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Boiled frogs and path dependency in climate

policy decisions

Mort Webster

29.1 Introduction

Formulating a policy response to the threat of global climate
change is one of the most complex public policy challenges of
our time. At its core a classic public-good problem, mitigating
anthropogenic greenhouse gas emissions is likely to be very
costly to any nation that undertakes it, while all would share
the benefits. This dynamic creates a temptation to free-ride on
others’ efforts. This will require coordination among nations
and the development of new institutional capacities. The
heterogeneity across nations adds complexity; the costs of
reducing emissions will not be the same, nor will the benefits
of avoiding climate change. Another troubling characteristic is
the enormous uncertainty involved, both in the magnitude of
future climate change, and therefore the value of avoiding it,
and in the costs of reducing emissions. The long timescales of
the climate system, decades to centuries, add a final dimension
to the policy dilemma. Given the stock nature of greenhouse
gases, which build slowly over time, should we delay miti-
gation activities until some of the uncertainties are reduced?
Or wait until technology improves to the point that mitigation
is less costly?

We need not decide today on the amount of emissions
reductions for all time. Given the degree of uncertainty, it
would not make sense. Over time, we will revise the level of
policy activities to respond to new information and changing
conditions. The relevant question is how much greenhouse gas
emissions abatement should be undertaken today. However,
the choice of the “right” level of stringency does depend on
our current expectations of what we will do later.

Given the policy question — how much effort to exert today
when we can learn and revise in the future — and given some of
the salient characteristics of the problem — uncertainty,
sequential decision over time — a sensible choice for an ana-
lytical framework is that of decision analysis. Decision ana-
Iytic tools have been developed to provide insight into
precisely this kind of decision problem.

A number of studies have explicitly modeled the policy
decision as a sequential choice under uncertainty, and allowed
for learning and adaptation in policy over time (Hammitt et al.,
1992; Nordhaus, 1994a; Manne and Richels, 1995; Kolstad,
1996; Ulph and Ulph, 1997; Valverde et al., 1999; Webster,
2002). The general result from all of these studies is that, given
the ability to learn and adapt later, the optimal choice for the
initial decision period is to undertake very little or no abate-
ment activity. There are several reasons for this result. First,
greenhouse gases are stock pollutants, which build up slowly in
the atmosphere. This means that there is time to address the
problem over the next century and that the impact of reductions
in the next decade or two is relatively small. The second reason
is that the uncertainty in future climate change is sufficiently
large that if there is the ability to reduce this uncertainty and
respond within a few decades, it is better to wait. Third, most of
these models assume that technological options continue to be
developed and improve over time, so that the cost of
responding will fall over several decades. Finally, the use of a
discount rate to reflect the opportunity cost of capital neces-
sarily implies that policy costs in the near term will be weighed
more heavily than either costs later or benefits later, which
further biases the optimal choice to be one of waiting.
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In this paper, I begin by exploring an apparent paradox. A
common approach in modeling climate policy and other long-
term problems is to simplify to a two-period decision, in which
the first period represents “today” or the near term, and the
second period represents “later” or further in the future, per-
haps after some uncertainty has been reduced. As discussed
below, typical results from such models suggest that very little
or no reduction in greenhouse gas emissions in the near term is
optimal. If the problem turns out to be serious, fairly stringent
reductions are undertaken in period 2. Even without resolution
of uncertainty, more stringent abatement is optimal in the latter
period because of the other reasons outlined above. The
dilemma is as follows. Suppose we apply this approach in 2005
and find that very little reduction is warranted for the next
10 years. Suppose we then follow this strategy, and then in
2015 we again apply a two-period model. Will that model not
also recommend doing little or nothing, because of the same
Tactors described above? Are we doomed to repeat this cycle,
until it is “too late” in terms of avoiding climate impacts? I dub
this problem the “Boiled Frog dilemma.”

