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 Climate Change, Mortality, and Adaptation:  

 Evidence from Annual Fluctuations in Weather in the U.S.  

 

Olivier Deschênes* and Michael Greenstone† 

Abstract 

This paper produces the first large-scale estimates of the U.S. health related welfare costs due to climate 

change. Using the presumably random year-to-year variation in temperature and two state of the art climate 

models, the analysis suggests that under a “business as usual” scenario climate change will lead to an 

increase in the overall U.S. annual mortality rate ranging from 0.5% to 1.7% by the end of the 21
st
 century. 

These overall estimates are statistically indistinguishable from zero, although there is evidence of statistically 

significant increases in mortality rates for some subpopulations, particularly infants. As the canonical 

Becker-Grossman health production function model highlights, the full welfare impact will be reflected in 

health outcomes and increased consumption of goods that preserve individuals’ health. Individuals’ likely 

first compensatory response is increased use of air conditioning; the analysis indicates that climate change 

would increase U.S. annual residential energy consumption by a statistically significant 15% to 30% ($15 to 

$35 billion in 2006 dollars) at the end of the century. It seems reasonable to assume that the mortality 

impacts would be larger without the increased energy consumption. Further, the estimated mortality and 

energy impacts likely overstate the long-run impacts on these outcomes, since individuals can engage in a 

wider set of adaptations in the longer run to mitigate costs. Overall, the analysis suggests that the health 

related welfare costs of higher temperatures due to climate change are likely to be quite modest in the U.S.  
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1. INTRODUCTION 

The climate is a key ingredient in the earth’s complex system that sustains human life and 

well-being. There is a growing consensus that emissions of greenhouse gases due to human 

activity will alter the earth’s climate, most notably by causing temperatures, precipitation levels, 

and weather variability to increase. According to the UN’s Intergovernmental Panel on Climate 

Change (IPCC) Fourth Assessment Report, climate change is likely to affect human health 

directly through changes in temperature and precipitation and indirectly through changes in the 
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ranges of disease vectors (e.g., mosquitoes) and other channels (IPCC Working Group II, 2007). 

The design of optimal climate change mitigation policies requires credible estimates of the health 

and other benefits of reductions in greenhouse gases; current evidence on the magnitudes of the 

direct and indirect impacts, however, is considered insufficient for reliable conclusions (WHO, 

2003). 

Conceptual and statistical problems have undermined previous efforts to develop estimates of 

the health related welfare costs of climate change. The conceptual problem is that the canonical 

economic models of health production predict that individuals will respond to climate changes 

that threaten their health by purchasing goods that mitigate the health damages (Grossman, 

2000). In the extreme, it is possible that individuals would fully “self-protect” such that climate 

change would not affect measured health outcomes. In this case, an analysis that solely focuses 

on health outcomes would incorrectly conclude that climate change had zero impact on welfare. 

On the statistical side, there are at least three challenges. First, there is a complicated, 

dynamic relationship between temperature and mortality, which can cause the short-run 

relationship between temperature and mortality to differ substantially from the long-run (Huynen 

et al., 2001; Deschênes & Moretti, 2007).1 Second, individuals’ locational choices – which 

determine exposure to a climate – are related to health and socioeconomic status, so this form of 

selection makes it difficult to uncover the causal relationship between temperature and mortality. 

Third, the relationship between temperature and health is highly nonlinear and likely to vary 

across age groups and other demographic characteristics. 

This paper develops measures of the welfare loss associated with the direct risks to health 

posed by climate change in the U.S. that confront these conceptual and statistical challenges. 

Specifically, the paper reports on statistical models for demographic group by county mortality 

rates and for state-level residential energy consumption (perhaps the primary form of protection 

against high temperatures via air conditioning) that model temperature semi-parametrically. The 

mortality models include county and state by year fixed effects, while the energy models include 

state and Census-division by year fixed effects. Consequently, the temperature variables are 

identified from the unpredictable and presumably random year-to-year variation in temperature, 

so concerns about omitted variables bias are unlikely to be important. 

We combine the estimated impacts of temperature on mortality and energy consumption with 

predicted changes in climate from “business as usual” scenarios to develop estimates of the 

health related welfare costs of climate change in the U.S. The preferred mortality estimates 

suggest an increase in the overall annual mortality rate ranging from 0.5% to 1.7% by the end of 

the century. These overall estimates are statistically indistinguishable from zero, although there 

is evidence of statistically significant increases in mortality rates for some subpopulations, 

particularly infants. The energy results suggest that by the end of the century climate change will 

cause total U.S. residential energy consumption to increase by 15% - 30%. This estimated 

increase is statistically significant, and, when valued at the average energy prices from 1991-

                                                
1 Brockett et al. (2002) indicate that the top four electricity-consuming appliances for China are (in descending 

order): refrigerators, air conditioners, and lighting/illumination, and televisions. 
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2000, it implies that there will be an additional $15 - $35 billion (2006$) per year of U.S. 

residential energy consumption.  

Overall, the analysis suggests that the health related welfare costs of higher temperatures due 

to climate change will be quite modest in the U.S. The small magnitude of the mortality effects is 

evident when they are compared to the approximately 1% per year decline in the overall 

mortality rate that has prevailed over the last 35 years. Further, it seems likely that the mortality 

impacts would be larger without the compensatory increase in energy consumption. Finally, it is 

evident that an exclusive analysis of mortality would substantially understate the health related 

welfare costs of climate change.  

There are a few important caveats to these calculations and, more generally, to the analysis. 

The estimated impacts likely overstate the mortality and adaptation costs, because the analysis 

relies on inter-annual variation in weather, and less expensive adaptations (e.g., migration) will 

be available in response to permanent climate change. On the other hand, the estimated welfare 

losses fail to include the impacts on other health-related determinants of welfare (e.g., 

morbidities) that may be affected by climate change, so in this sense they are an underestimate. 

Additionally, the effort to project outcomes at the end of the century requires a number of strong 

assumptions, including that the climate change predictions are correct, relative prices (e.g., for 

energy and medical services) will remain constant, the same energy and medical technologies 

will prevail, and the demographics of the U.S. population (e.g., age structure) and their 

geographical distribution will remain unchanged. These are strong assumptions, but their benefit 

is that they allow for a transparent analysis based on data rather than on unverifiable 

assumptions. 

The analysis is conducted with the most detailed and comprehensive data available on 

mortality, energy consumption, weather, and climate change predictions for fine U.S. geographic 

units. The mortality data come from the 1968-2002 Compressed Mortality Files, the energy data 

are from the Energy Information Administration, and the weather data are from the thousands of 

weather stations located throughout the U.S. We focus on two sets of end of century (i.e. 2070-

2099) climate change predictions that represent “business-as-usual” or no carbon tax cases. The 

first is from the Hadley Centre's 3rd Ocean-Atmosphere General Circulation Model using the 

Intergovernmental Panel on Climate Change’s (IPCC) A1F1 emissions scenario and the second 

is from the National Center for Atmospheric Research’s Community Climate System Model 

(CCSM) 3 using IPCC’s A2 emissions scenario.  

Finally, it is notable that the paper’s approach mitigates or solves the conceptual and 

statistical problems that have plagued previous research. First, the availability of data on energy 

consumption means that we can measure the impact on mortality and self-protection 

expenditures. Second, we demonstrate that the estimation of annual mortality equations, rather 

than daily ones, mitigates concerns about failing to capture the full mortality impacts of 

temperature shocks. Third, the county fixed effects adjust for any differences in unobserved 

health across locations due to sorting. Fourth, we model daily temperature semi-parametrically 

by using 20 separate variables, so we do not rely on functional form assumptions to infer the 
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impacts of the hottest and coldest days on mortality. Fifth, we estimate separate models for 16 

demographic groups, which allows for substantial heterogeneity in the impacts of temperature. 

The paper proceeds as follows. Section 2 briefly reviews the patho-physiological and 

statistical evidence on the relationship between weather and mortality. Section 3 provides the 

conceptual framework for our approach. Section 4 describes the data sources and reports 

summary statistics. Section 5 presents the econometric approach, and Section 6 describes the 

results. Section 7 assesses the magnitude of our estimates of the effect of climate change and 

discusses a number of important caveats to the analysis. Section 8 concludes the paper. 

2. BACKGROUND ON THE RELATIONSHIP BETWEEN WEATHER AND 

MORTALITY 

Individuals’ heat regulation systems enable them to cope with high and low temperatures. 

Specifically, high and low temperatures generally trigger an increase in the heart rate in order to 

increase blood flow from the body to the skin, leading to the common thermoregulatory 

responses of sweating in hot temperatures and shivering in cold temperatures. These responses 

allow individuals to pursue physical and mental activities without endangering their health 

within certain ranges of temperature. Temperatures outside of these ranges pose dangers to 

human health and can result in premature mortality. This section provides a brief review of the 

mechanisms and the challenges for estimation. 

Hot Days. An extensive literature documents a relationship between extreme temperatures 

(usually during heat waves) and mortality (e.g., Klineberg, 2002; Huynen, 2001; Rooney et al., 

1998). These excess deaths are generally concentrated among causes related to cardiovascular, 

respiratory, and cerebrovascular diseases. The need for body temperature regulation imposes 

additional stress on the cardiovascular and respiratory systems. In terms of specific indicators of 

body operations, elevated temperatures are associated with increases in blood viscosity and 

blood cholesterol levels. It is not surprising that previous research has shown that access to air 

conditioning greatly reduces mortality on hot days (Semenza et al., 1996).   

An important feature of the relationship between heat and mortality is that the number of 

deaths immediately caused by a period of very high temperatures is at least partially 

compensated for by a reduction in the number of deaths in the period immediately subsequent to 

the hot day or days (Basu & Samet, 2002; Deschênes & Moretti, 2007). This pattern is called 

forward displacement or “harvesting,” and it appears to occur because heat affects individuals 

that were already very sick and would have died in the near term. Since underlying health varies 

with age, these near-term displacements are more prevalent among the elderly. 

Cold Days. Cold days are also a risk factor for mortality. Exposure to very cold temperatures 

causes cardiovascular stress due to changes in blood pressure, vasoconstriction, and an increase 

in blood viscosity (which can lead to clots), as well as levels of red blood cell counts, plasma 

cholesterol, and plasma fibrinogen (Huynen et al., 2001). Further, susceptibility to pulmonary 

infections may increase because breathing cold air can lead to bronchoconstriction.  
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Deschênes & Moretti (2007) provide the most comprehensive evidence on the impacts of cold 

days on mortality. They find “evidence of a large and statistically significant effect on mortality 

within a month of the cold wave. This effect appears to be larger than the immediate effect, 

possibly because it takes time for health conditions associated with extreme cold to manifest 

themselves and to spread” (Deschênes & Moretti, 2005). Thus, in the case of cold weather, it 

may be that there are delayed impacts and that the full effect of a cold day takes a few weeks to 

manifest itself. Further, they find that the impact is most pronounced among the young and 

elderly and concentrated among cardiovascular and respiratory diseases.  

Implications. The challenge for this study and any study focused on substantive changes in 

life expectancy is to develop estimates of the impact of temperature on mortality that are based 

on the full long-run impact on life expectancy. In the case of hot days, the previous literature 

suggests that this task requires purging the temperature effects of the influence of harvesting or 

forward displacement. In the case of cold days, the mortality impact may accumulate over time. 

In both cases, the key point is that the full impact of a given day’s temperature may take 

numerous days to manifest fully.  

Our review of the literature suggests that the full mortality impacts of cold and hot days are 

evident within 30 days (Huynen et al., 2001; Deschênes & Moretti, 2007). The below 

econometrics section outlines a method that allows the mortality impacts of temperature to 

manifest themselves over long periods of time. Further, the immediate and longer run effects of 

hot and cold days are likely to vary across the populations, with larger impacts among relatively 

unhealthy subpopulations. One important determinant of healthiness is age, with the old and 

young being especially sensitive to environmental insults. Consequently, we conduct separate 

analyses for 16 demographic groups defined by the interaction of gender and 8 age categories. 

3. CONCEPTUAL FRAMEWORK 

In principle, it is possible to capture the full welfare effects of climate change through 

observations on the land market. Since land is a fixed factor, it will capture all the differences in 

rents associated with differences in climate (Rosen, 1974).2 The advantage of this approach is 

that in principle the full impact of climate change can be summarized in a single market. Despite 

the theoretical and practical appeal of this approach, it is unlikely to provide reliable estimates of 

the welfare impacts of climate change. We base this conclusion on a series of recent papers that 

suggest that the results from the estimation of cross-sectional hedonic equations for land prices 

are quite sensitive to seemingly minor decisions about the appropriate control variables, sample, 

and weighting and generally appear prone to misspecification (Black, 1999; Chay & Greenstone, 

2005; Deschenes & Greenstone, 2007; Greenstone & Gallagher, 2007). An alternative approach 

is to develop estimates of the impact of climate change in a series of sectors, which could then be 

summed.  

This paper’s goal is to develop a partial estimate of the health related welfare impact of 

climate change. This section begins by reviewing a Becker-Grossman style 1-period model of 

                                                
2 It is also possible that climate differences are reflected in wages (Roback, 1982). 
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health production (Grossman, 2000). It then uses the results to derive a practical expression for 

the health related welfare impacts of climate change (Harrington & Portney, 1987). This 

expression guides the subsequent empirical analysis. The section then discusses the implications 

of our estimation strategy that relies on inter-annual fluctuations in weather for the development 

of these welfare estimates. 

