1957–2001). The ERA-40 compares well with independent ground-based Dobson
observations, Microwave Limb Sounder (MLS) satellite and ozonesonde data, both in total ozone
and in ozone profiles (Dethof and Hólm, 2004). The ERA-40 ozone field has also been compared
with Upper Atmosphere Research Satellite (UARS) and Measurements of Ozone and Water
Vapour by Airbus In-Service Aircraft (MOZAIC) measurements, showing broad agreement
(Oikonomou and O’Neill, 2006). The ERA-40 shows several weaknesses, such as an enhanced
Brewer-Dobson circulation (van Noije et al., 2004; Uppala et al., 2005) and a weaker Antarctic
ozone hole, and of less vertical extent, than the independent observations (Oikonomou and
O’Neill, 2006). There is also the presence of vertically oscillating stratospheric temperature
biases over the Arctic since 1998 and over the Antarctic during the whole period (Randel et al.,
2004). In addition, the pre-satellite ERA-40 data in the Southern Hemisphere (SH) stratosphere
are unrealistic (Renwick, 2004; Karpetchko et al., 2005). Nonetheless, the ERA-40 re-analysis
provides a reasonable ozone and meteorological dataset in the lower stratosphere during the
satellite era. For this reason, the climatological analysis of the wave forcing of the stratospheric
ozone transport is performed over the 1980 to 2001 period and for pressure levels up to 10 hPa.

2.2 Methodology

2.2.1 Transformed Eulerian-Mean formulation

This study uses the Transformed Eulerian-Mean (TEM) formulation of the zonal-mean tracer
transport equation in log-pressure and spherical coordinates in order to accurately diagnose the
eddy forcing of the zonal-mean transport of stratospheric ozone. In spherical geometry, the TEM
zonal-mean ozone transport equation is (based on Equation 3.72 from Brasseur and Solomon
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(2005) and on Garcia and Solomon (1983)):
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In Equation 1 and in the following equations, χ is the ozone volume mixing ratio and v?, w? are,
respectively, the horizontal and vertical components of the residual mean meridional circulation
defined by (Eqs. 3.5.1a and 3.5.1b from Andrews et al. (1987)):
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where the overbars and primes indicate respectively the zonal means and departures from the
zonal mean. θ is the potential temperature, v is the meridional wind and w is the vertical wind.
∇ · ~M is the divergence of the eddy flux vector and represents the eddy transport of ozone. The
eddy flux vector ~M is written as:
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)
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Finally, S is the chemical net production term, which is calculated as the residual of the other
terms.

Dunkerton (1978) showed that the Brewer-Dobson circulation should be interpreted as a
Lagrangian mean circulation and could be approximated by the residual mean meridional
circulation of the TEM equations. Thus the various processes influencing the evolution of the
zonal-mean ozone that are investigated in this study are separated into three categories: the ozone
production due to the advection of ozone by the Brewer-Dobson circulation or mean ozone
transport, the ozone production due to the large-scale eddy transport, diagnosed by the divergence
of the eddy flux vector, and the chemical net production term. The signs shown in Equation 1 are
included in the various displayed terms. Each term is calculated using the six-hourly ERA-40
dataset. In addition, this formulation only allows for the calculation of the resolved eddies
(dominated by planetary waves) and we do not attempt to parameterize the eddy flux divergence
due to small-scale disturbances, such as gravity waves, using diffusion coefficients as described in
Garcia and Solomon (1983) due to a lack of observations to evaluate such coefficients. Therefore,
any contribution from the gravity waves to the eddy flux divergence would be included in the
residual term. For this reason, the residual term can only be an approximation of the net chemical
production term. Finally, all derivatives are computed using centered finite differences.
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2.2.2 Stationary and Transient Components

Because both mean and eddy ozone transport are primarily driven by planetary waves, whether
directly or indirectly, it is useful to decompose the ozone transport forcing into contributions from
stationary and transient waves. Stationary planetary waves are excited by the orography (Charney
and Eliassen, 1949), especially in the NH, as well as by land-sea heating contrasts, which vary on
the season time scale. Planetary transient waves, on the other hand, have smaller time scales
ranging from a few days to a couple weeks and dominate synoptic weather patterns. The
stationary components are computed by averaging temperature, wind and ozone fields over a
month and then calculating the various terms of the TEM formulation. Once the stationary
component is removed from the total term, which is calculated every six hours, only the
contribution from the transient waves is left (Madden and Labitzke, 1981).