In the next section, 1 describe the numerical modeling
system, and explore the Boiled Frog dilemma using a variety
of two-period and three-period decision trees. In the traditional
application of decision techniques, I will demonstrate that
there is no Boiled Frog. In Section 29.3, I will demonstrate an
alternative formulation of the decision model that captures the
intuition behind the Boiled Frog problem, namely path
dependency in political systems. The final section discusses
the implications both for climate policy and for research.

29.2. The modeling system and the Boiled Frog

There is a wide spectrum of models that can be used to project
the impacts of greenhouse gas emissions and resulting climate
change as well as the economic costs of constraining those
emissions. These range from very simple approximations to
very large sophisticated models that require weeks on a
supercomputer for a single simulation. The advantage of the
more complex models is that they represent many of the non-
linearities and complexities that make climate change a
cause for concern. On the other hand, solving the dynamic
optimization problem under uncertainty requires some
simplification to make the analysis feasible. The approach
used here is to fit reduced-form models to a climate model
of intermediate complexity and to use a relatively detailed
computable general equilibrium model of the global economy
The reduced-form models are then embedded within a deci-
sion tree framework to solve for optimal decisions.

! This name derives from the apocryphal advice for cooking a live frog: if you
drop a frog into boiling water, it will jump out. If you put a live frog in cool
water and slowly heat over a stove, it will never jump out before boiling to
death. Presumably the frog always believes it has more time, until it is too late.
While this is apparently untrue, it provides a useful image for society’s
potential response to climate change.
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29.2.1  The MIT Integrated Global System Model

The integrated assessment model used is the MIT Integrated
Global System Model (IGSM) (Prinn ef al., 1999), augmented
with a damage function related to change in global mean
temperature. The economic component of the model, the
Emissions Projections and Policy Analysis (EPPA) model
Version 3 (Babiker et al., 2001) is a recursive-dynamic
computable general equilibrium model, consisting of 12 geo-
political regions linked by international trade, 10 production
sectors in each region, and 4 consumption sectors. The climate
component is a two-dimensional (zonal averaged) repre-
sentation of the atmosphere and AT(r) (Sokolov and Stone,
1998). The climate model includes parameterizations of all the
main physical atmospheric processes, and is capable of
reproducing many of the non-linear interactions simulated by
atmospheric general circulation models.

In order to choose one set of strategies as “optimal,” a basis
is required for comparing the costs of reducing emissions with
the benefits of avoiding damages. I augment the EPPA miti-
gation cost model with the Nordhaus damage function
(Nordhaus, 1994a). This damage function has been widely
used (e.g., Peck and Teisberg, 1992; Kolstad, 1996; Lempert
et al., 1996; Pizer, 1999), and facilitates the comparison of
results here with other studies. The Nordhaus damage function
estimates the percentage loss of gross world product as a
function of the global mean temperature change,

d(1) = n[AT ()" (20.1)

where d(#) is the fraction of world product lost because of cli-
mate damages in year 1, and AT(r) is the increase in global
mean temperature from pre-industrial levels. Consistent with
previous studies, I assume that 7 =2 and vary # as an uncertain
parameter.

29.2.2  Fitting reduced-form models

Solving for an optimal sequential decision under uncertainty
requires a large number of simulations of the numerical eco-
nomic—climate model. Used directly, the IGSM requires too
much computation time for this application, so instead I
estimate a reduced-form version using least squares regression
on a data set of 1500 runs. I derive simple non-linear repre-
sentations of temperature change as a function of uncertain
climate parameters and emissions from EPPA. These simpler
functional forms replicate the results of the original IGSM to
within a 1% error of the mean. The reduced-form models are
used in all calculations below.

