IEc

Modeling of Biophysical-Macroeconomic Systems for Policy

Insights and Challenges from World Bank Country Climate and Development Reports (CCDRs)

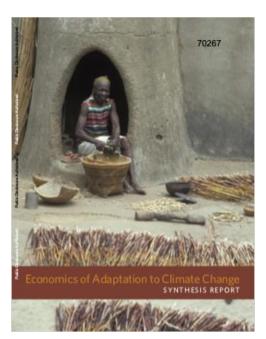
INDUSTRIAL ECONOMICS, INC.

March 27, 2025

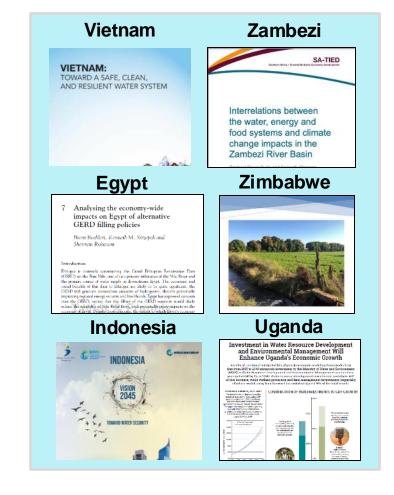
MIT Global Change Forum: Panel on Sustainability Science: Integrated Modeling of Nature-Society Systems

Recent history of linked biophysical-macro applications

EACC (2010)


SACReD (2012)


Applications (2012-2024)

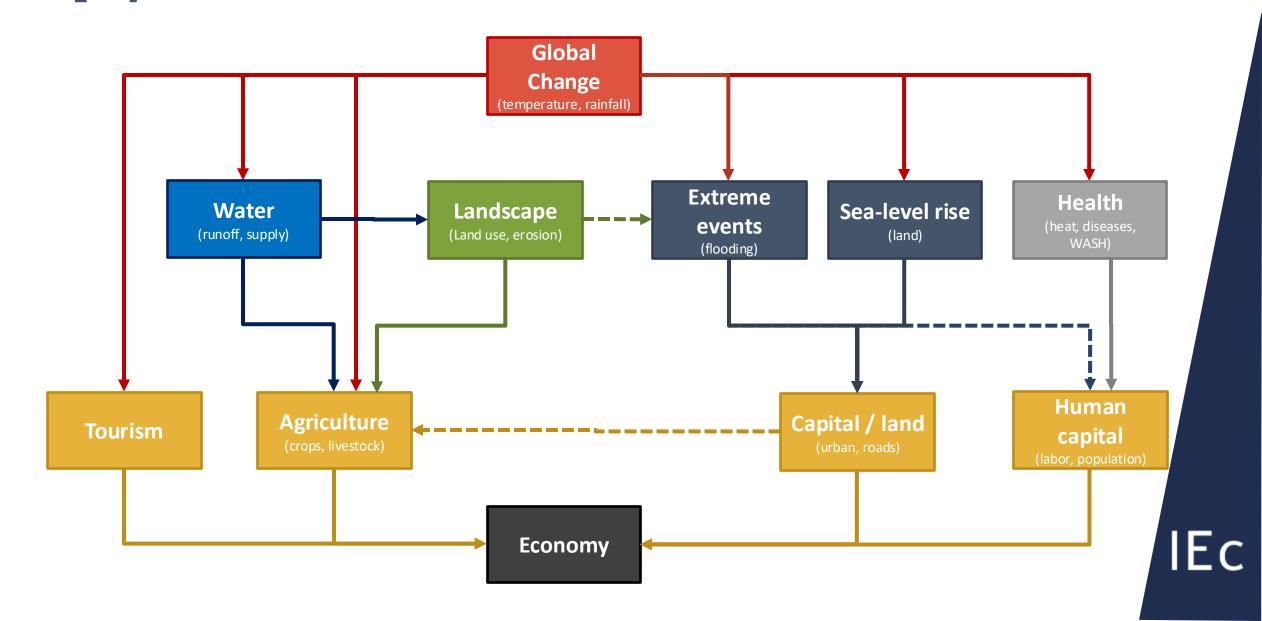

CCDRs (2021-Present)