3. CLIMATOLOGY OF THE STRATOSPHERIC ZONAL-MEAN OZONE TRANSPORT

3.1 Seasonal cycle of the ozone transport budget

Using Equation 1, we can separate the changes in ozone into contributions from the mean
transport, the eddy transport and the chemical net production. Figure 1 shows the seasonal cycle
of the zonal-mean ozone tendency, its forcing terms and the ozone mixing ratio averaged between
100 and 20 hPa (the layer where the largest concentrations of stratospheric ozone are found). The
zonal-mean ozone mixing ratio has its largest values in the Northern Hemisphere high latitudes
during spring with a minimum in late summer and early fall. The lowest quantities of ozone are
found in the Southern Hemisphere polar region during the austral late summer and early spring
and are associated with the ozone hole. The ozone tendency shows that the largest changes in
ozone occur in the polar regions. In the Northern Hemisphere, there is a clear seasonal cycle in
the ozone tendency with a distinct increase in ozone at high latitudes during the fall and winter
and a decrease in the spring and early summer. The ozone tendency shows the complex
development and decay of the SH ozone hole with a rapid decrease in July, August and
September. This is followed by a strong increase in October and November and a weaker
decrease in December and January.

The mean transport of ozone is characterized by a net decrease in ozone in the tropics that is
relatively uniform in time. In the polar regions, the mean transport generally results in a net
increase in ozone, thus indicating the direct poleward transport of the Brewer-Dobson circulation.
However, the ozone mean transport is very different between the two hemispheres. At high
latitudes, the mean transport presents a pronounced seasonal cycle in the NH but it is weaker in
the SH over the whole year, except for a peak in October and November. In the NH summer, the
net production of ozone due to the mean transport is small in the midlatitudes and polar region
because the Brewer-Dobson circulation is at its weakest (Monier and Weare, 2010). In the SH, the
ozone mean transport is weak during the austral winter because ozone cannot be advected across
the stratospheric polar night jet, which is much stronger than in the NH. In the spring, the intense
planetary wave activity drives a strong Brewer-Dobson circulation and induces the breakdown of
the polar vortex. This enables the advection of ozone-rich air from the lower latitudes into the
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Figure 1. Annual cycle of the zonal-mean ozone, represented by the departures from the global mean (2
ppmv), and of the zonal-mean ozone tendency and its forcing terms, averaged between 100 and 20 hPa.
Dashed (solid) lines and blue (brown) colors represent negative (positive) values while the bold solid line
represents the zero-line. Contour spacing is 0.2 ppmv for the ozone and 10 ppbv day−1 for the ozone
tendency and its forcing terms. Note that the ozone tendency is weak compared to its forcing terms and
is therefore multiplied by 2.

polar region, resulting in the maximum production of ozone by the mean transport. However, this
is short-lived as the Brewer-Dobson circulation becomes weaker and reaches a minimum in
January (Monier and Weare, 2010).

The eddy transport term is mostly positive in the tropics, except right along the Equator where
it is negative, and negative in the midlatitudes. In the SH polar region, the net production of ozone
by the eddy mixing is positive during spring and winter, with a maximum in November, which is
the month of strongest positive ozone tendency. This corresponds to the timing of the polar vortex
breakdown and the largest meridional gradient of ozone, south of 60◦S. The wave activity excites
mixing between ozone-poor air near the pole and ozone-rich air from the midlatitudes, resulting
in a large production of ozone in the polar region. Thus, the strength of the eddy transport is
strongly dependent on not only wave activity but also on the presence of a strong meridional
ozone gradient. In the NH, the contribution of the eddy transport is smaller, mainly because the
absence of an ozone hole during the late winter and spring provides for a weak meridional
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gradient of ozone in the midlatitudes and polar region. Thus the maximum net production of
ozone by eddy transport, which occurs in April, is half the magnitude of that of the SH.