29.2.3 The decision model

I use the results from EPPA and the reduced-form fits of the
climate model to frame a two-period sequential decision
under uncertainty. The decisionmaker represents an aggregate
decisionmaker for the world. The decisionmaker seeks to
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Table 29.1 Strategy choices in each period: reduction below unconstrained emission growth rate (% per 5 years).
Number of

Case periods Period 1 choice set Period 2 choice set Period 3 choice set
A 2 2010-2029: 2030-2100: none

{0%, 2%, 4%, 6%, 8%, 10%} (0%, 1%, 2%, 3%, 4%, 5%}
B 3 2010-2029: 2030-2049: 2050-2100:

{0%, 2%, 4%, 6%, 8%, 10%} (0%, 2%, 4%, 6%, 8%, 10%} {0%, 1%, 2%, 3%, 4%, 5%}
C 2 2010-2029 2030-2049 2050-2100:

Fixed at 0% {0%, 2%, 4%, 6%, 8%, 10%} {0%, 1%, 2%, 3%, 4%, 5%}
D 2 2010-2049: 2050-2069 2050-2100:

Fixed at 0%

{0%, 2%, 4%, 6%, 8%, 10%} {0%, 1%, 2%, 3%, 4%, 5%}

Table 29.2 Impacts of period 1 strategy choice in 2030 (median growth case).

Reduction rate

(% per 5 yrs) CO, (GtO) % change CO, Carbon price ($/tonne C) Consumption % Chg cons.
0% 12.5 0.0 5094.2

2% 11.8 —5% 19.3 5091.8 —0.05%
4% 11.1 —11% 45.1 5087.9 —0.12%
6% 10.5 — 16% 79.7 5082.1 —0.24%
8% 9.9 —20% 125.1 5073.3 —0.41%
10% 9.4 —25% 181.6 5060.8 —0.66%

Chg. cons. = change in consumption relative to the no policy (0%) case.

minimize the net present value of the total consumption losses.
These losses result both from constraints on carbon emissions
and from impacts of climate change. The stream of costs over
time is discounted at a rate of 5%. The possible strategies
represent choice over levels of emissions abatement only;
other possible complementary policies of research, adaptation,
and geoengineering are not considered here. In order to
illustrate the point here about sequential decision, I make the
simplification of aggregating the globe; in reality, climate
policy will be determined by negotiations among sovereign
nations. Also, I wish to explore the implications for overall
level of effort, and not get into orthogonal questions of relative
burden sharing. For this reason, I assume global trading of
emissions permits between countries, and only examine the
total global losses. One adjustment to account for equity
concerns for developing nations is that the emissions reduc-
tions described below are cut in half for all developing (non-
Annex I) nations between 2010 and 2040. After 2040, all
policies apply equally.

The strategies are defined as the reduction required in the
rate of growth of carbon emissions, relative to the uncon-
strained case. Thus, these policies will have differential effects
depending on the region’s reference growth path and will
also vary with the (uncertain) rate of economic growth. Thus,
“0% means no emissions constraints at all, and “5%” means a
5 percentage point reduction in the CO, growth rate over that
5-year period, relative to the reference rate of emissions

growth.> Smaller rates of reduction will result in slowed
growth of CO, emissions while larger rates will actually
reduce global emission over time.

Table 29.1 shows four different multi-period decision
models that T explore here. Case A is the basic two-period
model where the first period represents the 20years from
2010-2029. Case B is a three-period model for comparison.
Case C does not reduce emissions during 2010-2029 and
defines a new period 1 from 2030-2049. Case D imposes no
constraints for 40 years, from 2010-2049, choosing reduction
rates for 2050-2069 and 2070-2100. To provide context for
the relative stringency of these strategies, the impacts on
several variables in 2030 are given in Table 29.2 for the period
1 strategies. To put these policy choices in more familiar
terms, Table 29.2 lists the impacts of each possible first-period
strategy by 2030 for the median productivity growth case, and
the initial carbon price in 2010.

Based on previous work (Webster et al., 2002, 2003), 1
consider five uncertain parameters that have the greatest
impact on damage costs:

e Labor productivity growth rate (LPG): this parameter
drives the overall rate of economic growth in EPPA.

