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Today’s topics

e Understanding climate forcings and feedbacks
e Global climate models as a valuable tool for experimentation in
climate science
o Parametrization

o Uncertainty
e Detection and attribution of human-caused climate change



Quick recap from yesterday
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Forcings and feedbacks in the climate system

o oo iy What are climate forcings?

e Changes in the amount of energy
that enters or leaves the system,
alters Earth’s radiative equilibrium
and can force temperatures to
rise or fall

e Natural or man-made

e Solar cycle, changes in Earth’s
orbit, volcanic eruptions, pollution
(aerosols), greenhouse gases,
land-use changes/deforestation

©2008 antonio,©2008 haglundc, and courtesy Mike
Embree/National Science Foundation.




Forcings and feedbacks in the climate system

o s What are climate forcings?

e A positive radiative forcing (more
incoming energy) warms the
system, while a negative radiative
forcing (more outgoing energy)
cools it

e Quantitatively given as the
change in energy flux at the top of
the atmosphere

e Does not entirely predict climate
response!

©2008 antonio,©2008 haglundc, and courtesy Mike
Embree/National Science Foundation.



Forcings and feedbacks in the climate system

Climate forcing analogy:

Imagine water flowing into the bucket at
a fixed rate, the rate of water exiting
through the bottom hole is dependent on
the size of the hole and depth of water.

Water in the bucket will reach a fixed
level once the amount of water entering
the bucket equals that which is leaving.



Forcings and feedbacks in the climate system

Climate forcing analogy:
A steady state climate exists when the energy
entering the system equals that leaving.

! / Incoming solar energy

<«+—— Level is analogous to Earth’s global heat content

"\ . Earth’s outgoing longwave energy



Forcings and feedbacks in the climate system

Climate forcing analogy:

- Radiative forcing is analogous to
changing the amount of water either
"' entering or leaving the bucket.

For example if we made the hole
smaller, the water level in the bucket
would rise.

The same as increasing the amount of

greenhouse gases in the atmosphere,

impeding escape of IR to space, the
V" surface temperature will rise!
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Forcings and feedbacks in the climate system

Radiative forcing of climate between 1750 and 2011
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Forcings and feedbacks in the climate system

What are forcing feedbacks?

Climate feedbacks are internal
climate processes that can
amplify or weaken the climate
response to an initial forcing

Positive feedback increases
initial warming

Negative feedback reduces
initial warming

Climate
System

Feedbacks

Response



Forcings and feedbacks in the climate system

What are forcing feedbacks?

Examples:

Positive: Ice-albedo effect

Surface
warming

Reduced albedo,
— | more absorbed
sunshine

Melting snow
and ice




Forcings and feedbacks in the climate system

What are forcing feedbacks?

Examples:

Negative: Temperature lapse
rate feedback

Height
A
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In the future climate, the
temperature is predicted to
increase throughout the
troposphere, but it increases
more higher up than near the
surface.

>

Temperature

The lapse rate is the rate at which temperature decreases upward.



Forcings and feedbacks in the climate system

What are forcing feedbacks?

Height

Examples:

Negative: Temperature lapse
rate feedback

Troposp_)here
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Warmer air up high can radiate
heat away to space more
easily than warmer air near the
ground.
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Forcings and feedbacks in the climate system

What are forcing feedbacks?
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Global climate models

Horizontal Grid
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Given the number and diversity of
elements in the climate system, we
need models to make a quantitative
assessment about climate change.