Finally, the chemical term shows a net chemical production in the tropics, extending in the
midlatitudes in each hemisphere during spring. The creation of ozone in the tropical stratosphere
is through photodissociation of molecular oxygen by ultraviolet radiation and a subsequent
reaction of the oxygen atoms with molecular oxygen in the presence of a catalyst (Brasseur and
Solomon, 2005). In the polar regions, the chemical term is consistently negative. The greatest
ozone destruction occurs in the springtime, with maxima in April and November in the NH and
SH respectively. In the SH spring, the mean ozone chemical loss rates of the 100–20 hPa layer
can reach up to 60 ppbv day−1 (or ∼2.5 DU day−1).This is about one and a half time more than its
counterpart in the NH spring. These results are consistent with previous studies. For example,
chemical loss rates of ozone lower-stratosphere partial column (350 to 660 K or about 200 to
25 hPa) in the Antarctic polar region can range from 1.5 to 2.5 DU day−1 in September 2000 and
2002 (Feng et al., 2005b). In theIn the NH polar region, these rates range between 0.5 and
1.2 DU day−1 for February and March 2000, 2003 and 2004 (Feng et al., 2005a). Similarly,
Sasano et al. (2000) show chemical loss rates inside the Arctic polar vortex around 40 ppbv day−1

from 400 to 550 K (∼150 to ∼50 hPa) in March 1997. This is consistent with the chemical loss
rates inside the Arctic polar vortex of around 40 ppbv day−1 at 450 K (∼100 hPa) in late February
early March 2000 from Richard et al. (2001).

Overall, Figure 1 shows that the strong poleward advection of ozone by the Brewer-Dobson
circulation in the NH fall and winter is responsible for the positive ozone tendency at high
latitudes. On the other, the weak mean ozone transport in the SH wintertime along with the
chemical destruction of ozone in the polar region explain the negative ozone tendency in August
and September that lead to the ozone hole. In addition, Figure 1 shows that eddy transport is
largely responsible for the positive ozone tendency in the SH polar region in October and
November and hence contributes to the recovery of the Antarctic ozone hole in the late spring.
This is consistent with the findings of Miyazaki et al. (2005) who estimate that the eddy transport
represents more than 80% of the total ozone transport (advective + eddy) in the Southern
Hemisphere polar region in November. In addition, November is the month where the
Eliassen-Palm (EP) flux divergence shows the largest values in the region, indicating the most
intense planetary wave activity and the break-down of the polar vortex (Monier and Weare, 2010).
Therefore, there is a self-consistency between the seasonal variability of the EP flux divergence
and the eddy flux divergence in the SH. Finally, the main characteristics of the seasonal variability
of the chemical production and destruction of ozone are reproduced. Furthermore, the chemical
loss rates in both the Arctic and Antarctic polar regions are in reasonable agreement with previous
studies. This gives confidence in the calculation of the chemical term as a residual of the ozone
transport budget.
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Figure 2. Zonal-mean ozone tendency and its forcing terms averaged over DJF 1980-2001 in the SH.
Dashed (solid) lines and blue (brown) colors represent negative (positive) values while the bold solid
line represents the zero-line. Contour spacing is 10 ppbv day−1. Note that the ozone tendency is weak
compared to its forcing terms and is therefore multiplied by 2.