2 For example, if emissions grow 8% over the 5 years in the reference, then a
policy of “5%” would limit emissions at the end of that 5-year period to be no
more than 3% higher than the previous period.
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Table 29.3 Distributions for uncertain quantities in decision model.

Webster

Branch 1 (P =0.185)

Branch 2 (P =0.63) Branch 3 (P =0.185)

Labor productivity growth rate (relative to reference rates)
Temperature change (degrees C)
Damage cost coefficient (%)

5th

0.8 1.0 1.2
percentile Median 95th percentile
0.02 0.04 0.16

Emissions rate
reduction
2010-2029

Oceanic
uptake

Climate
sensitivity

Emissions rate
reduction
2030-2100

Carbon

Temperature change

Damage
valuation

Aerosol
forcing

Damage costs
2010-2100

Abatement costs

emissions

Labor
productivity
growth

2010-2100

Figure 29.1 Influence diagram for standard two-period decision model.

Higher LPG results in higher carbon emissions and
therefore higher temperature change and climate damages.
(Webster et al., 2002).

Climate sensitivity (CS): this parameter determines the
change in global mean temperature at equilibrium that
results from a doubling of CO, (Forest et al., 2002).
Rate of ocean uptake (vertical diffusion coefficient, Kv):
the 2D climate model parameterizes the mixing of both
heat and carbon from the mixed-layer ocean into the deep
ocean. A slower ocean will result in both higher carbon
concentrations in the atmosphere and in more rapid
warming (Forest et al., 2002).

Strength of aerosol radiative forcing (Fa): this parameter
represents the uncertainty in the magnitude of radiative
forcing from sulfate aerosols, which are negative (cooling)
(Forest et al., 2002).

Damage valuation (DV): to reflect the large uncertainty
in the valuation of climate change impacts, the damage
coefficient 7 is uncertain (Nordhaus, 1994b).

The three uncertain climate parameters, CS, Kv, and Fa, are
combined for each possible emissions path by performing a
Monte Carlo simulation of 10000 trials on the reduced-form
climate models. The total resulting uncertainty in temperature
change is then summarized by a three-point Tukey—Pearson
approximation (Keefer and Bodily, 1983) using the 5th, 50th,
and 95th percentiles. The climate parameter probability dis-

tributions are constrained by observations of twentieth century
climate (Forest er al., 2002; Webster ef al., 2003). When
sampling from the climate parameter distributions, correla-
tions are imposed of pgx =0.004, pgs =0.093, pgs=0.243,
(where SK means correlation between sensitivity and Kv, SA
between sensitivity and aerosol forcing, etc.) as consistent
with twentieth-century observations.

The uncertainties in labor productivity and damage valua-
tion are also represented in the decision tree with three-point
discrete approximations (Table 29.3). The reference con-
tinuous distributions for these parameters are obtained from
expert elicitation. The distribution for the damage valuation is
taken from Roughgarden and Schneider (1999), based on the
assessment by Nordhaus (1994b). The joint distribution of
climate uncertainties, the labor productivity uncertainty, and
the damage valuation uncertainty are assumed to be mutually
probabilistically independent.

The basic two-period decision model is shown in Figure 29.1
as an influence diagram. Influence diagrams are a graphic
representation of a sequential decision model. The rectangles
represent the two decision points, 2010 and 2030, the circles
represent the five uncertain parameters described above, and the
diamonds represent the intermediate outcomes — carbon emis-
sions, temperature change, damage costs and abatement costs, as
well as the final outcome, total costs — of any decision path.
Arrows pointing to decision nodes indicate the time ordering of
decision and information. Arrows to outcome nodes indicate the
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Figure 29.2 Optimal emissions paths for two- and three-period decision models.
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Figure 29.3 Optimal near-term abatement for two- and three-period decision models with resolution under uncertainty.

functional dependence; e.g., temperature change depends on the
three uncertain climate parameters and on emissions. Figure 29.1
represents a situation with no resolution of uncertainty before
the period 2 decision. The corresponding influence diagram for
the case with learning before period 2 would add arrows from
each uncertainty node to the 2030-2100 decision node.