Economics of Adaptation to Climate Change

Systematic Analysis for Climate Resilient Development Framework

Collaborators

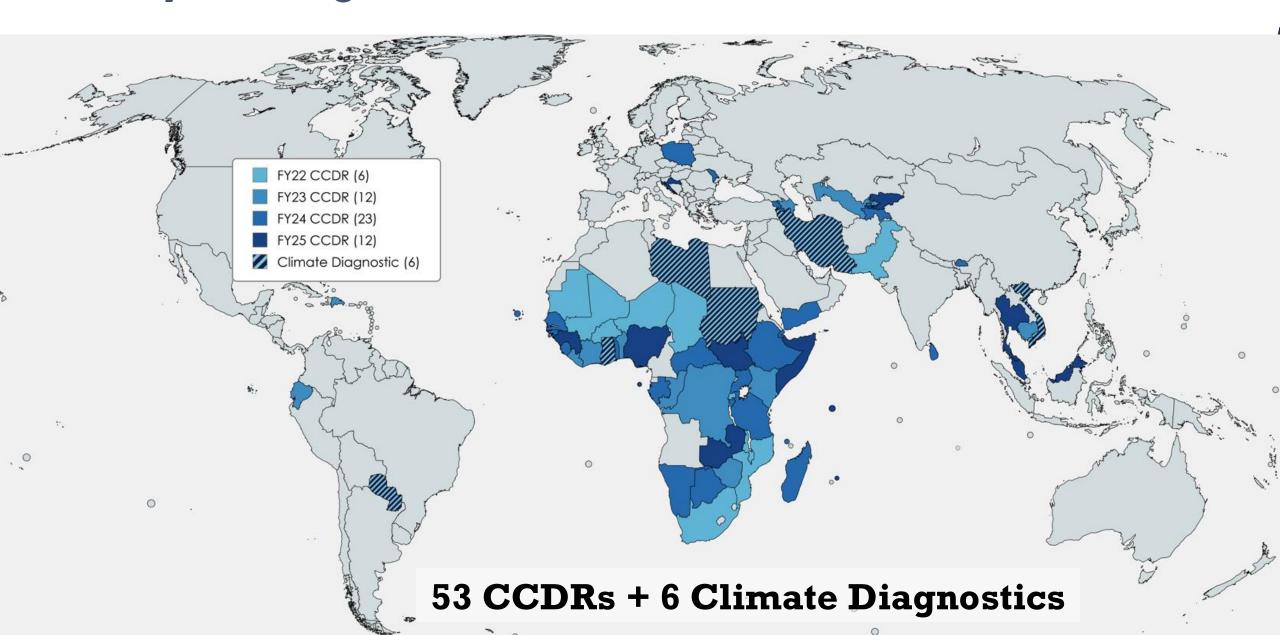
World Institute for Development Economics Research


IEc

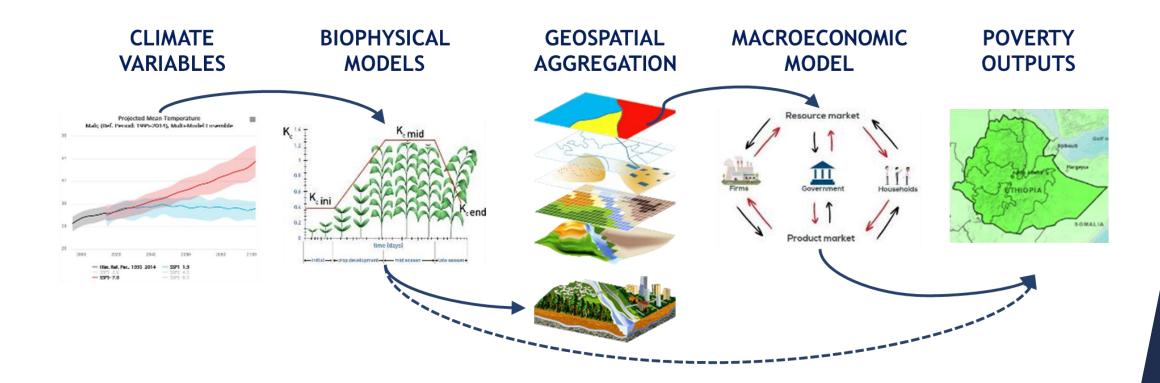
INDUSTRIAL ECONOMICS, INCORPORATED

SACReD channels framework: Linkages between climate, biophysical, and macro models

What are the World Bank's CCDRs and what is our role?

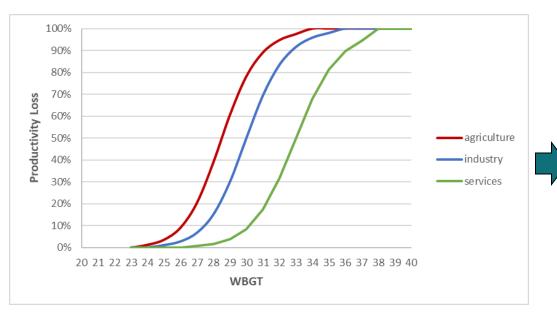

CONTENT OF THE CCDRs

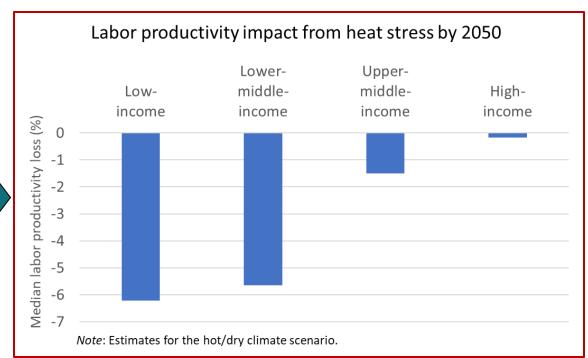
CCDRs are informed by a broad set of questions, around climate and development, adaptation and resilience, the low carbon transition, and financing the transition. They are structured to cover* four overarching areas of analysis and conclude with climate-related policy and investment recommendations and assess their costs and benefits.