3.2 Vertical structure of the ozone transport budget

An example of the vertical structure of the various ozone forcing, for the months of
December–January-February (DJF) in the SH, is shown in Figure 2. The ozone tendency shows a
distinct maximum decrease in the polar region centered at 20 hPa. The vertical structure of each
forcing reveals that they are reasonably uniform with height, even though the mean transport
exhibits some noise poleward of 80◦S. All the forcing terms have the largest values between the
50 and 10 hPa levels. They also tend to show a dipole pattern with opposite effects between the
polar region and the midlatitudes. The mean and eddy transports both contribute to a net
production of ozone in the polar region and oppose the chemical destruction. In the tropics, where
the eddy transport and the ozone tendency are weak, the chemical net production offsets exactly
the mean transport of ozone by the Brewer-Dobson circulation. The chemical term shows
destruction of polar ozone, with maximum values of 70 ppbv day−1 centered at 20 hPa and
production in the tropics all the way to 50◦S, with maximum values of 40 ppbv day−1 centered
between 30 and 20 hPa. The distribution of the chemical term is in good agreement with the
chemical transport model used in (Miyazaki and Iwasaki, 2005). Additionally, (Miyazaki and
Iwasaki, 2005) find chemical loss rates for DJF of up to 7.5x1010 cm−3 day−1 centered at 30 hPa
in the polar region (about 80 ppbv day−1) and chemical production rates up to 3x1010 cm−3 day−1

at the same height in the tropics (about 30 ppbv day−1). Thus, there is further evidence that the
distribution and the magnitude of the chemical term compare well with previous studies using
chemical models, chemical transport model passive substraction and other methods based on
observations.

3.3 Mean transport

The contributions of the horizontal and vertical transport to the mean ozone transport can be
assessed from the analysis of the ozone mass stream function associated with the residual mean
meridional circulation shown in Figure 3. The ozone mass stream function shows that the mean
ozone transport follows the transport description proposed by Brewer-Dobson with upward
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Figure 3. Ozone mass stream function associated with the Brewer-Dobson circulation averaged over (left)
DJF and (right) JJA 1980-2001. Blue (brown) colors with dashed (solid) white lines represent negative
(positive) values while the bold solid line represents the zero-line. Contour spacing is 103 kg s−1.

motions in the tropics and extratropical downward motions, associated with poleward motions.
The ozone mass stream function presents a distinct seasonal cycle with maximum poleward
transport in each hemisphere during their respective winter. This is consistent with the annual
cycle of the mean ozone transport term in Figure 1 and with other similar studies (Miyazaki and
Iwasaki, 2005).

3.4 Eddy transport

In order to better understand the origins of the eddy transport term, the horizontal and vertical
eddy transport terms are evaluated along with the eddy flux vector, and separated into stationary
and transient components. A conspicuous feature revealed by Figure 4 is that the eddy transport
is controlled by its horizontal component as the vertical eddy transport is weak over the whole
hemisphere. This is consistent with the assumption that eddy transport is primarily due to
meridional mixing processes, which has been adopted in several studies (Tung, 1986; Newman
et al., 1988; Gabriel and Schmitz, 2003). In addition, the eddy transport is provided about equally
by stationary and transient waves, with the transient eddy transport dominating only slightly in
the midlatitudes. This is consistent with the findings from Monier and Weare (2010) looking at
planetary wave activity in the SH diagnosed by the Eliassen-Palm (EP) flux divergence.

The components of the eddy flux vector represent the horizontal and vertical flux of ozone
eddies by the wave components of the wind velocities. In comparison, the eddy flux divergence
corresponds to the net ozone transport in a specific region due to the net ozone eddy flux entering
this region. In the SH spring, the vertical eddy ozone flux is upward in the midlatitues and near
the pole and downward in the subpolar region. Meanwhile, the horizontal eddy ozone flux is
composed of poleward transport in the polar region and equatorward transport in the midlatitudes
and subtropics. The fact that the horizontal ozone eddy flux is three orders of magnitude greater
than its vertical counterpart explains its major role in the eddy transport.

The eddy ozone transport is dominated by transient processes in the midlatitudes due to high
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Figure 4. Same as Figure 2 but for the eddy ozone transport, its horizontal and vertical components,
and the eddy ux vector, with the contributions of stationary and transient waves. Blue (brown) col-
ors with dashed (solid) white lines represent negative (positive) values for ~M (φ). Dashed (solid) black
lines represent negative (positive) values while the bold solid line represents the zero-line for ~M (z).
Contour spacing is 10 ppbv day−1 for the eddy transport and its horizontal and vertical components,
2x105 kg ppbv m−2 day−1 for ~M (φ) and 2x102 kg ppbv m−2 day−1 for ~M (z). Note that the vertical eddy
transport is weak compared to the horizontal eddy transport and is therefore multiplied by 5.
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transient wave activity associated with storm tracks located near 50◦S throughout the year
(Trenberth, 1991). However, the stationary eddy transport is stronger than the transient eddy
transport in the polar region. This can be explained by the presence of the asymmetric Antarctic
topography and ice-sea heating contrasts driving the stationary wave activity in the polar region,
as it has been demonstrated in several studies (Parish et al., 1994; Lachlan-Cope et al., 2001).