1 first show the results for each case where there is no
resolution of uncertainty before the second-period decision.
While this does not address the decision under uncertainty
aspect, it does capture the other justifications for delaying
abatement to the future: slow build-up of CO,, technological
change, and the discount rate.

Each of the decision models listed in Table 29.1 is calcu-
lated and solved for the optimal strategies in each period. The
resulting global CO, emissions path under each optimal policy
is shown in Figure 29.2. Note that the emissions from
each two-period case closely approximate the three-period

emissions. In other words, all cases are approximating the
same continuous-time dynamic optimal path. The more flex-
ibility in the model (i.e., more decision periods), the closer to
the continuous-time optimal path the emissions will be.
Waiting before imposing reductions does not cause the new
period 1 choice to be less stringent; it is in fact more stringent
to compensate for the delay.

Next, consider the situation in which uncertainty is revealed
before the second-period decision in the two-period models or
before the third-period decision in the three-period model. The
optimal emissions paths are shown in Figure 29.2, and the
optimal abatement strategy in the first period is shown in
Figure 29.3. For the three-period model, the optimal decision
in the first periods is 0% (no reduction) in period 1 and 4%
in period 2. The two-period model, forced to choose one
abatement level, has an optimal strategy of 4%. If the first
decision period is delayed for 20 years with no abatement, the
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optimal strategy is 4%, and if delayed 40 years, the optimal
strategy is 6%. The optimal abatement in the final period in all
models is a probability distribution, since the optimal choice
depends on what is learned.

If there were a Boiled Frog situation, it would appear in the
form of first period optimal strategies that are equally or less
stringent after delays. But in fact, if the first decision is
delayed longer, with or without resolution of uncertainty, the
optimal strategy becomes more stringent, not less. There is no
Boiled Frog in this model!

This result should not be surprising to those familiar with
dynamic optimization. Nevertheless, there is still something
that may trouble some who consider the prospects for making
dramatic emissions reductions in the future when little is
undertaken in the near term. Why do we fear that each gen-
eration will continue to pass responsibility on to the next, never
addressing climate change until impacts are already severe?
There is a basis for this suspicion, but it is not represented in the
decision models above. The problem, path dependency in
political systems, is the topic of the next section.

29.3 Hysteresis and path dependency in climate
policy decisions
29.3.1  The political context and path dependency

In applying decision analytic methods to thinking about
appropriate levels of global greenhouse gas emission reduc-
tions over the next century, the “decisionmaker” is a fictional
entity created for analytical convenience. The reality is that
policy responses will emerge from extremely complex multi-
level, multi-party negotiations that will occur continuously
over the century. At one level, the negotiations are between
nation states, such as the 188 parties to the Framework Con-
vention on Climate Change (UNFCCC, 1992). However, the
positions at this level are driven by the competing positions
and interests in the domestic politics of each of those coun-
tries. The system as a whole has been compared to that of a
“two-level game” (Putnam, 1988).

The competing domestic interests and their resolution in the
form of an official national position cannot be represented as a
static preference function, but a highly fluid stream of posi-
tions that evolve and change over time. This is particularly the
case over the time horizon, decades to centuries, relevant to
climate change policy.

The contrast between the decisionmaker as modeled and the
actual decision process requires that we closely examine the
assumptions of the analysis method. One particular aspect of
the political decision process is relevant to the discussion here:
its ability to make radical shifts over time. Political scientists
have long noted the tendency of political systems to exhibit
path dependency, and have used this feature to explain a
number of political outcomes (Lipset and Rokkan, 1967;
Sewell, 1996; Levi, 1997; Pierson, 2000). The idea of path
dependency is that once a particular course of action has been
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chosen, it becomes increasingly difficult over time to reverse
that course. Policies tend to exhibit “lock-in”, and while a
legislature might from time to time create a new bureaucratic
agency, it is exceedingly difficult to eliminate one. Pierson
(2000) suggests that the phenomenon can also be thought of as
increasing returns to scale within the political system.