Country coverage, 2021-2025

Typical Impact Channels in the CCDRs

	FY22							FY23														FY24				
	SSA SA				SA	SSA							LAC EAP		EAP	ECA		SSA								
Impact channel	IMM	MOZ	ZAF	RWA	G 5	PAK	BEN	500	CIV	СОБ	GNB	LBR	KEN	ZWE	MOG	ECU	КНМ	UZB	AZE	ЕТН	CAF	SEN	SLE	160		
Human Health and De	velo	pme	nt																							
Labor heat stress	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓		✓	✓	✓	✓	✓	✓	✓	✓		
Human health	✓	✓		✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓			✓		✓	✓	✓	✓	✓		
WASH	✓					✓	✓		✓					✓	✓		✓			✓	✓	✓	✓	✓		
Clean cooking					✓		✓		✓	✓	✓	✓	✓	✓						✓	✓		✓	✓		
Tourism				✓			✓		✓						✓		✓							✓		
Water, Ag, Energy, and Land Use																										
Rainfed crops	✓	✓	✓	>	✓		✓	✓	✓	>	✓	✓	✓	✓	>			✓	✓	✓	✓	>	>	✓		
Irrigated crops	✓												✓	✓	>	✓		✓		✓						
Livestock	✓	✓	✓		✓	>	✓	✓	✓				✓	✓		✓		✓	✓	✓				✓		
Erosion	✓			✓			✓	✓	✓		✓	✓	✓	✓	\	✓			✓	✓	✓	>	>	✓		
Carbon storage													✓							✓						
Hydropower	✓	✓										✓	✓	✓		✓				✓						
Water supply	✓												✓		>					✓						
Infrastructure and Extreme Events																										
Inland flooding	✓	✓	✓	✓	✓		✓		✓		✓		✓		✓	✓		✓	✓	✓				✓		
Urban flooding	✓	✓			✓			✓		✓		✓								✓	✓	✓	✓			
Roads and bridges	✓	✓			✓	✓		✓		✓	✓	✓	✓	✓		✓		✓	✓	✓	✓	✓	✓			
Sea-level rise							✓	✓	✓		✓	✓			✓	✓						✓	✓	✓		
Tropical storms															✓											

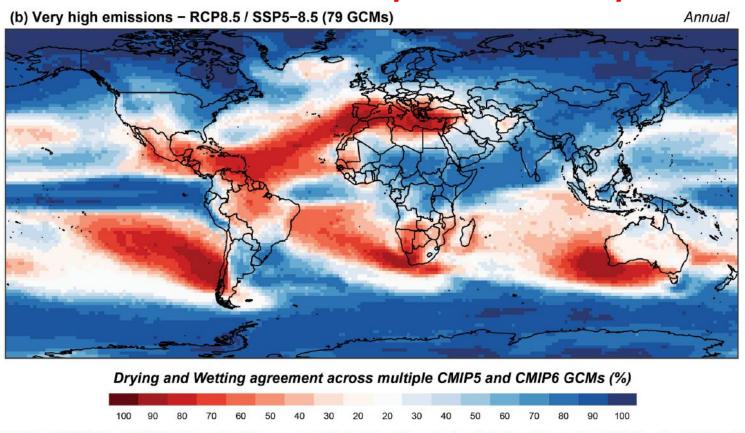

Impact channel workflow



<u>Insight #1</u>: Macroeconomic impacts often did not align with sector-based expectations

Particularly climate change effects on labor productivity (high) and flooding (low)

Heat Effect on Labor Productivity

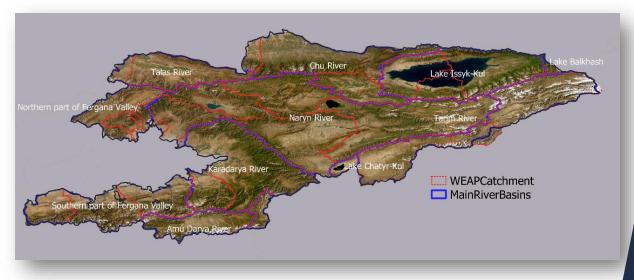


<u>Insight #1</u>: Macroeconomic impacts often did not align with sector-based expectations