A Practical Expression for Willingness to Pay/Accept (WTP/WTA) for an Increase in 

Temperature. We assume a representative individual consumes a jointly aggregated consumption 

good, xC. Their other consumption good is their mortality risk, which leads to a utility function 

of 

U = U[xC, s],  (1) 

where s is the survival rate. The production function for survival is expressed as: 

s = s(xH, T), (2) 

so survival is a function of xH, which is a private good that increases the probability of survival, 

and ambient temperature, T. Energy consumption is an example of xH, since energy is used to 

run air conditioners, which affect survival on hot days. We define xH such that s/ xH > 0. For 

expositional purposes, we assume that climate change leads to an increase in temperatures in the 

summer only when higher temperatures are harmful for health so s/ T < 0. 

The individual faces a budget constraint of the form: 

I – xC – pxH = 0, (3) 

where I is exogenous earnings or income and prices of xC and xH are 1 and p, respectively.  

The individual’s problem is to maximize (1) through her choices of xC and xH, subject to (2) 

and (3). In equilibrium, the ratio of the marginal utilities of consumption of the two must be 

equal to the ratio of the prices: [( U/ s)·( s/ xH)]/[ U/ xC] = p. Solution of the maximization 

problem reveals that the input demand equations for xC and xH are functions of prices, income, 

and temperature. Further, it reveals the indirect utility function, V, which is the maximum utility 

obtainable given p, I, and T. 

We utilize V(p, I, T) to derive an expression for the welfare impact of climate change, holding 

constant utility (and prices). Specifically, we consider changes in T as are predicted to occur 

under climate change. In this case, it is evident that the consumer must be compensated for 

changes in T with changes in I when utility is held constant. The point is that in this setting 

income is a function of T, which we denote as I*(T). Consequently, for a given level of utility 

and fixed p, there is an associated V(I*(T),T).  

Now, consider the total derivative of V with respect to T along an indifference curve: 

dV/dT = VI(dI*(T)/dT) + V/ T = 0 or  dI*(T)/dT = - ( V/ T)/( V/ I).  

The term dI*(T)/dT is the change in income necessary to hold utility constant for a change in T. 

In other words, it measures willingness to pay (accept) for a decrease (increase) in summer 

temperatures. Thus, it is the theoretically correct measure of the health-related welfare impact of 

climate change. 
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Since the indirect utility function isn’t observable, it is useful to express dI*(T)/dT in terms 

that can be measured with available data sets. By using the derivatives of V and the first order 

conditions from the above maximization problem, it can be rewritten as dI*(T)/dT = -p 

[( s/ T)/( s/ xH)]. In principle, it is possible to measure these partial derivatives, but it is likely 

infeasible since data files containing measures of the complete set of xH are unavailable 

generally. Put another way, data limitations prevent the estimation of the production function 

specified in equation (2). However, a few algebraic manipulations based on the first order 

conditions and that s/ T = ds/dT – ( s/ xH)( xH/ T) (because ds/dT= ( s/ xH)( xH/ T ) + 

s/ T ) yields: 

dI*(T)/dT = - ds/dT ( U/ s)/  + p xH/ T, (4) 

where  is the Lagrangian multiplier from the maximization problem or the marginal utility of 

income.  

As equation (4) makes apparent, willingness to pay/accept for a change in temperature can be 

inferred from changes in s and xH. Since temperature increases raise the effective price of 

survival, theory would predict that ds/dT  0 and xH/ T  0. Depending on the exogenous 

factors, it is possible that there will be a large change in the consumption of xH (at the expense of 

consumption of xC) and little change in s. The key point for this paper’s purposes is that the full 

welfare effect of the exogenous change in temperature is reflected in changes in the survival rate 

and the consumption of xH. 

It is of tremendous practical value that all of the components of equation (4) can be measured. 

The total derivative of the survival function with respect to temperature (ds/dT), or the dose-

response function, is obtained through the estimation of epidemiological-style equations that 

don’t control for xH. We estimate such an equation below.3 The term ( U/ s)/  is the dollar value 

of the disutility of a change in the survival rate. This is known as the value of a statistical life 

(Thaler & Rosen, 1976) and empirical estimates are available (e.g., Ashenfelter & Greenstone, 

2004). The last term is the partial derivative of xH with respect to temperature multiplied by the 

price of xH. We estimate how energy consumption changes with temperature (i.e. x/ T) below 

and information on energy prices is readily available. 

It is appealing that the paper’s empirical strategy can be directly connected to an expression 

for WTP/WTA, but this connection has some limitations worth highlighting from the outset. The 

empirical estimates will only be a partial measure of the health-related welfare loss, because 

climate change may affect other health outcomes (e.g., morbidity rates). Further, although energy 

consumption likely captures a substantial component of health preserving (or defensive) 

expenditures, climate change may induce other forms of adaptation (e.g., substituting indoor 

                                                
3 Previous research on the health impacts of air pollution almost exclusively estimate these dose-response functions, 

rather than the production functions specified in equation (2) (e.g., Chay & Greenstone, 2003a, b). 
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exercise for outdoor exercise or changing the time of day when one is outside).4 These other 

outcomes are unobservable in our data files, so the resulting welfare estimates will be incomplete 

and understate the costs of climate change.  

Adaptation in the Short and Long Runs. The one-period model sketched in the previous 

subsection obscures an issue that may be especially relevant in light of our empirical strategy 

relying on inter-annual fluctuations in weather to learn about the welfare consequences of 

permanent climate change. It is easy to turn the thermostat down and use more air conditioning 

on hot days, and it is even possible to purchase an air conditioner in response to a single year’s 

heat wave. A number of adaptations, however, cannot be undertaken in response to a single 

year’s weather realization. For example, permanent climate change is likely to lead individuals to 

make their homes more energy efficient or perhaps even to migrate (presumably to the North). 

Our approach fails to capture these adaptations.  

Figure 1 illustrates this issue in the context of alternative technologies to achieve a given 

indoor temperature. Household annual energy related expenditures are on the y-axis and the 

ambient temperature is on the x-axis. For simplicity, we assume that an annual realization of 

temperature can be summarized in a single number, T. The figure depicts the cost functions 

associated with three different technologies. These cost functions all have the form Cj = rFj + 

fj(T), where C is annual energy related expenditures, F is the capital cost of the technology, r is 

the cost of capital, and f(T) is the marginal cost which is a function of temperature, T. The j 

subscripts index the technology.5 As the figure demonstrates, the cost functions differ in their 

fixed costs, which determine where they intersect the y-axis, and their marginal cost functions or 

how costs rise with temperature.  

The cost minimizing technology varies with expectations about temperature. For example, 

Technology 1 minimizes costs between T1 and T2 and the costs associated with Technologies 1 

and 2 are identical at T2 where the cost functions cross (i.e. point B), and Technology 2 is 

optimal at temperatures between T2 and T4. The outer envelope of least cost technology choices 

is depicted as the broken line and this is where households will choose to locate.6 Notably, there 

aren’t any theoretical restrictions on the outer envelope as it is determined by technologies so it 

could be convex, linear, or concave.  

                                                
4 Energy consumption may affect utility through other channels in addition to its role in self-protection. For 

example, high temperatures are uncomfortable. It would be straightforward to add comfort to the utility function 

and make comfort a function of temperature and energy consumption. In this case, this paper’s empirical 
exercise would fail to capture the impact of temperature on heat but the observed change in energy consumption 

would reflect its role in self-protection and comfort. 
5 For illustrative purposes, consider the technologies to be central air conditioning without the use of insulation in 

the construction of the house (Technology 1), central air conditioning with insulation (Technology 2), and zonal 

air conditioning with insulation (Technology 3). 
6 To keep this example simple, we assume that there isn’t any variation in temperature across years (i.e. the expected 

standard deviation of temperature at a location is zero) and households base their technology choice on this 

information. In reality, technology choice depends on the full probability distribution function of ambient 

temperatures at a house’s location.  
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The available data sets provide information on annual energy consumption quantities but not 

on annual energy expenditures. This means that existing data sources can only identify the part 

of the cost function associated with the marginal costs of ambient temperatures or f(T). Further, 

it highlights that the estimation of the outer envelope with data on quantities can reveal the 

equilibrium relationship between energy consumption and temperature. However, it is not 

informative about how total energy related expenditures vary with temperature, precisely 

because the fixed costs associated different technologies are unobserved. One clear implication is 

that it is infeasible to determine the impact of climate change on total energy expenditures with 

cross-sectional data as is claimed by Mansur, Mendelsohn, and Morrison (2007). 

 

Household Annual
Energy R elated
Expenditures

Technology 1 Technology 2 Technology 3

Outer Envelope 

rF3

rF2

rF1

C    

C’

B

A

T 1 T 3 T 4T 2 Ambient Temperature

D

 

Figure 1. Theoretical Relationship Between Household Annual Energy Expenditures and Ambient 
Temperature for a Given Level of Indoor Temperature. 

We now discuss what can be learned from inter-annual variation in temperature and a panel 

data file on residential energy consumption quantities. Consider an unexpected increase in 

temperatures from T1 to T3 for a single year, assuming that it is infeasible for households to 

switch technologies in response. The representative household’s annual energy related 

expenditures would increase from A to C’ and with fixed prices, this is entirely captured by the 

increase in energy consumption quantities. If the change in temperature were permanent as 

would be the case with climate change, then the household would switch to Technology 2 and 

their annual energy related expenditures would increase from A to C (again this cannot be 

inferred from data on energy consumption quantities alone). Thus, the change in energy related 

costs in response to a single year’s temperature realization overstates the increase in energy 

costs, relative to the change associated with a permanent temperature increase. It is noteworthy 

that the changes in costs associated with a new temperature  T1 and  T2 are equal regardless of 

whether it is transitory or permanent, because the outer envelope and Technology 1 cost curve 

are identical over this range. 
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To summarize, this section has derived an expression for WTP/WTA for climate change that 

can be estimated with available data sets. The first subsection pointed out that due to data 

limitations, we can only examine a subset of the outcomes likely to be affected by climate 

change, so this will cause the subsequent analysis to underestimate the health-related welfare 

costs. On the other hand, the second subsection highlighted that our empirical strategy of 

utilizing inter-annual variation in weather will overestimate the measurable health-related 

welfare costs, relative to the costs due to permanent changes in temperature (unless the degree of 

climate change is “small”). This is because the available set of adaptations in response to a year’s 

weather realization is constrained. 

4. DATA SOURCES AND SUMMARY STATISTICS 

To implement the analysis, we collected the most detailed and comprehensive data available 

on mortality, energy consumption, weather, and predicted climate change. This section describes 

these data and reports some summary statistics. 

4.1 Data Sources 

Mortality and Population Data. The mortality data is taken from the Compressed Mortality 

Files (CMF) compiled by the National Center for Health Statistics. The CMF contains the 

universe of the 72.3 million deaths in the U.S. from 1968 to 2002. Importantly, the CMF reports 

death counts by race, sex, age group, county of residence, cause of death, and year of death. In 

addition, the CMF files also contain population totals for each cell, which we use to calculate all-

cause and cause-specific mortality rates. Our sample consists of all deaths occurring in the 

continental 48 states plus the District of Columbia.  

Energy Data. The energy consumption data comes directly from the Energy Information 

Administration (EIA) State Energy Data System. These data provide state-level information 

about energy price, expenditures, and consumption from 1968 to 2002. The data is disaggregated 

by energy source and end use sector. All energy data is given in British Thermal Units, or BTU.  

We used the database to create an annual state-level panel data file for total energy 

consumption by the residential sector, which is defined as “living quarters for private 

households.” The database also reports on energy consumption by the commercial, industrial, 

and transportation sectors. These sectors are not a focus of the analysis, because they don’t map 

well into the health production function model outlined in Section 3. Further, factors besides 

temperature are likely to be the primary determinant of consumption in these sectors. 

The measure of total residential energy consumption is comprised of two pieces: “primary” 

consumption, which is the actual energy consumed by households, and “electrical system energy 

losses.” The latter accounts for about 2/3 of total residential energy consumption; it is largely due 

to losses in the conversion of heat energy into mechanical energy to turn electric generators, but 

transmission and distribution and the operation of plants also account for part of the loss. In the 

1968-2002 period, total residential energy consumption increased from 7.3 quadrillion (quads) 

British thermal units to 21.2 quads, and the mean over the entire period was 16.6 quads. 
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Weather Data. The weather data are drawn from the National Climatic Data Center (NCDC) 

Summary of the Day Data (File TD-3200). The key variables for our analysis are the daily 

maximum and minimum temperature as well as the total daily precipitation.7 To ensure the 

accuracy of the weather readings, we developed a weather station selection rule. Specifically, we 

dropped all weather stations at elevations above 7,000 feet since they were unlikely to reflect the 

weather experienced by the majority of the population within a county. Among the remaining 

stations, we considered a year’s readings valid if the station operated at least 363 days. The 

average annual number of stations with valid data in this period was 3,879 and a total of 7,380 

stations met our sample selection rule for at least one year during the 1968-2002 period. The 

acceptable station-level data is then aggregated at the county level by taking the simple average 

of the measurements from all stations within a county. The county by years with acceptable 

weather data accounted for 53.4 of the 72.3 million deaths in the U.S. from 1968 to 2002. 

