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Purpose of these lectures

e Develop a broad understanding of Earth’s climate system
e Understand how Earth’s climate responds to changes that are natural and
human-induced

What these lectures are not

e Not about the politics or policies surrounding the issue of climate change



Today’s topics

History of climate science

Structure and composition of Earth’s atmosphere

Earth’s energy budget

The greenhouse effect

Variability in the climate system

Emissions of greenhouse gases and their long-lived persistence



The world is warming. Why?

Global temperature change (1850-2016)

Jan Global temperature change since
1850 to present day.
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Since 1850, the global mean
temperature has increased by
around 0.8 degrees Celsius.
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NASA/Goddard Space Flight Center Scientific Visualization Studio Data provided by Robert B. Schmunk (NASA/GSFC GISS)



Definition of “Climate”

Popular definitions:
e Climate is the average weather
e Climate is what you expect, weather is what you get

Scientific definition:
e Climate is the statistics of weather
o Not just the mean weather, but the statistics of its variability
o Aggregation over time scales of more than one year so that seasonal

cycle is not considered

Examples climate variability:
e EIl Nino/La Nina (2-4y), “Little ice age” (100y), Glacial cycles (20,000y)



History of climate science

The Greenhouse Effect
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History of climate science

Svante Arrhenius
1859-1927

"If the quantity of carbonic acid [CO ] in the air should sink to
one-half its present percentage, the temperature would fall by
about 4°; a diminution to one-quarter would reduce the
temperature by 8°. On the other hand, any doubling of the
percentage of carbon dioxide in the air would raise the
temperature of the earth's surface by 4°; and if the carbon
dioxide were increased fourfold, the temperature would rise by
8°."

Varldarnas utveckling, 1906. p.53



History of climate science e
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Milutin Milankovic
1879-1958

http://earthobservatory.nasa.gov/Features/Paleoclimatology Evidence/



Structure of the atmosphere
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Temperature climatology

Mean surface temperatures:

e \Warm temperature belt in
tropics migrates North and
South with the seasons.

e Most extreme variations are
in high latitudes of Northern
hemisphere

https.//en.wikipedia.org/wiki/File:MonthlyMeanT.gif



Temperature climatology

Jan
Sea surface temperatures:

e Highest temperatures
around equator, but not
zonally symmetric

- e Many interesting
: features/currents you can
see

http://iridl.Ideo.columbia.edu/maproom/Global/Ocean Temp/Monthly Temp.htm!?T=Dec%202012



Atmospheric composition
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Earth energy balance

Total absorbed solar radiation: SO(] —ap)jz'r'2 @;220,30
< Planetary albedo is
. . 0 the fraction of
Absorption per unit area: 7(] -ap) incident radiation

reflected to space



Earth energy balance

Case of no atmosphere:

Can estimate Earth’s surface temperature T4 ) o
using Stefan Boltzmann law: F=c 0=35.67X10"W/m~K

S
oTi=—7(1-q,

The effective emission temperature of Earth is 255 K (-18°C) if we had no
atmosphere. Observed average surface temperature is 15°C. Way too cold!!!



Greenhouse effect

John Tyndall
(1820-1893)

Measured infrared (IR) absorption of
atmospheric gases
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Greenhouse effect

Solid lines are the Planck blackbody
emission spectra, as function of
temperature.

The solid filled parts show the spectra
of the incoming solar radiation
transmitted through the atmosphere to
the surface, and the outgoing
terrestrial radiation transmitted through
to the top of the atmosphere.

The difference between the two shows
the wavelengths at which the
solar/terrestrial radiation is absorbed,
and by what gas/process.

httons://en.wikipedia.org/wiki/File:Atmospheric Transmission.png
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Greenhouse effect

e Only 15-30% of terrestrial IR radiation
escapes to space, with almost all the
far IR being absorbed by the
atmosphere.

e Water vapor is strongest absorber of
IR heat like Tyndall concluded.

e Carbon dioxide bands do not
completely overlap with water vapor.

httons://en.wikipedia.org/wiki/File:Atmospheric Transmission.png
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Simple model with the greenhouse effect

Assumptions:
e Atmosphere is completely transparent to solar radiation
e Atmosphere is opaque to infrared radiation

e Infrared emission is from surface and the atmospheric
layer

e Atmosphere is a single slab



Simple model with the greenhouse effect

In balance, radiation entering must equal that
leaving the Earth, thus 7, = T_

T, = surface temperature
T

T, = atmosphere temperature




Simple model with the greenhouse effect

Q
A

At the surface:
oT; = oT, + oT;
4
TS = V 2 TE‘

T.=303 K (30°C)




Simple model with the greenhouse effect

e Due to greenhouse effect, the surface must warm
enough to balance both incoming sunlight and the
radiation from the atmosphere back to the surface

Limitations:

e Atmosphere is not completely opaque to infrared

radiation, consider ‘leaky’ greenhouse, and more than
one layer

e Heat transported by convection as well as radiation



Earth’s radiative budget
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Earth’s radiative budget
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Climate variability

Causes of natural climate variability

e ‘External forcing’ of the climate system:
o Glacial periods caused by changes in Earth’s orbit ~10,000 -
100,000 years
o Large volcanic eruptions
o Solar variability

e ‘Internal’ climate variability (chaos due to nonlinear interactions of a

complex system)
o EI Nino, North Atlantic Oscillation



Volcanic eruptions impact climate
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Solar forcing of climate
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El Nino Southern Oscillation (ENSO)

The ENSO cycle describes the fluctuations in temperature between the ocean and atmosphere in
the Pacific that lead to large-scale weather pattern changes across many regions of the world.

December - Fehruary El Nlno Conditions —
. ator
k @torlal
- W@ e
| ) ( o
] [ Dry and
EQUATORSL  THERRCCLME - V
Source: http:_.-"_f'www.srh.no}aa..gov_.-"jetstream
December - February La Nifia Conditions .
ke
'iny and Warm £ g% s ‘_. ¢ torlal
) i e
G Dr and Cooi .
e @
Wet and Cool H
dler in
ource: http:.-"'.-"www.srh.noaa.gov.-"'jetstream_-'"

NOAA/NCEP/CPC



Greenhouse gas concentrations in the atmosphere

Globally averaged greenhouse gas concentrations
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Increase in greenhouse gases in the atmosphere are primarily from
increases in carbon dioxide, methane and nitrous oxide.

IPCC AR5, SPM11_rev1-01



Greenhouse gas changes in the atmosphere

Global anthropogenic CO, emissions Cumulative CO,
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Greenhouse gas changes in the atmosphere

Can examine the ratio of different carbon isotopes, to show that CO, rise in
atmosphere is from human fossil-fuel combustion.
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Carbon cycle
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Permanent CO2 removal is slow
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Summary

Trace gases in the atmosphere (HZO, COZ, CH4, NZO...) are opaque to
outgoing infrared radiation and responsible for the greenhouse effect.

Due to greenhouse effect, the surface must warm enough to balance both
incoming sunlight and the radiation from the atmosphere back to the surface
Climate system has ‘internal’ and ‘external’ modes of variability that can span
from 1-100,000 years.

Increase in CO, concentrations since from pre-industrial levels is from human
fossil-fuel emissions, and permanent removal from the atmosphere is a slow
process



That's it for today!

Tomorrow in Climate 102 we will look at how to quantify the climate system
response to both natural and human-caused forcings, and how scientists can
detect and attribute observed changes in the climate system to human activity.
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