4. TRENDS IN THE WAVE FORCING OF THE STRATOSPHERIC ZONAL-MEAN
OZONE TRANSPORT

4.1 Zonal-mean ozone

The long-term trends and interannual variability of the lower and middle stratosphere (LMS)
ozone are investigated in Figure 5. The variances and trends are calculated after the zonal-mean
ozone is averaged between 100 and 20 hPa. The ozone variance, representing its interannual
variability, is large in the polar region in both hemispheres during their respective late winter and
early spring. A weaker variance maximum is also present in the tropics, most likely related to the
Quasi-Biennial Oscillation (QBO). In the SH, the year-to-year variability of the LMS zonal-mean
ozone layer is associated with the ozone hole and located south of 60◦S. The maximum ozone
trends associated with the Antarctic ozone hole occur in September at a rate above 0.5 ppmv per
decade, with a 99.9% statistical significance level (calculated using a Student’s t-test). There is
also a negative ozone trend in the NH polar region during spring that corresponds to a decrease of
the ozone maximum that occurs at that time. In March, the NH polar ozone has decreased
between 1980 and 2001 at a rate of over 0.2 ppmv per decade, with a 93% statistical significance

Figure 5. Annual cycle of the ozone sample variance and trend. The variances and trends are calculated
after the zonal-mean ozone is averaged between 100 and 20 hPa. Dashed blue (solid brown) lines
represent negative (positive) values while the bold solid line represents the zero-line. Light grey (dark
grey) shading represents the 90% (99%) statistical significance level of the trends. Contour spacing is
0.05 ppmv2 for the ozone variance and 0.1 ppmv per decade for the ozone trend.
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level. The long-term changes in the polar ozone work out to be a decrease of ∼ −10% over 22
years in the NH in March and of ∼ −40% in the SH in September. This is consistent with
Brunner et al. (2006), using the Candidoz Assimilated Three-dimensional Ozone (CATO)
multiple linear regression model, who find maximum negative trends north of 60◦N in February
and March at about −5% per decade, and a maximum trend in the SH polar region in October,
close to −20% per decade, from 1979–2004. Moreover, the seasonality of the trends is consistent
with previous modeling and observational studies. Randel and Wu (2007) calculated seasonal
variations of the trends in the vertically integrated ozone column derived from analysis of
Stratospheric Aerosol and Gas Experiment (SAGE I and II) profile measurements, combined with
polar ozonesonde data. They found a maximum trend in the polar region over the 1979 to 2005
time period in the NH April and SH October. Meanwhile, Garcia et al. (2007) provide a similar
analysis based on the Whole-Atmosphere Community Climate Model (WACCM) column of
ozone. They show maximum trends in the polar region from 1979 to 2003 in the NH February
and SH October. Thus there is some uncertainty as to which month displays the maximum trends,
but an overall agreement over the seasonality of the trends in the stratospheric polar ozone.

4.2 Wave forcing ozone budget

Figure 6 shows the annual cycle of the linear trends of the ozone tendency and its forcing
terms over 1980–2001. In the SH, the largest and most significant trends occur from September to
December and show that negative trends in the chemical losses are largely balanced by positive
trends in the eddy transport, apparently following by a month. Meanwhile, the trends in the ozone
mean transport are weaker and not statistically significant (except for the month of December).