What is a global climate model?

e Numerical representation of the
Earth system

e System of of differential equations
that describe fluid motion,
radiative transfer, chemical
composition, etc.

e Planet divided into 3-dimensional
grid to solve the equations

e Sub-gridscale processes are
parametrized



Global climate models

Coupled climate model:

e Different components of the
climate system working together

e The atmosphere, ocean, land,
and sea-ice components ‘talk’ to
each other (coupling)

e Can apply changes in external
forcings - solar input,
greenhouse-gases, volcanic
eruptions

e Provide a virtual laboratory for
experimentation

Upper-level winds

NCAR/UCAR CESM




Global climate models

Dust/Sea spray/Carbon aerosols

Ice sheet

1960s . 1970s . 1980s . 1990s . 2000s . 2010s

NCAR/UCAR CESM
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Parametrization:

e Many physical processes occur at
small spatial scales that the GCM
cannof D

large) The difference in how these sub-grid scale
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Cloud fraction in grid cell




Global climate models

Sources of uncertainty in projected global mean temperature
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Detection and attribution of climate change

e Climate change: change in the state of the climate that
can be identified (e.g. by statistical tests) by changes in
the mean or variability of its properties that persists for
an extended period, decades or longer

e Climate variability: variations beyond individual
weather events in the mean state and other statistics of
the climate (e.g. standard deviations, occurrence of
extremes) on all spatial and temporal scales




Detection and attribution of climate change

e Detection: demonstrating that Observations
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Detection of climate change:

Observed change in surface temperature
1901-2012
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Attribution of climate change:

What do we need:

Observations of climate indicators: Space and time measurements

An estimate of external forcing: How external drivers of climate change
have evolved before and during period of investigation, e.g. GHG and solar

A quantitative physically-based understanding: How external forcing might
affect the climate indicators - normally with physically-based model

Estimate of climate internal variability: Frequently derived from a
physically-based model



Attribution of climate change:

The scientific evidence for a human “fingerprint” on global climate as
strengthened over time:

“The balance of evidence
suggests a discernible human
influence on global climate”



Attribution of climate change:

The scientific evidence for a human “fingerprint” on global climate as
strengthened over time:

“There is new and stronger evidence that
most of the warming observed over the last
50 years is attributable to human activities”



Attribution of climate change:

The scientific evidence for a human “fingerprint” on global climate as
strengthened over time:

Climate Change 2001

“Most of the observed increase in globally averaged temperatures since
the mid-20th century is very likely due to the observed increase in
anthropogenic greenhouse gas concentrations”



Attribution of climate change:

The scientific evidence for a human “fingerprint” on global climate as
strengthened over time:

The Science of Climate

@ Contribution of Worki
to the Second Assessmen
Intergovernmental Panel ol

“Anthropogenic greenhouse gas emissions have increased since the pre-industrial era...their effects, together with
those of other anthropogenic drivers, have been detected throughout the climate system and are extremely likely
to have been the dominant cause of the observed warming since the mid-20th century”




Attribution of climate change:

Example: Searching for ‘fingerprints’ of human-caused climate change in
observational records of atmospheric temperature



Example of attribution:

1979-2012 Atmospheric Temperature Trends
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Santer et al., 2013, PNAS.



Example of attribution:

1979-2012 Atmospheric Temperature Trends
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Example of attribution:

1979-2012 Atmospheric Temperature Trends

A ALL+8.5 (model average trend
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Example of attribution:

1979-2012 Atmospheric Temperature Trends
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Example of attribution:

B
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Example of attribution:

Use the ANT (anthropogenic only)
fingerprint, and a pattern-correlation
analysis to look at how the amplitude
of the pattern is changing over time in
observations (signal), and compare to
the control/natural runs (noise).
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Fingerprints of human-caused climate change

Surface specific humidity Water vapor over oceans Tropospheric temperatures Stratospheric temperatures
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Summary:

Large radiative forcings from greenhouse-gas emissions have contributed to
positive imbalance in the climate system, though there is uncertainty to the
magnitude of which aerosols and clouds have offset this forcing

Climate feedbacks control the magnitude of response to positive radiative forcing,
complex system with uncertainty in certain feedbacks (eg. cloud response)
Global climate models are an invaluable tool for investigating how the climate
system responds to external forcings, differences in parametrization and coupling
are responsible for model spread

Human-caused effects on the climate system can be identified through detection
and attribution studies



Resources:
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Check out
http://globalchange.mit.edu/news-events/education#resources
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