Particularly climate change effects on labor productivity (high) and flooding (low)

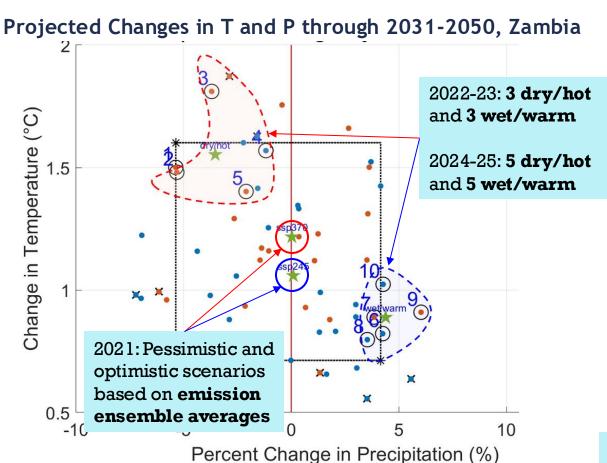
For Channels driven by Water Availability:

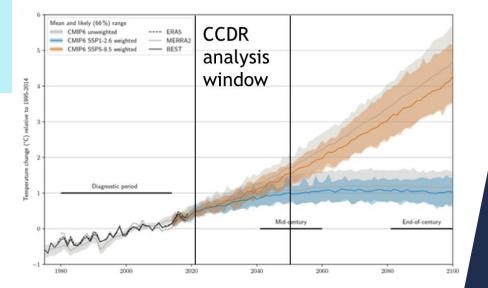

Fig. 3 | **Multi-model (CMIP5 and CMIP6) drying and wetting agreement of robust trends in annual precipitation.** a Intermediate (67 GCM runs) and **b** high emissions (79 GCM runs). Shades of red denote drying agreement and shades of blue indicate wetting agreement.


Source: Trancoso et al. 2024, Significantly wetter or drier future conditions for one to two thirds of the world's population. *Nature Communications*

Insight #2: Generally, development is an effective adaptation strategy

Illustration: Water storage and irrigation efficiency investments in Kyrgyzstan


• Most effective adaptations are often developmentoriented, e.g., increasing maintenance or farmer training

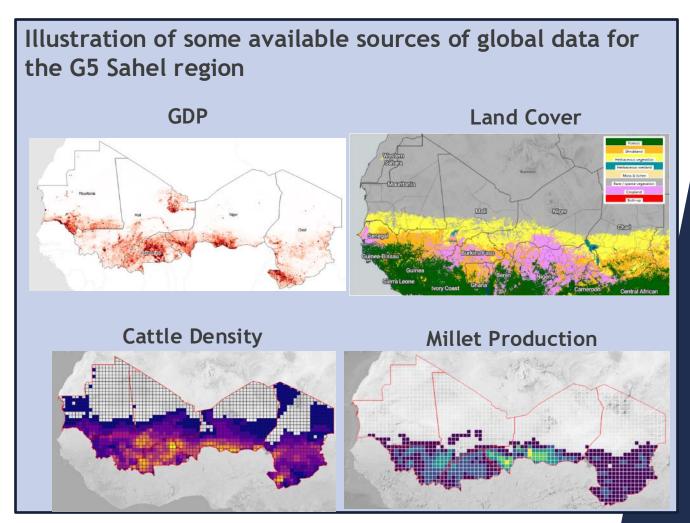


Challenge #1: Scenario design

How do we design climate and development policy scenarios to balance simplicity and rigor?

Next phase → analyses based on 1000s of HFDs?

Challenge #2: Data and modeling gaps


How can we be confident (and inspire confidence) in our policy recommendations?

Global vs local

- Global datasets are structurally consistent but vary in quality across space/time.
- Local data pose challenges, in some cases must be integrated for buy-in

Data and modeling gaps

- **Datasets:** e.g.: bridge inventory, homogeneous river runoff, fertilizer application, etc.
- Models: e.g., grid infrastructure/ outages, secondary flood impacts, etc.

IEc

Acknowledgments

- MIT/IEc: Ken Strzepek
- IEc: Diego Castillo, Kim Smet, Chas Fant, Jani Strzepek, Gabriel Bendat, Hugh Easton, Xavier Maier, Sydney Austin, Silvia Colombo
- World Bank: Stephane Hallegatte, Craig Meisner, Florent McIsaac, Charl Joost, Lulit Beyene, Andrew Burns, Kanta Kumari Rigaud, Yue Man Lee, Urvashi Narain, Julie Rosenberg, Diji Chandrasekharan Behr, Kodzovi Senu Abalo, Tijen Arin, Dominick Revell de Waal, Ana Bucher, Stephen Ling
- Stanford/UMN NatCap: Adrian Vogl, Justin Johnson, Jorge Leon

Brent Boehlert: bboehlert@indecon.com