Figure 6. Annual cycle of the trends in the ozone tendency and its forcing terms, for the (left) NH and
the (right) SH. The trends are calculated after the zonal-mean ozone tendency and its forcing terms are
averaged between 100 and 20 hPa and between 60◦-85◦. Trends that are statistically significant at the
95% statistical significance level are indicated by a cross.
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The timing of the trends in the ozone chemical destruction corresponds to the ozone hole, when
the polar region is the coldest due to a lack of radiative heating by ozone. When the region is very
cold, PSCs can form thus inducing even more chemical destruction. Because the strength of the
eddy transport is strongly dependent on not only wave breaking activity but also on the presence
of a strong meridional ozone gradient, the destabilization of the ozone layer over the Antarctica
leads to an increase in the spring eddy transport. As the ozone hole grows stronger year after year,
so does the meridional ozone gradient. This leads to more mixing, near the edge of the polar
vortex, between rich and poor regions of ozone. This explains why the trends in the eddy
transport lag by one month the trends in the chemical term. It is worthy to note that the dip in the
eddy flux divergence in November coincides with a weakening of the planetary wave activity, as it
is revealed from the trend analysis of the EP flux divergence in Monier and Weare (2010). Hence,
the trends in the eddy flux divergence might be controlled not only by the variations in the
meridional ozone gradient but also by the long-term changes in wave activity. The weakening of
the planetary wave activity can also explain the similar dip in the ozone mean transport trends
during the month of November, since the long-term weakening of the planetary wave activity is
accompanied by a weakening of the Brewer-Dobson circulation.

In August, the strength of the polar night jet is at its maximum and it acts as an eddy mixing
barrier (Haynes and Shuckburgh, 2000; Miyazaki et al., 2005). Additionally, the meridional
gradient of ozone is weak at the time. As a result, the trend in the eddy ozone transport remains
weak, much weaker than between September and December. Consequently, the negative trend in
the chemical destruction of ozone in August, which is significantly weaker than from September
to November, remains unbalanced by trends in the ozone transport. This leads to a significantly
negative trend in the ozone tendency in August, which in turn is responsible for the maximum
ozone trend over Antarctica that occurs in September. Thus the ozone hole intensification over
1980–2001 time period is not directly related to the trend in chemical losses, but more specifically
to the balance in the trends in chemical losses and ozone transport.

The balance between the trends in the ozone forcing terms results in month-to-month changes
in the trend in the ozone tendency. Figure 6 shows that the only statistically significant trends in
the ozone tendency are negative in May, July and August (leading to the intensification of the
ozone hole) and positive in October in December (leading to the intensification of the ozone hole
recovery in late spring).

In the NH, the picture is more complicated, mainly due to the absence of strong polar ozone
depletion and the associated meridional gradient of ozone. Overall, the negative trends in the
chemical losses are balanced primarily by the positive trends in the ozone mean transport, and not
the eddy transport as in the SH, apparently at zero lag. However, the trends are much weaker than
in the SH. Two particular months show distinct balances in the trends of the ozone tendency
forcings. In April, increases in the mean and eddy ozone transport balance a significant increase
in the ozone chemical destruction. This results is consistent with the analysis of the trends of the
stratospheric wave forcing in Monier and Weare (2010) who show a delay of the polar vortex
break-down and an increase in the planetary wave activity in April in the NH, associated with an
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intensification of the Brewer-Dobson circulation. The delay in the break-down of the polar vortex
can result in sustained cold temperature in April, thus extending the period of ozone chemical
destruction and leading to an increase in the chemical term in April. In December, a large positive
significant trend in the mean ozone transport is mirrored by a large negative significant trend in
the chemical term. However, an explanation for this behavior is not clear. In the polar region, the
mean ozone transport is controlled by its downward descent. Hence, the trend in the mean
transport can be influenced by long-term changes in both the vertical branch of the
Brewer-Dobson circulation and the vertical gradient of ozone. It is therefore possible that changes
in the vertical profile of ozone are responsible for the large positive trend in the mean transport of
ozone in December. Since the eddy transport is weaker than the other forcing terms in the NH, it
is expected that the chemical term would largely balance the mean transport term. This would
lead to a large intensification of the chemical destruction in December that cannot be easily
explained either.