Climate Change Prediction Data. Climate predictions are based on two state of the art global 

climate models. The first is the Hadley Centre’s 3rd Coupled Ocean-Atmosphere General 

Circulation Model, which we refer to as Hadley 3 (Johns et al., 1997; Pope et al., 2000). This is 

the most complex and recent model in use by the Hadley Centre. It is a coupled atmospheric-

ocean general circulation model, so it considers the interplay of several earth systems and is 

therefore considered the most appropriate for climate predictions. We also use predictions from 

the National Center for Atmospheric Research’s Community Climate System Model (CCSM) 3, 

which is another coupled atmospheric-ocean general circulation model (NCAR, 2007). The 

results from both models were used in the 4th IPCC report (IPCC, 2007). 

Predictions of climate change from both of these models are available for several emission 

scenarios, corresponding to “storylines” describing the way the world (population, economies, 

etc.) may develop over the next 100 years. We focus on two “business-as-usual” scenarios, 

which are the proper scenarios to consider when judging policies to restrict greenhouse gas 

emissions.  

We emphasize the results based on predictions from the application of the A1F1 scenario to 

the Hadley 3 model. This scenario assumes rapid economic growth (including convergence 

between rich and poor countries) and a continued heavy reliance on fossil fuels. Given the 

abundant supply of inexpensive coal and other fossil fuels, a switch to alternative sources is 

unlikely without greenhouse gas taxes or the equivalent, so this is a reasonable benchmark 

scenario. This scenario assumes the highest rate of greenhouse gas emissions, and we emphasize 

it to explore a worst-case outcome. 

We also present results from the application of the A2 scenario to the CCSM 3. This scenario 

assumes slower per capita income growth but larger population growth. Here, there is less trade 

among nations and the fuel mix is determined primarily by local resource availability. This 

                                                
7 Other aspects of daily weather such as humidity and wind speed could influence mortality, both individually and in 

conjunction with temperature. Importantly for our purposes, there is little evidence that wind chill factors (a non-

linear combination of temperature and wind speed) perform better than simple temperature levels in explaining 

daily mortality rates (Kunst et al. 1994). 



 12 

 

scenario is characterized as emphasizing regionalism over globalization and economic 

development over environmentalism. It is “middle of the road” in terms of greenhouse gas 

emissions, but it would still be considered business as usual, because it doesn’t appear to reflect 

policies to restrict emissions.8 

We use the results of the application of A1F1 scenario to the Hadley 3 model and the A2 

scenario to the CCSM 3 model to obtain daily temperature predictions for the period 2070-2099 

at grid points throughout the U.S. Each set of predictions is based on a single run of the relevant 

model. The Hadley 3 predictions are available for grid points spaced at 2.5º (latitude) x 3.75º 

(longitude), and we use the 89 (of the 153) grid points located on land to develop the regional 

estimates. Six states do not have a grid point, so we developed daily Census division-level 

predictions for the 9 U.S. Census divisions.  

The CCSM 3 predictions are available at a finer level with separate predictions available for 

grid points spaced at roughly 1.4º (latitude) x 1.4º (longitude). There are a total of 416 grid 

points on land in the U.S., and we use them to develop state-specific estimates of climate change 

for the years 2070-2099. The daily mean temperature was available for these predictions, 

whereas the minimum and maximum are available for the Hadley 3 predictions. The Data 

Appendix provides more details on the climate change predictions. 

4.2 Summary Statistics 

Mortality Statistics. Table 1 reports the average annual mortality rates per 100,000 by age 

group and gender using the 1968-2002 CMF data. It is reported separately for all causes of death 

and for deaths due to cardiovascular disease, neoplasms (i.e. cancers), respiratory disease, and 

motor-vehicle accidents (since it is the leading cause of death for individuals aged 15-24).9 These 

four categories account for roughly 72% of all fatalities, though the relative importance of each 

cause varies by sex and age.  

The all-cause and all-age mortality rates for women and men are 804.4 and 939.2 per 100,000, 

respectively, but there is tremendous heterogeneity in mortality rates across age and gender 

groups. For all-cause mortality, the female and male infant mortality rates are 1,031.1 and 

1,292.1. After the first year of life, mortality rates don’t approach this level again until the 55-64 

category. The annual mortality rate starts to increase dramatically at older ages, and in the 75-99 

age category it is 8.0% for women and 9.4% for men. The higher annual fatality rates for men at 

all ages are striking and explain their shorter life expectancy. 

As is well-known, mortality due to cardiovascular disease is the single most important cause 

of death in the population as a whole. The entries indicate that cardiovascular disease is 

responsible for 48.4% and 43.6% of overall female and male mortality. It is noteworthy that the 

importance of the different causes of death varies dramatically across age categories. For  

                                                
8 We planned to have A1F1 and A2 predictions for both Hadley 3 and NCAR CCSM 3, but we were unable to 

obtain A1F1 predictions for NCAR CCSM 3 and A2 predictions for Hadley 3.  
9In terms of ICD-9 Codes, the causes of deaths are defined as follows: Neoplasms = 140-239, Cardiovascular 

Diseases = 390-459, Respiratory Diseases = 460-519, and Motor Vehicle Accidents = E810-E819. 
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Table 1. Average Annual Mortality Rates per 100,000 Population, 1968-2002. 

Motor- A elciheV c cidents

Ag G e r uo p: F emales M sela meF a sel M sela meF a sel M sela meF a sel M sela F ema sel M sela

fnI stna 1 1.130, 1 1.292, 1.12 .52 4 4 6. 7.4 2.54 6.85 - -- ---

-1 41 9.92 .14 8 1 5. 1.7 3 9. 9.4 1 6. 8.1 3 1. 7.4

-51 42 2.35 151 6. 1.3 4 5. 9.4 7 2. 4.1 1 8. 8.11 1.63

-52 44 0.86 841 5. 8.01 .42 3 0.81 8.51 2 2. 1.3 4 8. 5.61

-54 45 1.683 996 1. 1.001 962 0. 1.851 0.561 3.41 1.22 7 0. 3.02

-55 46 3.719 1 0.696, 8.513 757 6. 4.163 4.105 2.64 3.28 7 1. 4.81

-56 47 0.801,2 3 8.457, 6.249 1 2.987, 8.446 1 0.370, 3.631 8.272 9 3. 6.91

-57 99 8.175,7 9 7.289, 4 1.215, 5 6.753, 1 3.880, 1 1.249, 0.875 6.579 3.31 4.43

lA l segA 4.408 939 2. 7.983 904 8. 5.471 3.602 2.35 4.46 8 1. 4.12

A uaC ll ses o f taeD h N oe pl smsa R pse ari tory esaesiD C ard oi vas c ul esaesiD ra

 

Notes: Averages are calculated for a sample of 57,531 county-year observations. All entries are weighted averages, where 
the weight is population in relevant demographic group in a county-year. The ICD-9 codes corresponding to the 
causes of deaths are defined as follows: Neoplasms = 140-239, Cardiovascular Disease = 390-459, Respiratory Disease 
= 460-519, Motor Vehicle Accidents = E810-E819.  

example, motor vehicle accidents account for 22.1% (23.8%) of all mortality for women (men)in 

the 15-24 age group. In contrast, cardiovascular disease accounts for 59.6% (53.7%) of all 

mortality for women (men) in the 75-99 category, while motor vehicle accidents are a negligible 

fraction. More generally, for the population aged 55 and above – where mortality rates are 

highest – cardiovascular disease and neoplasms are the two primary causes of mortality. 

Weather and Climate Change Statistics. We take advantage of the richness of daily weather 

data and climate change predictions data by using the information on daily minimum and 

maximum temperatures. Specifically, we calculate the daily mean temperatures at each weather 

station as the average of each day’s minimum and maximum temperature. The county-wide 

mean is then calculated as the unweighted average across all stations within a county. The 

climate change predictions are calculated analogously, except that we take the average of the 

daily predicted mean temperature across the grid points within the Census Division (Hadley 3) 

and state (CCSM 3). 

Table 2 reports on national and regional measures of observed temperatures from 1968-2002 

and predicted temperatures from 2070-2099. For the observed temperatures, this is calculated 

across all county by year observations with nonmissing weather data, where the weight is the 

population between ages 0 and 99. The predicted temperatures under climate change are 

calculated across the 2070-2099, where the weight is the population of individuals 0 to 99 

residing in counties with nonmissing weather data in the relevant geographic unit summed over 

the years 1968-2002. It is important to emphasize that these calculations of actual and predicted 

temperatures depend on the distribution of the population across the U.S., so systematic 

migration (e.g., from South to North) would change these numbers even without any change in 

the underlying climate.  
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Table 2. Population-Weighted Averages of Daily Mean across Counties, 1968-2002. 

cA tual
leveL fiD fer cne e leveL fiD fer cne e

Av gare yliaD e M nae
seitnuoC llA 6.65 6.26 6 0. 2.26 5 6.

roN t saeh noigeR t 9.05 5.65 5 6. 7.55 4 8.
wdiM se noigeR t 9.94 1.95 9 2. 7.95 9 8.

noigeR htuoS 4.46 6.37 9 2. 5.96 5 1.
West noigeR 6.85 3.85 - 3.0 6.16 3 0.

Av gare yliaD e M ini um m
seitnuoC llA 0.64 5.25 6 5. --- ---

Av gare yliaD e M umixa m
seitnuoC llA 2.76 7.27 5 5. --- ---

aD ys w i em ht an > 90F A( C ll eitnuo s)
revA yliaD ega naeM 2.29 4.69 4 3. 6.49 2 4.

revA yliaD ega miniM um 2.87 4.38 5 3. --- ---

revA yliaD ega xaM imum 2.601 5.901 3 3. --- ---

SCC M A ,3 2daH l ye A ,3 1F1

 

Notes: Averages are calculated for a sample of 57,531 county-year observations and are weighted by the total population 
in a county-year (“Actual”) and by the average total population over 1968-2002 in a county (“CCSM 3, A2” and “Hadley 
3, A1F1”). The average daily mean temperature is the simple average of the daily minimum and maximum 
temperatures.  

 

The “Actual” column of Table 2 reports that the average daily mean is 56.6º F.10 The entries 

for the four Census regions confirm that the South is the hottest part of the country and the 

Midwest and Northeast are the coldest ones.11 Since people are more familiar with daily highs 

and lows from newscasts, the table also documents the average daily maximum and minimums.12 

The average daily spread in temperatures is 21.2º F, indicating that highs and lows can differ 

substantially from the mean.   

Figure 2 depicts the variation in the measures of temperature across 20 temperature bins in 

the 1968-2002 period. Each bar represents the average number of days per year in each 

temperature category for the 57,531 county-year observations in the sample, weighted by the 

total population in a county-year. The leftmost bin measures the number of days with a mean 

temperature less than 0º F and the rightmost bin is the number of days where the mean exceeds 

90º F. The intervening 18 bins are all 5º F wide. These 20 bins are used throughout the remainder 

                                                
10 The average daily mean and all other entries in the table (as well as in the remainder of the paper) are calculated 

across counties that meet the weather station sample selection rule described above.  
11 The states in each of the Census regions are: Northeast-- Connecticut, Maine, Massachusetts, New Hampshire, 

Vermont, Rhode Island, New Jersey, New York, and Pennsylvania; Midwest-- Illinois, Indiana, Michigan, Ohio, 
Wisconsin, Iowa, Kansas, Minnesota, Missouri, Nebraska, North Dakota, and South Dakota; South-- Delaware, 

District of Columbia, Florida, Georgia, Maryland, North Carolina, South Carolina, Virginia, West Virginia, 

Alabama, Kentucky, Mississippi, Tennessee, Arkansas, Louisiana, Oklahoma, and Texas; and West-- Arizona, 

Colorado, Idaho, Montana, Nevada, New Mexico, Utah, Wyoming, Alaska, California, Hawaii, Oregon, and 

Washington. 
12 For counties with multiple weather stations, the daily maximum and minimum are calculated as the average across 

the maximums and minimums, respectively, from each station. 
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of the paper, as they form the basis for our semi-parametric modeling of temperature in equations 

for mortality rates and energy consumption. This binning of the data preserves the daily variation 

in temperatures. The preservation of this variation is an improvement over the previous research 

on the mortality impacts of climate change that obscures much of the variation in temperature.13 

This is important because there are substantial nonlinearities in the daily temperature-mortality 

and daily temperature–energy demand relationships. 
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Figure 2. Distribution of annual daily mean temperatures (F) across 20 temperature bins between 
1968 and 2002.  

The figure depicts the mean number of days that the typical person experiences in each bin; 

this is calculated as the weighted average across county by year realizations, where the county by 

year’s population is the weight. The average number of days in the modal bin of 70º – 75º F is 

38.2. The mean number of days at the endpoints is 0.8 for the less than 0° F bin and 1.6 for the 

greater than 90º F bin. 

