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Climate Change Impact: A Complex Issue

. . . . Global reported natural disasters by type (1970-2022)
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* Impacts are uneven across the world.
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Biodiversity, Ecosystems, and Natural Resource Management

Sierra Nevada Forests
Climate change and non-climate stressors interact
and affect ecological systems at multiple scales

disease, pollution
' invasive species .

Natural Resource
Management
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2012-2017 drought across California =>stress to trees and
bark beetle outbreaks =>mortality of 129 million trees
(ponderosa pine) =>incense cedar increases = large wildfires
increase = drastically changed ecosystem
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Wetlands: A Complex Social-Ecological System
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Food System

Climate system
Temperature, precipitation,
extreme events, etc.

Ecosystems Food system
Land, water

and oceans

Security
Crops, livestock, Processing, Demand, Availability,
Biodi . aquaculture and value chains, consumption, access,
lodiversity, fisheries markets and trade diets utilisation,
soils, carbon stability

storage
Loss and waste Human health

Ecosystem
services

Enabling conditions and constraints Socio-economic benefits Well-being

Socio-economic system
Demography, economics,
food environment, consumer behaviour,
technology, culture, policy, institutions

(Mbow et al. 2019)



Total Factor Productivity (TFKP)

TFP (a measure of productive efficiency)

1 = aggregated output / aggregated inputs (labor, capital)
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Urban Land Expansion and Food Production

Global Urban Land Demand Urban Land Maps in 2100
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Maiezi: ;g Global food production loss caused by urban expansion (10° ton)
Potato 30 SSP1 SSP2 SSP3 SSP4 SSP5
—*— Vegetables Rice 15.19 1509 1604  14.99 17.88
=== Cropland area Wheat 10.31 10.35 7.99 8.98 19.19
Maize 11.53 1n.21 7.56 8.41 24.84
SSPS SoP2 Potatoes 5.46 5.47 4.29 4.42 10.50

Vegetables 19.99 19.84 18.17 18.06 29.67

Population affected by food production loss (million)

Rice 281.77 279.86 297.51 278.03 331.62
Wheat 157.50 158.25 12212 137.22 293.35
Maize 644.70 626.72 422.86 470.19 1388.70
Potatoes 159.91 160.09 125.48 129.36 307.31

Vegetables  183.55 182.18 166.79 165.79 272.44
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Water Resources

Changes in Terrestrial Water Storage (TWS)
for 2070-2099 relative to 1976-2005
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* Global lakes are experiencing less ice
cover and shorter ice duration

* Lake surface water temperatures
(LSWT) have increased worldwide at a
global average rage of 0.34° C/decade

* Global annual mean lake evaporation
rates increase 16% by 2100

Less frequent mixing of lakes
(Woolway et al. 2020)
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The 100t Meridian: Arid-Humid Divide
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 Aridity increases, the 100t meridian moves east, aridity gradient becomes more muted
* Aridity’s eastward shift is evident in the southern and central plains and less so in the north.



Energy Systems

Direct drivers Energy systems

Climate change impacts on energy system per
region averaged across > 200 reviewed studies
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Extreme Atmospheric Rivers (EAR)

AR: a long and narrow corridor of concentrated water vapor transported in the atmosphere

Difference in EAR occurrence frequency (%) Large -scale eteorooglcal Patterns (LSMP, zi&nalogue)

between 2051-2100 and 1956-2005
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Extreme Heat

Trends in the highest daily maximum temperature of the year
(regression on global mean temperature) in the GHCN-D
station data
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Adaptation Responses

Types of Adaptation Responses Change in cover crops from 2012-2017 (103 acres)

* Behavioral/cultural
> change food consumption practices; adopt
drought-tolerant plant/animal species
* Technological/infrastructural

» desalination; rainwater harvesting; boreholes and
tube wells for extracting water

* Natural-based

> protect landscapes to limit deforestation; restore
ecosystems; improve land management practices

e [Institutional

> creating policies, programmes, and regulations;
establishing formal and informal organizations

* Integrated

> 1nstallation of urban green roofs for cooling;
government-supported planting of drought-
resistant seeds among subsistence farmers

Restoring meadows

in the Sicrra Nevada Nature-based Infrastructure
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Transformational Adaptation (TA)

Dimensions Scenarios of TA
of TA Low High
Overall Sporadic and limited with small adjustments Widespread and full implementation
Depth Expansion of existing practices Entirely new practices with deep structural reform
Scope Localized and fragmented, lack of Widespread and substantial with most possible sectors
p coordination across sectors and levels of governance
Speed Implemented slowly Rapid change
Limits Don’t challenge soft limits Exceed many soft limits and challenge hard limits
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Knowledge Gaps and Future Directions

Scientific Perspectives

A new generation of high-resolution climate
models that can explicitly represent relevant
fine-scale processes and provide more detailed
and precise projections of future climate and
severe weather events, particularly at regional
and local levels, to support robust climate
mitigation and adaptation

Exascale computing and data facility of
unprecedented power, capacity, and scale to
deliver the timely simulation, prediction and
data analytics of the Earth system

A global coordinated effort by a trained and
well-resourced scientific workforce

Advanced knowledge of tipping points and
improved methodologies (e.g., IAM) for
quantification of the complex risks (e.g.,
feedbacks and interactions between risks,
uncertainty, unidentified risks, etc.)

Interdisciplinary interactions and collaboration
within and between natural and social science
communities for sharing knowledge and
expertise

Mitigation & Adaptation Perspectives

Identify gaps in adaptation research and
practice that address equality, justice, and
power dynamics (towards developing more
equitable adaptation practices).

Leverage emerging new technology and
infrastructure

Strengthen governance

Facilitate public participation and citizen
engagement

Global coordination, cooperation and
commitment across localities, sectors of
society, and scales of governance to ensure
global sustenance
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