Figure 7 shows latitude-height cross-sections of the trends in the ozone tendency and its
forcing terms for the months of October-November-December (OND) in the SH. The ozone
tendency shows a significant positive trend in the polar region centered at 30 hPa. The trends in
the ozone forcing terms are noisier, particularly for the mean ozone transport, but show distinct
patterns. Both mean and eddy transport present positive trends in the polar regions and negative
trends at midlatitudes centered at 20 hPa, in opposition to that of the chemical term. These trends
reveal an intensification of the dipole pattern of ozone forcing showed in Figure 1, as in OND both
mean and eddy transport terms contribute to increasing ozone in the polar region and decreasing it
in the midlatitudes. The trends in the eddy transport are stronger than that of the mean transport,
which is consistent with the results shown in Figure 6. In the SH springtime (OND), the trends in
the eddy ozone transport reach a maximum of 80 ppbv day−1 per decade at 20 hPa in the polar
region over the 1980–2001 period. As a comparison, the mean eddy ozone transport at the same
location and over the same time period is 100 ppbv day−1.This reveals a very large increase in the
eddy transport from 1980 to 2001 in the stratospheric polar region over Antarctica.

Figure 8 shows the SH latitude-height cross-sections of the OND trends in the eddy ozone
transport and the horizontal component of the eddy flux vector, with the contributions of
stationary and transient waves. Figure 8 reveals that the trends in the eddy transport are present in
both its stationary and transient components. The trend in the eddy flux vector indicates a bias
toward stronger poleward eddy mixing above 50 hPa in the polar region and midlatitudes, most
likely due to a stronger meridional ozone gradient caused by the ozone hole. The trend in the
midlatitudes is dominated by transient wave activity, corresponding to the location of storm
tracks, while the contribution of stationary waves is limited to the polar region, likely associated
with the presence of the asymmetric Antarctic topography and ice-sea heating contrasts. The fact
that the trends are similar between the stationary and transient components of the eddy ozone
transport and that their main differences (their latitudinal location) can be physically explained
gives credibility to these results.
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5. CONCLUSIONS

A thorough analysis of the ozone transport was carried out using the TEM tracer transport
equation with the ERA-40 re-analysis. The resolved terms in the ozone transport equation are the
ozone tendency, the mean ozone transport by the Brewer-Dobson circulation and the eddy ozone
transport. In addition, the residual term in the TEM ozone transport equation is shown to be
representative of the chemical net production term. This is an approximation since it does also
contain ozone transport due to unresolved waves, such as gravity waves. However, the chemical
term displays the correct features of a chemical sink and source term, including location and
seasonality, and shows a good agreement in magnitude compared to other methods of calculating
ozone loss rates. This provides reasonable confidence in the ozone transport budget calculated in
this study. Thus, we assume that the contribution from gravity waves is negligible compared to
the chemical term, which should be especially true in the polar region and tropics where chemical
rates of destruction and production are large. Furthermore, the climatology of both the mean and
eddy transports is consistent with previous studies (Miyazaki and Iwasaki, 2005; Miyazaki et al.,
2005) using independent datasets. Consequently, the ozone budget based on the TEM tracer
transport equation presented in this study provides a reasonable method to investigate the
dynamical and chemical ozone forcing over the whole globe and over long time periods using
re-analysis datasets.

In the wintertime, the transport of ozone from the tropics to the polar regions is primarily
controlled by the transport of ozone by the Brewer-Dobson circulation, which is stronger in the
NH because the SH polar night jet is strong enough to suppress the transport of ozone across the
subpolar region (Miyazaki et al., 2005). The ozone advection reaches a maximum in the late
winter and early spring, when intense planetary wave activity drives a stronger Brewer-Dobson
circulation and induces the breakdown of the polar vortex. In spring, the eddy transport is
responsible for a net production of ozone in the polar region, especially in the SH where the eddy
transport is so large it balances a large fraction of the chemical ozone destruction. Therefore, this