The remaining columns of Table 2 report on the predicted changes in temperature from the 

two sets of climate change predictions for the 2070–2099 period.14 The CCSM 3 model and A2 

scenario predict a change in mean temperature of 5.6º F or 4.1º Celsius (C). Interestingly, there is 

substantial heterogeneity, with mean temperatures expected to increase by 9.8º F in the Midwest 

and by 3.0º F in the West. The A1F1 scenario predicts a gain in mean temperature of 6.0º F or 

4.3º C. The increases in the Midwest and South exceed 9º F, while there is virtually no predicted 

change in the West.15  

                                                
13 For example, Martens (1998) and Tol (2002a) use the maximum and the minimum of monthly mean temperatures 

over the course of the year.  
14 For comparability, we follow much of the previous literature on climate change and focus on the temperatures 

predicted to prevail at the end of the century. 
15 The fourth and most recent IPCC report summarizes the current state of climate change predictions. This report 

says that a doubling of carbon dioxide concentrations is “likely” (defined as P > 66%) to lead to an increase of 

average surface temperatures in the range of 2º to 4.5º C with a best estimate of 3º C (IPCC 4, 2007). Thus, the 

predictions in Table 2 are at the high end of the likely temperature range associated with a doubling of carbon 

dioxide concentrations. 
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Figure 3 provides an opportunity to understand how the full distributions of mean 

temperatures are expected to change. One’s eye is naturally drawn to the last two bins. The 

Hadley 3 A1F1 (CCSM 3 A2) predictions indicate that a typical person will experience 18.9 

(12.4) additional days per year where the mean daily temperature is between 85º F and 90º F. 

Even more amazing, the mean daily temperature is predicted to exceed 90º F for 43.8 (20.7) 

extra days per year.16 To put this in perspective, the average person currently experiences just 1.6 

days per year where the mean exceeds 90° F and 7.1 in the 85° – 90° F bin.  
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Figure 3. Changes in distribution of annual daily mean temperatures (F) under Hadley 3, A1F1 and 
CCSM 3, A2 across the 20 temperature bins. Each bar represents the change in the average 
number of days per year in each temperature category. “Changes” are defined as the difference 
between the 1968–2002 average in each category and the 2070–2099 predicted average 
number of days in each category. Both averages are weighted by the average total population 
over 1968–2002 in a county. The temperature categories are defined as in Figure 2. 

An examination of the rest of the figure highlights that the increase in these very hot days is 

not being drawn from the entire year. For example, the number of days where the maximum is 

expected to be between 50º F and 80º F declines by 62.6 (30.4) days under Hadley 3 A1F1 

(CCSM A2). Further, the mean number of days where the minimum temperature will be below 

30º F is predicted to fall by just 3.8 (10.4) days. Thus, these predictions indicate that the 

reduction in extreme cold days is much smaller than the increase in extreme hot days. As will 

become evident, this will have a profound effect on the estimated impacts of climate change on 

mortality and energy consumption. 

Returning to Table 2, the bottom panel reports temperatures for days when the mean exceeds 

90º F, which, as was evident in Figure 3, is an especially important bin. The paper’s econometric 

model assumes that the impact of all days in this bin on mortality and energy consumption are 

constant. This assumption may be unattractive if climate change causes a large increase in 

temperature among days in this bin. On the whole, the increase in mean temperatures among 

                                                
16 At the risk of insulting the reader, we emphasize that a mean daily temperature of 90º F is very hot. For example, 

a day with a high of 100º F would need a minimum temperature greater than 80º F to qualify. 
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days in this bin is relatively modest, with predicted increases of 2.4º F (CCSM 3 A2) and 4.3º F 

(Hadley 3 A1FI). Consequently, we conclude that historical temperatures can be informative 

about the impacts of the additional days predicted to occur in the > 90º F bin. 

5. ECONOMETRIC STRATEGY 

This section describes the econometric models that we employ to learn about the impact of 

temperature on mortality rates and residential energy consumption. 

5.1 Mortality Rates 

We fit the following equations for county-level mortality rates of various demographic 

groups: 

ctdstdcddct

l

ctl

PREC

dl

j

ctj

TMEAN

djctd XPRECTMEANY +++++=  (5) 

Yctd is the mortality rate for demographic group d in county c in year t. In the subsequent 

analysis, we use 16 separate demographic groups, which are defined by the interaction of 8 age  

categories (0-1, 1-14, 15-24, 25-44, 45-54, 55-64, 65-74, and 75+) and gender. 
ct
X  is a vector of 

observable time varying determinants of fatalities measured at the county level. The last term in 

equation (5) is the stochastic error term,
ctd

.   

The variables of interest are the measures of temperature and precipitation, and we have tried 

to model these variables with as few parametric assumptions as possible while still being able to 

make precise inferences. Specifically, they are constructed to capture the full distribution of 

annual fluctuations in weather. The variables TMEANctj denote the number of days in county c 

and year t where the daily mean temperature is in one of the 20 bins used in Figures 1 and 2. 

Thus, the only functional form restriction is that the impact of the daily mean temperature is 

constant within 5º F intervals.17 This degree of flexibility and freedom from parametric 

assumptions is only feasible because we are using 35 years of data from the entire U.S. Since 

extreme high and low temperatures drive most of the health impacts of temperature, we tried to 

balance the dual and conflicting goals of allowing the impact of temperature to vary at the 

extremes and estimating the impacts precisely enough so that they have empirical content. The 

variables PRECctl are simple indicator variables denoting annual precipitation equal to “l” in 

county c in year. These intervals correspond to 2-inch bins.  

The equation includes a full set of county by demographic group fixed effects, 
cd

. The  

appeal of including the county fixed effects is that they absorb all unobserved county-specific 

time invariant determinants of the mortality rate for each demographic group. So, for example, 

differences in permanent hospital quality or the overall healthiness of the local age-specific 

population will not confound the weather variables. The equation also includes state by year  

indicators, 
std

, that are allowed to vary across the demographic groups. These fixed effects  

                                                
17 Schlenker and Roberts (2006) also consider a model that emphasizes the importance of nonlinearities in the 

relationship between crop yields and temperature. 
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control for time-varying differences in the dependent variable that are common within a 

demographic group in a state (e.g., changes in state Medicare policies). 

The validity of any estimate of the impact of climate change based on equation (5) rests  

crucially on the assumption that its estimation will produce unbiased estimates of the TMEAN

dj and 

PREC

dl
 vectors. The consistency of the components of each dj requires that after adjustment for  

the other covariates the unobserved determinants of mortality do not covary with the weather 

variables. In the case of the mean temperatures, this can be expressed formally as E[TMEANctj  

ctd
| 

ct
X , 

cd
, 

std
] = 0. By conditioning on the county and state by year fixed effects, the dj ’s 

are identified from county-specific deviations in weather about the county averages after 

controlling for shocks common to all counties in a state. Due to the unpredictability of weather 

fluctuations, it seems reasonable to presume that this variation is orthogonal to unobserved 

determinants of mortality rates. The point is that there is reason to believe that the identification 

assumption is valid. 

A primary motivation for this paper’s approach is that it may offer an opportunity to identify 

weather-induced changes in the fatality rate that represent the full impact on the underlying 

population’s life expectancy. Our review of the literature suggests that the full effect of 

particularly hot and cold days is evident within approximately 30 days (Huynen et al., 2001; 

Deschênes & Moretti, 2007). Consequently, the results from the estimation of equation (5) that 

use the distribution of the year’s daily temperatures should largely be free of concerns about 

forward displacement and delayed impacts. This is because a given day’s temperature is allowed 

to impact fatalities for a minimum of 30 days for fatalities that occur from February through  

December. An appealing feature of this set-up is that the TMEAN

dj  coefficients can be interpreted  

as reflecting the full long-run impact of a day with a mean temperature in that range. 

The obvious limitation is that the weather in the prior December (and perhaps earlier parts of 

the year if the time frame for harvesting and delayed impacts is longer than 30 days) may affect 

current year’s mortality. To assess the importance of this possibility, we also estimate models 

that include a full set of temperature variables for the current year (as in equation (5)) and the 

prior year. As we demonstrate below, our approach appears to purge the estimates of fatalities of 

people with relatively short life expectancies.18 

There are two further issues about equation (5) that bear noting. First, it is likely that the error 

terms are correlated within county by demographic groups over time. Consequently, the paper 

reports standard errors that allow for heteroskedasticity of an unspecified form and that are 

clustered at the county by demographic group level.  

                                                
18 A daily version of equation (5) is very demanding of the data. In particular, there is a tension between our 

flexibility in modeling temperature and the number of previous days of temperature to include in the model. 
Equation (5) models temperature with 20 variables, so a model that includes 30 previous days would use 600 

variables for temperature, while one with 365 days would require 7300 temperature variables. Further, daily 

mortality data for the entire U.S. is only available from 1972-1988, and there may be insufficient variation in 

temperature within this relatively short period of time to precisely identify some of the very high and very low 

temperature categories.  
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Second, it may be appropriate to weight equation (5). Since the dependent variable is 

demographic group-specific mortality rates, we think there are two complementary reasons to 

weight by the square root of demographic group’s population (i.e. the denominator). First, the 

estimates of mortality rates with large populations will be more precise than the estimates from 

counties with small populations, and this weight corrects for the heteroskedasticity associated 

with the differences in precision. Second, the results can then be interpreted as revealing the 

impact on the average person, rather than on the average county. 

Residential Energy Consumption. We fit the following equation for state-level residential 

energy consumption: 

stdtsst

l

l

PREC

l

j

j

TMEAN

jst XPRECTMEANC +++++=)ln(  (6) 

Cst is residential energy consumption in state s in year t and d indexes Census Division. The 

modeling of temperature and precipitation is identical to the approach in equation (5). The only 

difference is that these variables are measured at the state by year level – they are calculated as 

the weighted average of the county-level versions of the variables, where the weight is the  

county’s population in the relevant year. The equation also includes state fixed effects (
s
) and 

census division by year fixed effects (
dt

) and a stochastic error term,
st

.   

A challenge for the successful estimation of this equation is that there has been a dramatic 

shift in the population from the North to the South over the last 35 years. If the population shifts 

were equal within Census divisions, this wouldn’t pose a problem for estimation but this hasn’t 

been the case. For example, Arizona’s population has increased by 223% between 1968 and 

2002 compared to just 124% for the other states in its Census Division, and due to its high 

temperatures it plays a disproportionate role in the identification of the j ’s associated with the 

highest temperature bins.19 The point is that unless we correctly adjust for these population  

shifts, the estimated j ’s may confound the impact of higher temperatures with the population  

shifts. 

As a potential solution to this issue, the vector 
st
X  includes the ln of population and gross  

domestic product by state as covariates. The latter is included since energy consumption is also a 

function of income. Adjustment for these covariates is important to avoid confounding 

associated with the population shifts out of the Rust Belt and to warmer states. 

Finally, we will also report the results from versions of equation (6) that model temperature 

with heating and cooling degree days. We follow the consensus approach and use a base of 65º F 

                                                
19 For example, we estimated state by year regressions for the number of days where the mean temperature was in 

the > 90º F bin that adjusted for state fixed effects and census division by year fixed effects. The mean of the 

annual sum of the absolute value of the residuals for Arizona is 3.6 but only 0.6 in the other states in its Census 

Division. The other states in Arizona’s Census Division are Colorado, Idaho, New Mexico, Montana, Utah, 

Nevada, and Wyoming.  
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to calculate both variables.20 Specifically, on a given day, the number of cooling degree days 

equals the day’s mean temperature (i.e. the average of the minimum and maximum) minus 65º F 

for days where the mean is above 65º F and zero for days when the mean is below 65º F. 

Analogously, a day’s heating degree days is equal to 65º F minus its mean for days where the 

mean is below 65º F and zero otherwise. So, a day with a mean temperature of 72º F would 

contribute 7 cooling degree days and 0 heating degree days, while a day with a mean of 51º F 

would contribute 0 cooling degree days and 14 heating degree days.  

To implement this alternative method for modeling a year’s temperature, we sum the number 

of heating and cooling degree days separately over the year. We then include the number of 

heating and cooling degree days and their squares in equation (6) instead of the TMEANctj 

variables. 

6. RESULTS 

This section is divided into three subsections. The first explores the extent of variation in the 

temperature variables in the context of the rich statistical models that we employ. The second 

provides estimates of the impact of predicted climate change on the mortality rates of specific 

demographic groups and the general population. The third examines the impact of predicted 

climate change on residential energy consumption.  

6.1 How Much Variation is there in Temperature?  

As we discussed above, our preferred specifications model temperature with 20 separate 

variables. For this method to be successful, it is important that there is substantial inter-annual 

variation in county temperature after adjustment for these county and state by year fixed effects 

in the mortality equations. If this is the case, the predicted health impacts of climate change will 

be identified from the data rather than by extrapolation due to functional form assumptions. 

Figure 4 depicts the extent of inter-annual variation in temperature. For each daily mean 

temperature bin, we create a data file where the observations are from all county by year 

observations with valid weather data between 1968 and 2002. We then regress the annual 

realization of the number of days that the relevant county had a daily mean in the temperature 

bin against state-by-year and county fixed effects. For each county by year, we sum the absolute 

value of the residuals. The figure reports the mean of this number across all county by year 

observations. The resulting figures can be interpreted as the average number of days in a county 

by year that are available to identify the parameter associated with that temperature bin after 

adjustment for the fixed effects. 