An examination of previous studies of climate policy as a
sequential decision under uncertainty reveals that the char-
acteristic of path dependency is largely absent. On the con-
trary, in keeping with the conventional approach, the range of
emissions reductions from which to choose is the same or
similar in each decision period, with no explicit constraints on
future decisions depending on previous periods. One notable
example is Hammitt (1999), which represented path depen-
dency in the sense that reduced emissions in one period
will result in lower emissions in all future periods at no cost.>
This is one important type of path dependency, although
this interaction is represented in CGE models such as EPPA.,
The concept of path dependency explored here is a stricter
form: constraints on the choice set conditional on previous
choices.

The idea of path dependency is part of the underlying
intuition that delayed emissions reductions make more drastic
future reductions more difficult or less likely. We found no
Boiled Frog effect in the previous section because the model
assumed that all period 2 strategy choices were available
regardless of the period 1 decision made. If we believe that
this effect is a salient characteristic of the political process, it
must be included in the model.

29.3.2  Modeling path dependency

A challenge in exploring this issue is how to represent path
dependency in dynamic optimization models of the type used
here. Ideally, this feature would be represented somehow in
the underlying representations of the costs and benefits of each
decision path. Since it is not, however, the goal here is to add a
simple adjustment to the decision model that has the desired
effect and that makes sensitivity analysis straightforward.

There are a number of possibilities. One simple approach
would be to assume that since the relevant decisionmakers are
choosing for the present only and have no control over future
decisions, one could model those future choices as uncer-
tainties rather than decisions. The difficulty with this approach
is that probability distributions are then needed for future
political choices, where these distributions are conditional on
the period 1 strategy that was chosen. It is not clear on what
basis one could design these distributions or from whom one
could elicit them. A second approach is to instead retain future
policy choices as decisions, but allow for the possibility that
the options may be limited. Thus there is an additional

® Hammitt (1999) shows that the impact of path dependency on near-term
optimal abatement is in the same direction as the results shown in this study.
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uncertainty in period 1 over whether future decisions will have
the full range of options to choose from. These constraints are
then conditional on previous decisions. A third approach is to
model the path dependency as an additional cost in the
objective function to drastic changes in the level of stringency
from previous periods, and which grows larger over time. This
would have the same effect as the second approach, effectively
ruling out some future options as non-optimal once the cost
grew too large.

For analytical simplicity, this analysis uses the second
approach of constraining future choice sets. Figure 29.4 shows
how the influence diagram from Figure 29.1 changes for this
variation (for the case without resolution of uncertainty).
There is now an additional uncertainty node, “Capability of
stringent abatement”, which is resolved after period 1 but

in Pgyringent from 0% in period 1)

before period 2, and is influenced by the period 1 decision.
This uncertainty determines the levels of emissions reductions
that can be chosen from in period 2. There is some probability
(Pstringent) that the full range of options from the original
decision model is available to the period 2 decisionmaker. But
now there is also the possibility, with probability 1 — Pgyingents
that only a limited range of emissions can be chosen from. In
particular, the options no longer available are the most strin-
gent reductions.

The critical aspect needed to capture the notion of path
dependency, as described in the political science literature,
requires that the range of available future actions depends on
earlier choices. Unfortunately, the strength of this relationship
is not known. Presumably, earlier actions have some influence
on the set of future options, but there may be some random
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stochastic element as well. I will use a simple formulation
with extensive sensitivity analysis to explore the implications
over a broad range of path dependency.