Figure 7. OND trends in the ozone tendency and its forcing terms for the SH. Dashed blue (solid brown)
lines represent negative (positive) values while the bold solid line represents the zero-line. Light grey
(dark grey) shading represents the 95% (99%) statistical signicance level of the trends. Contour spacing
is 10 ppbv day−1 per decade. Note that the trends in the ozone tendency are weak compared to the
forcings terms and are therefore multiplied by 4.
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Figure 8. Same as Figure 7 but for the eddy ozone transport and the horizontal component of the eddy ux
vector, with the contributions of stationary and transient waves. Contour spacing is 10 ppbv day−1 per
decade for the eddy transport and 2x105 kg ppbv m−2 day−1 per decade for ~M (φ).

study outlines the considerable contribution of eddy mixing to the overall transport of ozone in
the SH. This is consistent with previous theoretical and observational studies (Muller et al., 2005;
Manney et al., 2006). The chemical term shows a net chemical production in the tropics,
extending in the midlatitudes in each hemisphere during spring. In the polar regions, the chemical
term is consistently negative. The greatest ozone destruction occurs in the springtime, with
maxima in April and November in the NH and SH respectively. This analysis clarifies the role of
eddy transport in the recovery of the Antarctic ozone hole in the late spring. At the time, the
meridional gradient of ozone is large and the polar vortex is breaking down leading to horizontal
mixing across the subpolar region between ozone-rich and ozone-poor regions.

The trend analysis reveals that the largest intensification of the ozone chemical destruction
coincides with the timing of the Antarctic ozone hole, from September to November. However,
these trends are balanced by equally large positive trends in the eddy transport, associated with a
small increase in the mean transport. As a result, the trends in the ozone tendency over Antarctica
tend to be positive during that period and immediately following it, leading to an intensification of
the springtime recovery of the ozone hole. On the other hand, a weaker intensification of the
ozone chemical destruction occurs in August and remains unchallenged by trends in the ozone
transport. Consequently, the trend in the ozone tendency is significantly negative in August. This
leads to the maximum ozone trend in September over Antarctica associated with the ozone hole.
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In other words, the intensification of the ozone hole is not directly related to the largest trends in
the chemical destruction, but more specifically to the complex balance in the trends in chemical
losses and ozone transport. In August, the trend in the eddy ozone transport is weak because the
strength of the polar night jet is at its maximum and it acts as an eddy mixing barrier, and because
the meridional gradient of ozone remains weak. The increase in the spring eddy transport is
caused by an intensification of the meridional gradient of ozone associated with the enhancement
of the ozone hole. The mixing between ozone-rich and ozone-poor regions near the edge of the
polar vortex increases as a result. This is corroborated by statistically significant trends showing a
tendency for stronger horizontal eddy transport from the subtropics to the pole. Transient waves
are responsible for most of the trends in the midlatitudes while the contribution of stationary
waves is mainly limited to the polar region. The increase in the eddy transport presents a distinct
dip in November, corresponding to a decrease in planetary wave activity identified in Monier and
Weare (2010). This demonstrates that the eddy transport is not only controlled by the meridional
ozone gradient, but is also impacted by changes in the planetary wave activity during the polar
vortex breakdown. Overall, the increase in the eddy transport overcomes the intensification of the
chemical destruction in October and November and provides the fundamental mechanism for the
ozone recovery in the late spring. This study also shows that without an increase in the eddy
transport over the 1980–2001 time period, the ozone hole over Antarctica would be drastically
more severe.

This work suggests that modeling studies investigating trends in stratospheric ozone, especially
over Antarctica, should pay a great deal of attention to the simulation of the eddy ozone transport
and the dynamics of the stratosphere. In particular, trends in the dynamical transport of ozone
have a significant impact on the overall long-term ozone budget. It appears obvious that
diagnostics of the eddy transport should be systematically carried out in chemical transport
models used to investigate stratospheric ozone. Furthermore, there is a great lack of available
stratospheric ozone loss rates datasets ranging over the entire globe and over a large time period,
other than computed by chemical models. This study shows that the applied methodology is a
step toward filling that gap. Finally, a better understanding of the impact of climate change on
stratospheric planetary wave activity and its potential repercussions on the ozone eddy mixing is
required since eddy transport plays a significant role in the dynamics of the ozone hole.
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