                                                
20 Electrical, natural gas, power, heating, and air conditioning industries utilize heating and cooling degree 

calculations to predict demand (http://www.fedstats.gov/qf/meta/long_242362.htm). Further, the National 

Oceanic and Atmospheric Administration recommends using a base of 65º F for both heating and cooling degree 

days (http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/cdus/degree_days/ddayexp.shtml). Further, 

an examination of the figures in Engle et al.’s seminal paper on relationship between temperature and electricity 

sales suggests that 65º F is a reasonable base for both cooling and heating degree days (Engle et al., 1986). 
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Figure 4. Residual Variation in Annual Daily Mean Temperatures (F), 1968-2002. The figure shows the 
extent of residual inter-annual variation in temperature. Each bar is obtained by first estimating 
a regression of the number of days in the relevant temperature category on unrestricted county 
effects and state-by-year effects, weighting by the total population in a county-year. For each 
county-year, we sum the absolute value of the residuals from the regression. The figure reports 
the mean of this number across all county by year observations. The resulting figures can be 
interpreted as the average number of days in a county by year that are available to identify the 
parameter associated with that temperature bin after adjustment for the fixed effects. 

An inspection of the figure demonstrates that there is substantial variation in temperatures, so 

it should be possible to obtain relatively precise estimates of the impacts of most of the 

temperature bins. Notably, due to the large data file, there are still many days available to 

estimate the impact of even the extreme bins. For example, the mean of the absolute value of the 

residuals for the bin for the > 90º F bin is 0.7 days. Although this may seem small, the size of our 

data file helps greatly. Since there are 57,531 county by year observations (and thus a total of 

20,998,815 county by days observations), this means that there are roughly 40,272 county by 

days to help identify the impact of a day in this bin. The analogous figure for the 85º - 90º F bin 

is 149,005 days.  

6.2 Estimates of the Impact of Climate Change on Mortality 

All Cause Mortality Results. Figure 5 provides an opportunity to better understand the  

paper’s approach. It plots the estimated j ’s from the estimation of equation (5) for male infants. 

In this version of the equation, we dropped the TMEANj variable associated with the 65º - 70º F 

bin so each j  reports the estimated impact of an additional day in bin j on the infant mortality  

rate (i.e. deaths per 100,000) relative to the mortality rate associated with a day where the  

temperature is between 65º - 70º F. The figure also plots the estimated j ’s plus and minus one  

standard error of the estimates so that the precision of each of these estimates is evident.  

The most striking feature of this graph is that the response function is generally flat, meaning 

that temperature has little influence on male infant mortality rates except at the hottest and 

coldest temperatures. Recall, the climate change models predict that the changes in the 
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Figure 5. Estimated Regression Coefficients, Male Infants (relative to temperature cell 65-70). The 
figure plots the estimated response function between male infant annual mortality rate (per 
100,000) and daily mean temperatures. This is obtained by fitting equation (5) for the male 
infant group. The response function is normalized with the 65º - 70º F category so each j 
corresponds to the estimated impact of an additional day in bin j on the male infant mortality 
rate (i.e. deaths per 100,000) relative to the mortality rate associated with a day where the 
temperature is between 65º - 70º F. The figure also plots the estimated j’s plus and minus one 
standard error of the estimates. 

distribution of temperature will be concentrated among days where the mean temperatures  

exceeds 50º F, so the estimated j ’s in this range are most relevant for this paper’s exercise. If  

the estimates are taken literally, it is evident that the predicted shift of days into the last bin will 

lead to an increase in infant mortality. For example, the results suggest that the shift of a day 

from the 70º - 75º F bin (estimated  = -0.78) to the > 90º F bin (estimated  = 0.92) would lead 

to 1.7 more infant deaths per 100,000 births. 

It is also important to highlight that the estimated j ’s have associated sampling errors. 

Among the most relevant j ’s, the largest standard error is in the highest bin due to the  

relatively small number of days with a mean temperature exceeding 90º F. The imprecision of 

the estimated impact of this bin poses a challenge for making precise inferences about the impact  

of the predicted changes in temperature on mortality rates. The estimated j ’s at the lowest  

temperatures are even more imprecise, but they play little role in this exercise due to the 

distribution of the predicted changes in temperature. 

We now turn to Table 3, which summarizes the results from the estimation of separate 

versions of equation (5) for the 16 gender by age groups using the Hadley 3 A1F1 scenario. 

These versions include all twenty TMEANj variables. Estimates for females and males are 

reported in the left and right panels, respectively. Columns (1a) and (2a) report the predicted 

change in annual mortality for each demographic group and its estimated standard error. For a 

given county and demographic groups, these impacts are calculated as follows: 

=
j

cj

TMEAN

djcdcd TMEANˆPOPM  (7) 
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That is, we multiply the predicted change in the number of days in each temperature cell from 

the Hadley 3 A1F1 predictions ( cjTMEAN ) by the corresponding demographic-group specific  

impact on mortality ( TMEAN

dj
ˆ ) and then sum these products. This sum is then multiplied by the 

average population for that demographic in that county (
cd

POP ) over the sample period. Finally,  

the impacts for a given demographic group are summed over all counties. This sum is the 

national demographic group-specific estimate of the change in annual mortality. It is 

straightforward to calculate the standard error, since the estimated mortality change is a linear 

function of the estimated parameters. 

Columns (1b) and (2b) report the estimated percentage change in the annual mortality rate and 

its standard error. The percentage change is calculated as the ratio of the change in the 

demographic group’s mortality rate due to predicted climate change to the group’s overall 

mortality rate. Columns (1c) and (2c) report the change in life years due to predicted climate 

change for each age category. This entry is the product of the predicted increase in annual 

fatalities and the residual life estimate for each age group (evaluated in the middle of the age 

range) and sex, taken from the 1980 Vital Statistics.21 Negative values correspond to losses of 

life-years, while positive entries correspond to gains in life-years. We note that this calculation 

may overstate the change in life years, because affected individuals are likely to have shorter life 

expectancies than the average person. Nevertheless, these entries provide a way to capture that 

fatalities at young ages may have greater losses of life expectancy than those at older ages. The 

entries in columns (1d) and (2d) report p-values from F-tests of the hypothesis that the twenty 

estimated j ’s are equal. This test is not directly informative about the mortality impacts  

of predicted climate change, but it provides a summary of the impact of temperature on mortality 

in the U.S. A failure to reject the null is consistent with the view that in the U.S. individuals are 

able to easily adapt to changes in temperature that pose potential risks to mortality. 

We begin by returning to infant mortality, which is reported in the first row. These entries 

indicate that predicted climate change will increase the number of female and male infant deaths 

by roughly 1,000 and 1,800 per year, respectively. The female estimate borders on statistical 

significance at conventional levels, while the male estimate is substantially more precise. These 

estimates are equivalent to increases of 5.5% (female) and 7.8% (male) in the infant mortality 

rates. The life-years calculation suggests that these extra fatalities would lead to a loss of about 

200,000 life years of life expectancy every year. This finding of higher temperatures leading to 

increased rates of infant mortality is consistent with the medical evidence that infants’ 

thermoregulatory systems are not fully developed (Knobel & Holditch-Davis, 2007). 

In the remainder of the table, there is mixed evidence of mortality impacts from the Hadley 3 

A1FI scenario for the other demographic groups. The most substantial impacts are concentrated 

among 75-99 females. The entries suggest that there would be an additional 11,500 fatalities per  

                                                
21 Starting with infants and progressing towards the oldest age category, the residual life estimates for females are 

78.1, 72.1, 59.4, 45.8, 30.9, 22.4, 14.8, and 6.3. The corresponding estimates for males are 70.7, 64.8, 52.4, 39.5, 

25.2, 17.5, 11.3, and 5.0.  
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Table 3. Estimates of the Impact of Climate Change on Annual Mortality, Hadley 3 A1F1 Scenario.  

EF AM SEL MAL SE
A launn %  egnahC ni A ni egnahC launn tset-F A launn % ni egnahC A ni egnahC launn tset-F

Ag G e r :puo seitilataF Mor ytilat etaR raeY efiL s ( v-p a )seul seitilataF M ytilatro aR et raeY efiL s ( v-p a )seul
)a1( )b1( )c1( )d1( )a2( )b1( )c2( )d1(

stnafnI 9.599 5 6. 5.203,77- 0 081. 3.5381 8.7 - 4.176,821 0 864.
( 7.815 ) ( 9.2 ) ( 7.186 ) ( 9.2 )

41-1 4.875 7 9. 0.674,14- 0 378. 8.396 6 5. 9.346,44- 0 856.
( 6.023 ) ( 4.4 ) ( 4.414 ) ( 9.3 )

42-51 2.975- - 9.5 6.327,43 0 830. 4.362 0 9. 8.309,31- 0 970.
( 0.894 ) ( 1.5 ) ( 3.8041 ) ( 0.5 )

44-52 1.068 2 2. 3.421,93- 0 510. 5.3992 7.3 - 4.601,711 0 100.
( 6.259 ) ( 5.2 ) ( 1.6903 ) ( 8.3 )

45-54 9.749 1 9. 6.629,92- 0 702. 6.5392 4.3 - 9.697,57 0 613.
( 3.709 ) ( 8.1 ) ( 7.4761 ) ( 9.1 )

46-55 7.8901 1 1. 0.963,52- 0 331. 5.2734 7.2 - 6.063,97 0 300.
( 0.3621 ) ( 3.1 ) ( 6.6612 ) ( 3.1 )

47-56 8.661,2 1 2. 8.120,33- 0 331. 2.413 0 1. 2.537,3- 0 100.
( 5.7452 ) ( 4.1 ) ( 0.8933 ) ( 3.1 )

99-57 6.825,11 2 0. 5.972,87- 0 073. 6.851,4 1 0. 4.185,22- 0 900.
( 6.4445 ) ( 0.1 ) ( 8.8214 ) ( 0.1 )

A rgg tcapmI etage 2.795,71 8.1 1.677,982- 8.665,71 6.1 6.997,584-
)3.25421( )3.1( ( )5.86961 )6.1(  

Notes: The estimates are from fixed-effect regressions by demographic group. For each group there are 57,531 county-
year observations. Each model includes county fixed-effects and state-by-year effects unrestricted for each 
demographic group. The dependent variable is the annual mortality rate in the relevant demographic group in a 
county-year. The regressions are weighted by the population count in the relevant demographic group in a county-
year. Control variables include a set of 50 indicator variables capturing the full distribution of annual precipitations. 
Standard errors are clustered at the county-by-demographic group level. 

year in this demographic group and that their annual mortality rate would increase by roughly 

2.0%. Due to their age, the total loss of life years is comparable to the loss for infants even 

though the increase in fatalities is 11 times larger. There is also evidence of increased mortality 

rates for 1-14 year olds and for men in the 45-54 and 55-64 age categories. 

The evidence in favor of an increase in the mortality rate is weak for many of the 

demographic groups, however. For example, the null of a zero increase in fatalities cannot be 

rejected at even the 10% level for 9 of the 16 demographic groups. Similarly, the null that twenty  

estimated j ’s are equal cannot be rejected at the 10% level in 9 of the 16 cases. Overall, these  

differences in the results across demographic groups underscore the value of estimating separate 

models for each group. 

The bottom row of Table 3 reports the aggregate impacts, which are the sum of the impacts 

for each demographic group, from the Hadley 3 A1FI scenario. For both females and males, 

annual mortality is predicted to increase by approximately 17,500 deaths per year. This excess 

mortality corresponds to increases in the annual mortality rate of 1.8% for women and 1.6% for 

men.22 It is important to note, however, that these aggregate impacts are statistically 

                                                
22 We examined the variability in the estimated impact on mortality rates when predictions for individual years from 

the 2070-2099 period are used, rather than the average over the entire period. The smallest annual impact implies 

increases in the annual mortality rates (standard error) of 1.0% (0.9%) and 0.9% (2.0%) for women and men, 

respectively. The largest annual impacts are 2.9% (1.6%) and 2.7% (2.2%) for men and women. 
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indistinguishable from zero for both genders.23 The 95% confidence intervals for the estimated 

impact on the overall female and male mortality rates are [4.3%, -0.7%] and [4.7%, -1.5%], 

respectively. 
To understand the source of these aggregate estimates, it is instructive to examine the  

regression coefficients (i.e. TMEAN

dj
ˆ ) that drive the overall estimates. Figures 6a and 6b plot the  

weighted sums of these parameters across age groups for female and males, respectively, where 

the weights are the population shares in each age category. 

Each data point represents the impact on the annual mortality rate (per 100,000) of an 

additional day in the relevant temperature bin, relative to the 65º - 70º F bin. The figure also plots  

the estimated j ’s plus and minus one standard error of the estimates. The y-axes are scaled  

identically so that the response functions can be compared easily. 