In this model of hysteresis, I define a second parameter Hyyengrm
as the maximum reduction in probability that stringent reductions
are possible. I then calibrate a linear function of the first period
policy such that no reductions (0%) will result in the maximum
decrease in Pggingeny and the most stringent policy (10%) will
result in no change (Pyuingene = 1.0). All other strategy choices
result in proportional reductions in Pyyingenr. Thus, when Hengm
is zero, there is no hysteresis and the model is the same as in
Section 29.2. When Hyengm is unity, the probability of stringent
action in period 2 is entirely determined by the period 1 decision.
If Hyrengm is set to 0.2, this means that a period 1 strategy of 0% or
noreductions will reduce the probability of stringent reductions in
period 2 to 0.8, while a period 1 strategy of 10% (maximum
reductions) would leave the probability of stringent reductions

at 1.0. I explore the effect of this modification to the standard
two-period model (Case A in Table 29.1).
29.3.3  Results with path dependency
In general, strengthening the hysteresis effect causes greater
reductions in period 1 to be optimal, whether uncertainty is
resolved between periods or not (Figure 29.5). If the period 1
strategy choice will alter the likelihood that dramatic reductions
can be undertaken if necessary, this makes additional reductions
desirable in the near term. A stronger hysteresis effect is needed
to change the optimal decision when learning will occur,
because in this model resolution of uncertainty already results
in more stringent period 1 abatement than the no-learning case.
We can further illustrate the effect of hysteresis on the first
period decision by varying the probability of the high damage
valuation uncertainty (Figures 29.6 and 29.7). Increasing
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hysteresis leads to more stringent near-term abatement. The
omission of any path dependency in a sequential model is
likely to bias the optimal near-term abatement to be too little.
294 Discussion

The objective of this analysis is to draw attention to the
implications for policy prescriptions and insights of meth-
odological choices. We take a complex decision problem —
climate policy; we observe some salient characteristics of that
problem — uncertainty, ability to learn, ability to adapt and
revise decisions over time; we choose a method suited to those
characteristics — decision analysis. But another key feature of
the new decision context of national governments, namely
path dependency, is not typical of the individual decision-
maker situations for which this tool was developed, and so is
not normally accounted for in the way the decision models are
constructed. But path dependency can lead to qualitatively
different results and insights for near-term policy.

The formulation of path dependency presented here has
been kept extremely simple to allow sensitivity analysis and to
keep the focus on the basic concept. In fact, we do not know
whether decisionmakers in future decades will be constrained
or not in the range of emissions reductions that they can
pursue, or how the likelihood of this constraint depends on
today’s policy choices. To get more robust insights from
optimal sequential decision models, research into the magni-
tude of path dependency effects from institutional develop-
ment and commitments is desirable. A related question where
there is active research but more is needed is how technical
change is influenced by regulation-driven price incentives.

In the interest of efficient policy, we often compare the costs
of an action against its benefits. However, this static cost—
benefit approach does not capture the whole picture, or even
the most important part. On that basis alone, the optimal level
of greenhouse gas mitigation in the near term is quite low. The
true value of near-term mitigation policy is that of starting
down the right path to maximize options for future policy
adjustments. Recognizing this additional value justifies a
greater level of abatement in the near term. This goal of
creating and maximizing future options should be a primary
focus in choosing the stringency and institutional design of
climate policies.

References

Babiker, M., Reilly, J.M., Mayer, M. et al. (2001). The MIT
emissions prediction and policy analysis (EPPA) model:
revisions, sensitivities, and comparison of results. MIT Joint
Program on the Science and Policy of Global Change. Report
No. 71. Cambridge, MA: MIT.

Forest, C.E., Stone, P.H., Sokolov, A.P., Allen, M.R. and Webster,
M.D. (2002). Quantifying uncertainties in climate system
properties with the use of recent climate observations. Science
295, 113-117.

363

Hammitt, J.K. (1999). Evaluation endpoints and climate policy:
atmospheric stabilization, benefit-cost analysis, and near-term
greenhouse-gas emissions. Climatic Change 41, 447-468.