Both figures suggest that mortality risk is highest at the colder and hotter temperatures, so the 

response functions have U-shapes, loosely defined. It is evident that trading days in the 50º - 80º 

F range for hotter days as is predicted in the Hadley 3 A1F1 scenario will lead to mortality 

increases. Further, the mortality rate is higher below 50º F than in the 50º - 80º F range. It is also 

apparent that the colder days (e.g., < 50º F) are generally more harmful than the hotter days (e.g., 

> 80º F). These figures demonstrate that an alternative climate change scenario where the 

warming was concentrated in the coldest months and regions would lead to a substantial 

reduction in mortality. 

The approach of modeling temperature with 20 separate variables and allowing their impact to 

vary by demographic group allows for important nonlinearities and heterogeneity across 

demographic groups and nonlinearities, but the cost is that this is demanding of the data. We 

assessed whether making some restrictions would help to allow for more precise inferences and 

generally concluded that the answer is no. For example, we estimated models that restricted the 

j’s to be the same for males and females of the same age group. In addition, we also estimated 

models for age-adjusted mortality rates that pool together all age groups. None of these 

alternative specifications helped to reduce the standard errors substantially. 

Robustness Analysis. Table 4 reports on the estimated impacts on female and male fatality 

rates from a series of alternative models and approaches. Columns (1a) and (1b) of the first row 

(“Baseline Estimates”) repeats the overall estimate from Table 3 and is intended as a basis for 

comparisons.  

The validity of the paper’s estimates of the impact of climate change depends on the validity 

of the climate change predictions. The state of climate modeling has advanced dramatically over 

the last several years, but there is still much to learn, especially about the role of greenhouse 

gases on climate (Karl & Trenberth, 2003). Thus, the Hadley 3 A1F1 predictions should be 

                                                
23 We also investigated the impacts of predicted climate change on deaths due to cardiovascular diseases, neoplasms, 

respiratory diseases, and motor-vehicle accidents. This exercise is very demanding of the data and generally led 

to imprecise estimates. Nevertheless, a few findings of note emerged. Specifically, the largest increases in 

mortality occur among cardiovascular and respiratory diseases. Further, there is a substantial decline in motor 

vehicle fatalities among 15-24 year olds (especially males), which is likely related to a reduction in dangerous 

driving days.  
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Figure 6. (a) Population-Weighted Sum of Regression Estimates Across Age Groups, Females 
(relative to temperature cell 65-70) Aggregate female response function between annual 
mortality rate (per 100,000) and daily mean temperatures is obtained by fitting equation (4) for 
the female mortality rate in each age group. The age-group specific estimates are then 
combined into a single “aggregate” estimate by taking a weighted sum of the age-specific 
estimates, where the weight is the average population size in each age group. The response 
function is normalized with the 65° - 70° F category so each j corresponds to the estimated 
impact of an additional day in bin j on the aggregate female mortality rate (i.e. deaths per 
100,000) relative to the mortality rate associated with a day where the temperature is between 
65° - 70° F. The figure also plots the estimated j’s plus and minus one standard error of the 
estimates.  
(b) Population-Weighted Sum of Regression Estimates Across Age Groups, Males (relative to 
temperature cell 65-70). Aggregate male response function between annual mortality rate (per 
100,000) and daily mean temperature is obtained by fitting equation (5) for the male mortality 
rate in each age group. The age-group specific estimates are then combined into a single 
“aggregate” estimate by taking a weighted sum of the age-specific estimates, where the weight 
is the average population size in each age group. The response function is normalized with the 
65° - 70° F category so each j corresponds to the estimated impact of an additional day in bin j 
on the aggregate male mortality rate (i.e. deaths per 100,000) relative to the mortality rate 
associated with a day where the temperature is between 65° - 70° F. The figure also plots the 
estimated j’s plus and minus one standard error of the estimates. 
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Table 4. Alternative Estimates of the Impact of Climate Change on Annual Mortality Rates. 

AH ELD Y A ,3 1 1F SCC M A ,3 2
Fe selam M sela Fe selam M sela

A. nilesaB tsE e i tam es 1 8. 6.1 0 5. 4.0
(1 )3. ( )6.1 (0 )8. ( )7.0

A .B lte nr ta vi pS e fice i tac oi ns
Y .1 rae fE fects O n yl 0.2 1 4. 0.1 0 7.

(1 )8. ( )6.1 (1 )1. ( )2.1

rtnoC .2 o sl f or yliaD miniM um aM dna ximum T em rep ruta rapeS e yleta 1.6 2.4 --- ---
(1 )3. ( )3.1

rP ddA .3 suoive Y rae s' T em rep ruta V e ari selba 9.0 1 4. 0.0 0 1.
(2 )1. ( )2.2 (1 )2. ( )3.1

raV ddA .4 i f elba or muN reb fo wtaeH" a sev " 0.2 1 8. 6.0 0 5.
(1 )7. ( )7.1 (1 )2. ( )4.1

apmI .C cts E fo s amit eht gnit eR sponse cnuF S no noit sbu ets eht fo aD at
soP .1 t- O ataD 0891 n yl 2.2 1 3. 3.1 0 9.

(1 )2. ( )5.1 (1 )1. ( )3.1

seitnuoC .2 w i yaD# ht s vobA F °08 e A naideM lanoitaN evob 8.1 2 3. 7.0 1 1.
 

Notes: The estimates are from fixed-effect regressions estimated separately by demographic group, and then summed 
across all age groups and for males and females. See the notes to Table 3 for more detail. Specification B.1 replaces 
the state by year fixed effects are replaced by year fixed effects. Specification B.2 models temperature with two 
separate sets of the same 20 temperature bins for the daily maximum and minimum temperatures, respectively, 
while specification B.3 uses separate sets of the 20 temperature bins for the current year’s daily mean temperature 
and the previous year’s daily mean temperature to allow for the possibility that equation (5) inadequately accounts 
for the dynamics of the mortality-temperature relationship. Specification B.4 include controls for “heatwaves”, which 
are defined as episodes of 5 consecutive days where the daily mean temperature exceeds 90º F (sample average = 0.9 
such heatwaves per county-year). Specification C.1 estimates the models using data for 1980-2002 only. Finally, 
specification C.2 estimates the response function with data from the half of counties where the average number of 
days per year with a mean temperature above 80º F exceeds the national median (14 days). 

 

conceived of as a single realization from a superpopulation of models and modeling choices. Put 

another way, in addition to the sampling errors associated with the statistical models, the “true” 

standard error should reflect the uncertainty associated with climate modelers’ decisions. It isn’t 

feasible to directly incorporate this source of uncertainty into our estimates.   

To shed light on how modeling choices can affect the range of estimates, this table 

supplements the Hadley 3 A1F1 results with ones that utilize the CCSM 3 A2 predictions in 

columns (2a) and (2b). Recall, these predictions are for a similar increase in mean temperatures 

but one that is more evenly spread throughout the temperature distribution.24 The predicted 

increases in the annual mortality rate of 0.5% (females) and 0.4% (males) have associate t-

statistics less than 0.7 and are substantially smaller than the predictions from the Hadley 3 A1F1 

scenario. The 95% confidence intervals for the estimated impact on the overall female and male 

                                                
24 Our intention was to provide estimates from a wider range of models. However, once we focused on daily 

predictions, we found that the Hadley 3 A1FI and NCAR CCSM 2 A2 predictions are the only “business as 

usual” ones available through the internet or from requests to climate researchers. 
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mortality rates are [2.1%, -1.1%] and [1.8%, -1.0%]. Further, infants are the only demographic 

group predicted to have a statistically significant increase.25, 26  

Panel B reports on several changes in the basic specification in equation (5). In row 1, the 

state by year fixed effects are replaced by year fixed effects. In rows 2 and 3, the specifications 

include 40 separate temperature variables: 1 uses two separate sets of the same 20 temperature 

bins for the daily maximum and minimum temperatures, respectively, while 2 uses separate sets 

of the 20 temperature bins for the current year’s daily mean temperature and the previous year’s 

daily mean temperature to allow for the possibility that equation (5) inadequately accounts for 

the dynamics of the mortality-temperature relationship. There is some evidence that individuals 

acclimate to higher temperatures over time, so consecutive days with high temperatures (i.e. 

heatwaves) may have a different impact on annual mortality than an equal number of hot days 

that don’t occur consecutively.27 The specification in row 4 of this panel adds a variable for the 

number of instances of 5 consecutive days of mean daily temperature above 90º F and its 

associated parameter is used in the calculations for the mortality impacts of climate change.28  

None of these alterations to the basic specification has a meaningful impact on the qualitative 

findings. Some of them modestly increase the point estimates, while others decrease them. 

Overall, they suggest a small and statistically insignificant increase in the annual mortality rate. 

Further, the generally poorer precision of the estimates underscores that these specifications are 

very demanding of the data. 

Climate change may affect relative prices and individuals’ choices in ways that will change 

the response functions. As an alternative to a full-blown general equilibrium model that 

necessarily involves numerous unverifiable assumptions, Panel C uses the available data to see if 

such changes are likely to alter the paper’s findings. Specifically, row 1 estimates the response 

function using data after 1980 only. The intuition is that in these years medical technologies are 

more advanced, air conditioning is more pervasive, and the oil shocks have raised the relative 

price of energy as climate change might. In row 2, the response function is estimated with data 

from the half of counties where the average number of days per year with a mean temperature 

above 80º F exceeds the national median (14 days). The idea is that individuals are likely to have 

undertaken a series of adaptations to protect themselves against high temperatures in these 

counties and these adaptations may resemble what climate change will cause individuals 

                                                
25 The predicted increases (standard errors) in the mortality rates for female and male infants are 4.1 (1.7) and 4.0 

(1.6), respectively. 
26 We also experimented with a completely arbitrary climate change scenario of an increase of 5º F every day. In 

light of the response functions in Figures 6A and 6B, it isn’t surprising that this scenario predicts declines in 

annual mortality rates (standard error) of -0.6% (0.8%) and -0.7% (1.2%) for females and males. 
27 For example Hajat et al. (2002) find that heat waves later in the summer have a smaller impact on mortality and 

morbidity than earlier heat waves. Further, according to medical convention, exercising adults acclimate to heat 

within 3-12 days (Armstrong, 1986). 
28 We also estimated the mortality impacts of climate change using the Hadley 3 A1FI and CCSM 3 A2 predictions 

on temperature and precipitation. These estimated impacts are virtually identical to the baseline estimates, 

highlighting that the predicted increase in precipitation is unlikely to have an important independent influence on 

mortality rates. 
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throughout the U.S. to do. In this respect, the resulting response functions may better 

approximate the long-run impacts of climate change on mortality. The entries in both rows 

reflect the application of the relevant response function to our full sample.  

In the context of the sampling errors, neither approach alters the predicted impact on mortality 

rates, so the qualitative findings are largely unchanged. We expected the point estimates based 

on the response function from the hotter half of the country to decline; the results may indicate 

that individuals throughout the country have implemented the full set of adaptations available for 

reducing mortality. An alternative possibility, which would undermine the meaning of this test, is 

that these counties are also poorer and that this test confounds the impacts of adaptation and 

income. 

A natural approach to assess this possibility is to restrict the analysis sample to counties from 

the lower parts of the per-capita income distribution. In particular, we consider estimating the 

impacts using only counties where per capita income is less than the national median. 

Unfortunately, this analysis revealed little meaningful information. In particular, the standard 

errors from the estimates based on the poorest half of the counties in our sample were 7-10 times 

larger than the standard errors from the baseline model. This lack of statistical precision is 

attributable to the fact that poorer counties have lower population on average and that 

consequently the regression estimates were very poorly determined.  

In summary, the results in Tables 3 and 4 suggest that climate change will increase the annual 

mortality rate by roughly 1.7% with the Hadley 3 A1FI predictions and 0.5% with the CCSM A2 

predictions. However, these overall impacts are statistically indistinguishable from zero.   

The Importance of Accounting for the Dynamic Relationship Between Temperature and 

Mortality. Figure 7 provides an opportunity to assess the paper’s success at modeling the 

unknown dynamic relationship between temperature and mortality to address the issues of 

harvesting/forward displacement and delayed impacts. The figure replicates the daily analysis of 

Deschênes and Moretti (2007) and was constructed with the Multiple Cause of Death Files  

 (MCOD) for the 1972-1988 period. The key difference with the CMF is that the MCOD files 

contain the exact date of death between 1972 and 1988.  

We use these MCOD data to estimate daily and annual versions of equation (5). In the daily 

regressions, the unit of observation is a county by day and the dependent variable is the county-

level mortality rate for an age group. This equation includes county fixed effects, state by year 

fixed effects, state by month fixed effects, and the 20 temperature variables. The estimation of 

this equation is very expensive in computing power and time, so we have combined genders 

within each age category. The annual version is identical to equation (5), except that for 

comparability reasons we combine genders. For both the daily and annual approaches, the figure  

reports the weighted sums of the TMEAN

dj
ˆ ’s across the 8 age categories, where the weights are the  

population share in each age category (just as in Figures 6a and 6b, except here the population 

shares are based on both genders). 
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The figure reveals the shortcomings of the daily model. This is most evident at the coolest 

temperatures. Specifically, the estimated mortality rate from the annual approach greatly exceeds 

the mortality rate from the daily approach for almost all bins representing temperatures below  

50º F. For example, the average of the estimated TMEAN

j
ˆ  for the 11 bins representing  

temperatures below 50º F is 0.003, which suggests that an extra day in that temperature range is 

associated with 0.003 additional deaths per 100,000 population. The analogous calculation from 

the annual approach is 0.197, which is about 65 times larger! These results support the validity of 

the delayed impacts hypothesis and reveal that cold days are associated with fatalities due to 

diseases like pneumonia that do not immediately lead to death. 
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Figure 7. Population-Weighted Sum of Regression Estimates Across Age Groups, for Daily and 
Annual Approaches (relative to temperature cell 65-70). The figure compares the response 
functions obtained from fitting equation (5) with daily mortality data and annual mortality data. 
The objective is to highlight how using annual mortality data alleviates the problem of mortality 
displacement that plagues the relationship between on daily data. For simplicity, both models 
reported here pool males and females together. The response function based on annual 
mortality data follows directly the specification of equation (5) (except that it pools males and 
females). In the daily regressions, the unit of observation is a county by day and the dependent 
variable is the county-level mortality rate for an age group. This equation includes county fixed 
effects, state by year fixed effects, state by month fixed effects, and the 20 temperature 
variables. For both the daily and annual approaches, the figure reports the weighted sums of 

the 
TMEAN

dj
ˆ

’s across the 8 age categories, where the weights are the population share in each 
age category (just as in Figures 6a and 6b, except here the population shares are based on both 
genders). 

The paper’s primary purpose is to learn about the likely impacts of climate change, and there 

are important differences between the estimated TMEAN

dj
ˆ  at the higher temperatures too. Here, the  

estimated coefficients from the daily model overstate the mortality impact of a hot day; for 

example the estimated impact of days in the 85º - 90º F, 85º - 90º F and > 90º F bins are 0.15, 

0.12 and 0.10 larger, respectively, in the daily model. The result is that the predicted increase in 

the mortality rate from the Hadley 3 A1F1 (CCSM 3 A2) predictions is 2.5% (1.6%) with the 

daily approach but just 1.7% (0.5%) with the annual one. Thus, a failure to account for forward 
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displacement and delayed impacts would lead one to overstate the direct mortality impacts by 

roughly 47% (202%).29 

Geographic Variation in the Estimated Impacts. Table 5 explores the distributional 

consequences of climate change across states. It lists the predicted impact of the two sets of 

climate change predictions on state-level mortality rates. The states are ordered from largest to 

smallest with the Hadley 3 A1F1 predictions in columns (1a) and (1b) and the CCSM A2 ones in 

(2a) and (2b). The entries are based on the estimation of equation (5), and then the resulting 

response function is applied to each state. In interpreting the results, it is important to recall that 

due to the greater number of CCSM grid points, the CCSM predictions on climate change are at 

the state-level whereas the Hadley predictions are at the Census Division-level. 

The entries indicate that the currently hot states will experience the largest increases in 

mortality rates. For example, the Hadley (CCSM) predictions suggest increases in Arizona’s, 

California’s, and Texas’ mortality rates of 4.1% (1.8%), 4.0% (2.3%), and 3.4% (1.4%), 

respectively. Interestingly, the estimates suggest that 12 (19) states will have declines in their 

mortality rates with the Hadley (CCSM) predictions. It is evident that the reduction in cold days 

in Wyoming and Montana drive those states’ reductions in mortality rates under the Hadley 

scenario. 

Overall, the table reveals substantial heterogeneity in the estimated impacts of climate change 

on mortality rates. However, it would be remiss to fail to point out that this exercise is 

demanding of the data and, these state-specific predictions are generally imprecise. For example, 

the null of zero is rejected at the 10% level or better for only five states under Hadley 3 A1FI 

(i.e. Arizona, California, Kansas, Missouri, and New Mexico) and just three states with CCSM 

A2 (California, Nevada, and Arizona). Furthermore, only 1 of the 98 estimates would be judged 

statistically significant at the 5% level. 

6.3. Estimates of Adaptation from Energy Consumption 

We now turn to an analysis of the effect of inter-annual fluctuations in temperature on 

residential energy consumption. Specifically, this subsection fits versions of equation (6) to the 

state by year data on residential energy consumption from the EIA. Recall, the annual mean of 

residential energy consumption is 16.6 quads in this period. 

Figure 8 plots the estimated j ’s from the specification that includes the familiar 20 

temperature variables. The coefficients report the estimated impact of an additional day in bin j 

on annual energy consumption, relative to energy consumption on a day where the temperature is 

between 65º - 70º F. The estimates are adjusted for the ln of population and state gross domestic 

product, their squares and interaction. The figure also plots the estimated j ’s plus and minus 

one standard error of the estimates, so their precision is evident.  

                                                
29Furthermore, these results suggest that the reports of the extremely elevated risk of mortality associated with hot 

days overstate the mortality impacts of these episodes (Whitman et al., 1997; Vandentorren et al., 2003). This is 

because the individuals that die on these days appear to have had little life expectancy remaining, just as is 

predicted by the harvesting/forward displacement hypothesis. In this respect, the results confirm the Deschênes 

and Moretti (2005) findings, although we have done so with a much more blunt approach; their paper traces out 

the precise dynamics of the mortality-temperature relationship on hot days.  
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TABLE 5. Estimates of the Impact of Climate Change on State-Level Annual Mortality Rates (in 
Percent). 

Hadley 3, A1F1 CCSM 3, A2
Impact (Std Error) Impact (Std Error)

Arizona 4.1 (2.5) California 2.3 1.4
California 4.0 (1.9) Nevada 2.1 1.2
Florida 3.8 (2.6) Arizona 1.8 0.8
Louisiana 3.6 (3.2) Arkansas 1.6 1.9
Texas 3.4 (3.5) Texas 1.4 1.5
Alabama 2.9 (2.2) Utah 1.4 1.4
Mississippi 2.9 (2.1) Idaho 1.4 1.0
Kansas 2.8 (1.7) Mississippi 1.3 1.2
Missouri 2.7 (1.6) Louisiana 1.1 0.9
New Mexico 2.3 (1.2) New Mexico 1.1 1.1
Nevada 2.1 (1.3) Missouri 1.0 1.7
Arkansas 1.9 (3.1) Colorado 0.9 1.1
Tennessee 1.9 (2.3) Tennessee 0.9 1.2
Nebraska 1.8 (1.9) Oklahoma 0.9 1.9
Iowa 1.7 (2.0) Alabama 0.8 0.9
Georgia 1.6 (1.7) Kentucky 0.7 1.0
Oklahoma 1.6 (3.1) Oregon 0.6 0.9
Indiana 1.4 (1.3) Florida 0.5 0.5
South Carolina 1.4 (1.8) Illinois 0.5 1.8
Ohio 1.4 (1.3) Indiana 0.5 1.5
Pennsylvania 1.3 (1.4) Georgia 0.4 0.8
Kentucky 1.3 (2.3) Iowa 0.4 1.9
Illinois 1.2 (1.3) Washington 0.4 0.8
South Dakota 1.1 (2.3) Kansas 0.3 1.5
Minnesota 1.0 (2.9) New York 0.2 0.5
New Jersey 0.8 (0.9) Ohio 0.2 1.0
North Carolina 0.7 (2.1) Wyoming 0.2 1.1
Connecticut 0.6 (0.8) Montana 0.1 0.9
New York 0.6 (1.0) South Carolina 0.0 0.9
Colorado 0.5 (1.3) Minnesota 0.0 1.7
Michigan 0.5 (1.6) Wisconsin -0.1 1.4
Utah 0.5 (1.1) Nebraska -0.1 1.1
Rhode Island 0.4 (0.9) West Virginia -0.2 0.9
North Dakota 0.4 (3.4) Virginia -0.2 0.8
Wisconsin 0.3 (1.9) South Dakota -0.2 1.6
Oregon 0.2 (1.4) Pennsylvania -0.3 0.8
Massachusetts 0.2 (0.9) Michigan -0.3 0.7
Virginia -0.1 (2.2) North Carolina -0.4 1.0
Idaho -0.1 (1.4) North Dakota -0.5 2.5
New Hampshire -0.4 (1.2) Rhode Island -0.6 0.8
Dist Columbia -0.5 (1.8) Maine -0.7 0.8
Vermont -0.5 (1.4) Massachusetts -0.8 0.8
Maine -0.6 (1.4) Vermont -0.8 1.2
Delaware -0.6 (2.4) Dist Columbia -0.9 0.8
Maryland -0.6 (2.5) Delaware -1.1 1.1
Washington -0.8 (1.7) Maryland -1.2 1.2
Wyoming -0.9 (1.8) New Hampshire -1.3 1.2
Montana -0.9 (1.8) Connecticut -1.5 1.2
West Virginia -1.0 (2.4) New Jersey -1.6 1.3  

Note: The estimates are from the same regressions as for Table 3. The climate change impacts (as a percent of annual 
deaths) are calculated separately by state. 

The response function has a U-shape, indicating that that energy consumption is highest on 

cold and hot days. Notably, the function turns up sharply at the three highest temperature bins. 

So, for example, an additional day in the > 90º F bin is associated with an extra 0.11 quads of 

energy consumption. The response function is very flat and precisely estimated for temperatures 

between 45 – 80º F; these seven estimated j ’s all range between -0.013 and 0.007. In fact, the  
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Figure 8. Estimated Impact on Total Energy Consumption in the Residential Sector. The figure plots 
the estimated response function between aggregate residential energy consumption (in QBTU) 
and daily mean temperatures. This is obtained by fitting equation (6) on our sample of 1,715 
state-year observations. The response function is normalized with the 65º - 70º F category so 
each j corresponds to the estimated impact of an additional day in bin j on residential QBTU 
relative to the residential QBTU associated with a day where the temperature is between 65° - 
70° F. The figure also plots the estimated j’s plus and minus one standard error of the 
estimates. 

shape of this function undermines the convention in the literature of modeling heating and 

cooling degree days linearly with a base of 65 because fitting a line through these points will 

overstate consumption in the flat range and understate it at the extremes of the temperature 

distribution. 

Table 6 reports the predictions of the impact of climate change on annual residential energy 

consumption from the estimation of several versions of equation (6). The table is laid out 

similarly to Table 4. All specifications include state and census division by year fixed effects, as 

well as quadratics in ln population, ln state GDP, their interactions, and a set of 50 indicator 

variables capturing the full distribution of annual precipitation. For both sets of climate change 

predictions, we reports results from modeling temperature with the 20 separate variables and 

with cooling and heating degree days and their squares.    

The baseline specification in the first row reports compelling evidence that predicted climate 

change will cause a sharp increase in energy consumption. Specifically, the estimates suggest an 

increase in residential energy consumption in the range of 5-6 quads or 30%-35% with the 

Hadley 3 A1FI predictions and about 2.5 quads or 15% with the CCSM A2 predictions. All of 

these estimates would be judged to be statistically different from zero at conventional 

significance levels.  
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The specification checks in Panel B support the validity of the findings in the baseline 

specification. Some of the estimated impacts are larger and some are smaller, but they are almost 

all within one standard error of the baseline estimates.30 

Panel C reports on the estimated impacts when the response function is estimated on 

subsamples of the data. In rows 1 and 2, the underlying response functions are estimated with 

observations from after 1980 and states with an average number of days with temperatures above 

80º F that exceeds the national median. The idea is that in both subsamples individuals may have 

undertaken some of the adaptations that resemble those that will be taken in response to 

permanent climate change. In the former, this is because these observations occur after the oil 

shocks, and in the latter, this is due to the warmer climates. In the context of the model outlined 

in Section 3, we expect the response in energy consumption to be smaller when these response 

functions are used. 

Table 6. Estimates of the Impact of Climate Change on Annual Residential Energy Consumption. 

daH l ye A ,3 1F1 MSCC A ,3 2
 slleC 02 DDH dna DDC slleC 02 DDH dna DDC

(B F56 esa ) ( F56 esaB )
1( ) (2) 3( ) (4)

A. nilesaB tsE e i tam es 9.4 6 0. 3.2 2 5.
(1 )9. ( )5.1 (0 )9. ( )8.0

A .B lte nr ta vi pS e fice i tac oi ns
Y .1 rae fE fects O n yl 7.2 7 8. 5.1 1 4.

(1 )8. ( )9.1 (0 )8. ( )5.0

rtnoC .2 o sl f or yliaD miniM um xaM dna imum T em rep ruta rapeS e yleta 4.9 9.7 --- ---
(1 )6. ( )6.2

rP ddA .3 suoive Y rae s' T em rep ruta aV e ri selba 4.4 6 8. 2.2 2 8.
(2 )7. ( )0.2 (1 )4. ( )1.1

raV ddA .4 i f elba or muN reb fo wtaeH" aves" 1.6 6 0. 3.2 2 5.
(1 )8. ( )5.1 (0 )9. ( )8.0

apmI .C cts E fo s amit eht gnit eR s nop se cnuF S no noit sbu ets eht fo aD at
soP .1 t- O ataD 0891 n yl 0.3 3 6. 3.1 1 4.