Hammitt, J.K., Lempert, R. A. and Schlesinger, M. E. (1992). A
sequential-decision strategy for abating climate change. Nature
357, 315-318.

Keefer, D. L. and Bodily, S.E. (1983). Three-point approximations for
continuous random variables. Management Science 29, 595-609.

Kolstad, C.D. (1996). Learning and stock effects in environmental
regulation: the case of greenhouse gas emissions. Journal of
Environmental Economics and Management 31, 1-18.

Lempert, R.J., Schlesinger, M.E., Bankes, S.C. (1996). When we
don’t know the costs or the benefits: adaptive strategies for
abating climate change. Climatic Change 33, 235-274.

Levi, M. (1997). A model, a method, and a map: rational choice in
comparative and historical analysis. In Comparative Politics:
Rationality, Culture, and Structure, ed. M. 1. Lichbach and A. S.
Zuckerman. Cambridge: Cambridge University Press, pp. 19-41.

Lipset, S.M. and Rokkan, S. (1967). Cleavage structures, party
systems and voter alignments: an introduction. In Party Systems
and Voter Alignments, ed. S.M. Lipset and S. Rokkan. New
York: Free Press, pp. 1-64.

Manne, A.S. and Richels, R.G. (1995). The greenhouse debate:
economic efficiency, burden sharing and hedging strategies. The
Energy Journal 16(4), 1-37.

Nordhaus, W.D. (1994a). Managing the Global Commons: The
Economics of Climate Change. Cambridge, MA: MIT Press.

Nordhaus, W.D. (1994b). Expert opinion on climatic change.
American Scientist 82 (January), 45-51.

Peck, S.C. and Teisberg, T.J. (1992). CETA: a model for carbon
emissions trajectory assessment. The Energy Journal 13(1),
55-77.

Pierson, P. (2000). Increasing returns, path dependence, and the study
of politics. American Political Science Review 94, (2), 251.
Pizer, W. A. (1999). The optimal choice of climate change policy in
the presence of uncertainty. Resource and Energy Economics 21

(3.4), 255-287.

Prinn, R., Jacoby, H., Sokolov, A. er al. (1999). Integrated global
system model for climate policy assessment: feedbacks and
sensitivity studies. Climatic Change 41 (3/4), 469-546.

Putnam, R.D. (1988). Diplomacy and domestic politics: the logic of
two-level games. International Organization 42 (3), 427-460.

Roughgarden, T. and Schneider, S. H. (1999). Climate change policy:
quantifying uncertainties for damages and optimal carbon taxes.
Energy Policy 27, 415-429.

Sewell, W.H. (1996). Three temporalities: toward an eventful
sociology. In The Historic Turn in the Human Sciences, ed.
T.J. McDonald. Ann Arbor: University of Michigan Press,
pp- 245-263.

Sokolov, A.P. and Stone, P. H. (1998). A flexible climate model for
use in integrated assessments. Climate Dynamics 14, 291-303.

Ulph, A. and Ulph, D. (1997). Global warming, irreversibility and
learning. Economic Journal 107 (442), 636-630.

UNFCCC (1992). United Nations Framework Convention on Climate
Change. International Legal Materials 31, 849-873.



364

Valverde, L.J. Jr, Jacoby, H.D. and Kaufman, G. (1999). Sequential
climate decisions under uncertainty: an integrated frame-
work. Journal of Environmental Modeling and Assessment 4,
87-101.

Webster, M. D. (2002). The curious role of learning: should we wait
for more data? The Energy Journal 23 (2), 97-1109.

Webster

Webster, M. D., Babiker, M., Mayer, M. et al. (2002). Uncertainty in
emissions projections for climate models. Atmospheric Environ-
ment 36 (22), 3659-3670.

Webster, M.D., Forest, C., Reilly, I. et al. (2003). Uncertainty

analysis of climate change and policy response. Climatic Change
61 (3), 295-320.