(1 )1. ( )0.1 (0 )6. ( )5.0

setatS .2 w i yaD# ht s F °08 evobA vobA naideM lanoitaN e -2 5. 7.4 - 4.1 2 6.
(1 )9. ( )7.1 (1 )1. ( )8.0

 

Notes: The estimates are from fixed-effect regressions based on a sample of 1,715 state-year observations. Each model 
includes state fixed-effects and census division-by-year effects. The dependent variable is the log of the total 
residential energy consumption in a state-year. Control variables include quadratics in population, state GDP, and 
their interactions, as well as a set of 50 indicator variables capturing the full distribution of annual precipitations. 
“Heatwaves” are defined as episodes of 5 consecutive days where the daily mean temperature exceeds 90º F. The 
state-level measure of heatwaves used in the regression is the weighted average of the number of heatwaves across 
all counties in a state. Standard errors are clustered at the state level. 

                                                
30 We also estimated the mortality impacts of climate change using the predictions on temperature and precipitation. 

When temperature is modeled with the 20 bins, the resulting estimated increases (standard errors) in energy 

consumption are 4.7 (1.9) with Hadley 3 A1FI and 2.7 (0.9) with CCSM 3 A2. Just as with the mortality results, 

the findings suggest that the predicted increase in precipitation is unlikely to have an important independent 

influence. 
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The entries in this panel confirm this prediction. The response function obtained from the 

1980 data implies an increase in energy consumption that is roughly 40% smaller than the 

baseline estimates. In the second row, the results are less stable across the alternative methods 

for modeling temperature, but these results also point to a decline, relative to the baseline results. 

These results underscore the central role of adaptation in responding to climate change and 

that the sum of the baseline mortality and energy consumption impacts from this approach 

overstate its costs. As Section 3 highlighted, however, the costs implied in Panel C are likely to 

understate the total costs. This is because this approach fails to account for the fixed costs 

associated with switching technologies that allow for the smaller increases in energy 

consumption. For example, it fails to account for the extra construction costs associated with 

more energy efficient homes and the greater upfront costs of energy efficient appliances.31 

Overall, these results imply that predicted climate change will lead to substantial increases in 

energy consumption in the residential sector. This finding is consistent with predicted increases 

in energy consumption from a study of California (Franco & Sanstad, 2006). To the best of our 

knowledge, these estimates on energy consumption are the first ones based on data from the 

entire country. In addition to being useful for policy purposes, they should help climate modelers 

who have not yet incorporated feedback effects from higher energy consumption into their 

models.  

7. INTERPRETATION 

Optimal decisions about climate change policies require estimates of individuals’ willingness 

to pay to avoid climate change over the long run. Previous research has suggested that human 

health is likely to be a big part of these costs. This section places the estimates in context and 

also discusses some caveats to this exercise. 

The central tendency of the baseline mortality estimates are that the overall mortality rate will 

increase by about 1.7% with the Hadley 3 A1FI predictions and 0.5% with the CCSM A2 ones. 

To put these numbers in some context, the U.S. age-adjusted death rate for both genders has 

dropped from 1304.5 to 832.7 per 100,000 between 1968 and 2003, which is a decline of 

approximately 1% per year. Thus, even if the point estimates are taken literally, the climate 

change induced increase in mortality is roughly equivalent to losing just 0.5 to 1.7 years of 

typical improvement in longevity. It is important to note though that these estimates have 

associated sampling errors and that the 95% confidence intervals include reductions in mortality 

rates so that a zero impact cannot be rejected. 

                                                
31 Mansur, Mendelsohn, and Morrison (2007) and Mendelsohn (2006) estimate the relationship between energy 

consumption and temperatures in the cross-section. As the discussion in Section II highlighted, this approach 

will reveal the equilibrium relationship between energy consumption and temperature (in the absence of 

specification error). Consequently, this cross-sectional approach is useful in predicting equilibrium energy 

demand, but in the presence of fixed costs it isn’t informative about the impact of climate change on energy 

related costs. 
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An alternative approach to putting the numbers in context is to develop a measure of the 

health related welfare impacts of the expected temperature increases due to climate change and 

we now do this. When the Hadley 3 A1FI results in Table 3 are scaled by fraction of the 

population in our sample (72%), they suggest that climate change would lead to a loss of roughly 

1,100,000 life years annually. The analogous calculation from the CCSM A2 prediction is for a 

loss of about 400,000 life years annually. A valuation of a life year at about $100,000 is roughly 

consistent with Ashenfelter and Greenstone’s (2004) estimate of the value of a statistical life. So 

when the sampling variability is ignored, the results suggest that the direct impacts of climate 

change on mortality will lead to annual losses of roughly $110 billion and $40 billion, 

respectively, in the 2070-2099 period.32 

As equation (4) highlights, the cost of the additional energy consumption should be added to 

the monetized mortality impact to develop a complete measure of the welfare loss due to climate 

change. The baseline estimates from Table 6 imply an increase in consumption of 5 quads with 

the Hadley 3 A1FI predictions and 2.3 quads with the CCSM 3 A2 predictions. The average cost 

of a quad in 2006$ between 1990 and 2000 is $7.6 billion; this implies an additional $35 billion 

(Hadley) and $15 billion (CCSM) of energy consumption at the end of the century.  

Thus the analysis suggests that by the end of the 21st century, annual willingness to pay to 

avoid climate change will be about $145 billion with the Hadley 3 A1FI predictions and $55 

billion with the CCSM 3 A2 predictions. These estimates are just 1.1% and 0.4%, respectively, 

of 2006 GDP. If GDP grows at 2% real per year between now and the end of the century, then 

per capita GDP would be about 6.4 times its current levels by 2100 and these welfare losses 

would appear even smaller if this is used to normalize them. Further, a major limitation of these 

calculations is that they ignore the associated sampling variability and this is especially relevant 

for the mortality estimates that drive these calculations.  

There are a number of other caveats to these calculations and to the analysis more generally 

that bear noting. First, the effort to project outcomes at the end of the century requires a number 

of strong assumptions, including that the climate change predictions are correct, relative prices 

(e.g., for energy and medical services) will remain constant, the same energy and medical 

technologies will prevail, and the demographics of the U.S. population (e.g., age structure) and 

their geographical distribution will remain unchanged. These assumptions are strong, but their 

benefit is that they allow for a transparent analysis that is based on the available data rather than 

on unverifiable assumptions. 

Second, the life-years calculation assumes that the individuals whose lives are affected by the 

temperature changes had a life expectancy of 78.6 for women and 71.2 for men. It is certainly 

possible that our efforts to purge the influence of harvesting and delayed impacts were not 

entirely successful and, in this case, the estimated impact on life years would be smaller. 

Third, it is likely that these calculations do not reflect the full impact of climate change on 

health. In particular, there may be increases in the incidence of morbidities due to the 

                                                
32 It is also possible to make a similar calculation using estimates of how the value of a statistical life varies over the 

life cycle (Murphy & Topel, 2006).  
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temperature increases. Additionally, there are a series of indirect channels through which climate 

change could affect human health, including greater incidence of vector borne infectious diseases 

(e.g., increased incidence of malaria and dengue fever). Further, it is possible that the incidence 

of extreme events would increase, and these could affect human health (Emanuel, 2005). This 

study is not equipped to shed light on these issues. 

Fourth, the theoretical section highlighted that our estimates likely overstate the increase in 

mortality and energy consumption due to climate change. This is because the higher 

temperatures will cause individuals to increase expenditures on goods that protect themselves 

from the changes in temperature. Our identification strategy relies on inter-annual fluctuations in 

weather, rather than a permanent change. There are a number of adaptations that cannot be 

undertaken in response to a single year’s weather realization. For example, permanent climate 

change is likely to lead to some migration (presumably to the North), and this will be missed 

with our approach. Although these adaptations may be costly, individuals will only undertake 

them if they are less costly than the alternative. For this reason, our approach is likely to 

overstate the part of the health costs of climate change that we can estimate. 

8. CONCLUSIONS 

This study has produced the first large-scale estimates of the health related welfare costs due 

to climate change. Using the presumably random year-to-year variation in temperature and two 

state of the art climate models, the analysis suggests that under a “business as usual” scenario 

climate change will lead to a small and statistically indistinguishable from zero increase in the 

overall U.S. mortality rate by the end of the 21st century. There is, however, evidence of a 

meaningful increase in mortality rates for some subpopulations, especially infants. We also find 

that climate change will lead to a statistically significant increase in residential energy 

consumption of 15%-30% or $15 to $35 billion (2006$) by the end of the century. In the context 

of a model of health production, it seems reasonable to assume that the mortality impacts would 

be larger without the increase in energy consumption. Further, the estimated mortality and 

energy impacts likely overstate the long-run impacts on these outcomes, since individuals can 

engage in a wider set of adaptations in the longer run to mitigate the costs. Overall, the analysis 

suggests that the health related welfare costs of climate change are likely to be quite modest in 

the U.S.  

There are several broader implications of this research. First, the demographic group-specific 

mortality and residential energy consumption response functions are not specific to any climate 

model. In fact, as global climate models advance and new climate change predictions emerge, 

the resulting predictions can be applied to this paper’s response functions to obtain updated 

estimates of the mortality and energy impacts of climate change.  

Second, the production of many types of energy involves the release of greenhouse gases. 

Thus, the finding of increased residential energy consumption suggests that climate modelers 

should account for this feedback between higher temperatures and greater greenhouse gas 
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emissions that lead to yet higher temperatures. It is our understanding that current climate 

models fail to account for this feedback loop. 

Third, this paper has demonstrated that it is possible to develop harvesting and delayed-

impact resistant estimates of the impacts of weather on mortality by combining annual mortality 

data and daily weather data. In principle, this approach can be applied to other settings where 

there is an unknown dynamic relationship between environmental exposure and human health. 

For example, a number of commentators have questioned whether the documented relationship 

between daily air pollution concentrations and daily mortality rates largely reflects harvesting. 

This paper’s approach can be applied to that setting.  

Finally, the impacts of climate change will be felt throughout the planet. This paper’s 

approach can be applied to data from other countries to develop estimates of the health related 

welfare costs of climate change elsewhere. In fact, it may be reasonable to assume that the 

welfare costs will be larger in countries where current temperatures are higher than in the U.S. 

and adaptations like air conditioning constitute a larger share of income. Ultimately, the 

development of rational climate policy requires knowledge of the health and other costs of 

climate change from around the world. 
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APPENDIX DATA 

A.1 Hadley 3 Census Division-Level Predictions 

We downloaded the Hadley Climate Model 3 (HadCM3) data from the British Atmospheric 

Data Centre (http://badc.nerc.ac.uk/home/), which provides a wealth of atmospheric data for 

scientists and researchers. Hadley Centre data appears on BADC thanks to the Climate Impacts 

LINK Project, a distributor of archived climate model output to researchers. Daily climate 

predictions generated by the Hadley 3 model are available for all future years from the present to 

2099 and for several climate variables – we downloaded the predicted maximum and minimum 

temperatures and precipitation levels for each day during the years 2070-2099.  

The HadCM3 grid spans the entire globe; latitude points are separated by 2.5º, and longitude 

points are separated by 3.75º. We use the 89 gridpoints that fall on land in the contiguous United 

States to develop climate predictions for the 9 U.S. Census Divisions. At the Census Division 

level, each day’s mean temperature is calculated as the simple average across all grid points 

within the Division. The data used in this paper were originally generated by the Hadley Centre 

for the International Panel on Climate Change’s (IPCC) Special Report on Emissions Scenarios. 

A.2 National Center for Atmospheric Research’s Community Climate System Model 3 

We downloaded the NCAR Community Climate System Model (CCSM) 3 data from the 

World Climate Research Programme’s Coupled Model Intercomparison Project’s data portal 

(https://esg.llnl.gov:8443/index.jsp), which aims to organize a variety of past, present, and future 

climate data from models developed across the world for use by researchers. Daily climate 

predictions generated by the CCSM3 model are available for all future years from the present to 

2099 and for several climate variables – we downloaded the predicted mean temperatures and 

precipitation levels for each day during the years 2010-2099.  

The CCSM3 grid spans the entire globe; latitude and longitude points are both separated by 

1.4º. We use the 416 gridpoints that fall on land in the contiguous United States to develop 

climate predictions for the contiguous United States. At the state level, each day’s mean 

temperature is calculated as the simple average across all grid points within the state. The data 

used in this paper was originally generated by the National Center for Atmospheric Research for 

the IPCC’s Special Report on Emissions Scenarios (SRES).  

A.3 EIA Energy Consumption Data 

The consumption data is derived from several different reports and forms depending on 

energy source. Coal consumption data for most sectors comes from the EIA’s Annual Coal 

Report; electric power sector coal use is the exception, coming instead from forms EIA-906 

“Power Plant Report” and EIA-920 “Combined Heat and Power Plant Report”. Natural gas 

consumption data comes from the EIA’s Natural Gas Annual. Most petroleum data is the 

“product supplied” data found in EIA’s Petroleum Supply Annual, with the exception again of 

electric power sector use, which is reported on EIA-906 and EIA-920. Solar, wind, geothermal, 

and most biomass energy use data are also reported on those forms. Residential and commercial 

use of biomass is reported on forms EIA-457 “Residential Energy Consumption Survey” and 

“Commercial Buildings Energy Consumption Survey”. Nuclear electric power and other 

electricity data comes from the EIA Electric Power Annual. Finally, system energy losses and 

interstate flow are estimated in the State Energy Data System.
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