

Motivation

- Flood protection infrastructure important for climate adaptation. (levees: 22% county, 21.3M population, \$2.85T property value.)
- Lifespan 100 years: Costly maintenance.

Fact 1: Levee maintenance mainly local responsibility. (79.5% by municipalities and special districts. Property tax.)

USACE constructed and O&M USACE constructed and locally O&M

Fact 2: Levees in poor conditions due to maintenance deficiency. (40% US levees rated as "unacceptable" maintenance quality.)

Hurricane Katrina 2005

Spring 2019 Midwest

2023 Town of Pajaro

Levees and levies: Local financing of climate infrastructure maintenance and housing market dynamics

Yichun Fan, Massachusetts Institute of Technology

Measurement: Levee Maintenance Quality & Performance

Maintenance quality Inspection records from US army Corps of Engineers (USACE) Under PL 84-99: Eligibility of Rehabilitation and Inspection Program (RIP)

- 2.9% Acceptable, 57.1% Minimally Acceptable, 40% Unacceptable.
- Designed protection level.

Inequality in Levee Quality

- 1 SD increase in tract income:
 - 8.3 percent increase in protection.
 - 9.6 percent increase in (minimally) acceptable quality.

Levee Failure and Economic Feedback Loop

Maintenance and levee failure

- Maintenance impacts failure risk.
- Maintenance moderates income disparity in failure risk.

	Times floo	ded within lev	vees since 2000
	(1)	(2)	(3)
Log(Per Capita Income)	-0.287^{**} (0.128)	-0.246^{*} (0.130)	$-0.166 \\ (0.139)$
Floodzone Ratio	0.655^{***} (0.178)	0.686^{***} (0.179)	0.545^{***} (0.191)
Log(Protection Level)		-0.325^{***} (0.057)	-0.231^{***} (0.075)
Acceptable Quality			-1.185^{***} (0.167)
State FE	Yes	Yes	Yes
Ownership FE	Yes	Yes	Yes
Observations	2,089	2,062	1,700
Adjusted R ²	0.273	0.284	0.289

Levee performance Moderate Resolution Imaging Spectroradiometer (MODIS). Daily, 250 meter resolution.

- Flood inundation mapping (Tellman et al., 2021) for 103 flood events since 2000.
- Flood events from Dartmouth Flood Observatory (DFO).
- Water detection algorithms on imageries using Google Earth Engine.

3-day standard algorithms + empirically derived thresholds to the short-wave-infrared, near-infrared, and red bands (bands 7, 2, and 1) from MODIS

Levee failure on housing value $HPI_{ift} = \sum_{\tau=-5}^{6} \beta_{\tau} (LeveeFail_{if} \times EventTime_{ft}^{\tau}) + \delta_{i} + \theta_{st} + (X_{i} \times Year_{y})\eta + \epsilon_{ift}$ 1(Levee Failure) FHFA Repeated Sale Index Any flooding (> 0%) Interact with year to ge differential time trends L Large flooding (> 25%) ✓ Levee failure Results: Levee failure -1 0 1 2 3 4 5 6 Relative Year 5 -4 -3 -2 • $3-9\% \downarrow$ housing price. 🗕 0 🗕 1 Before levee After levee • 5.6% \downarrow total revenue. failure failure

Example: Hurricane Katrina

Local Fiscal Capacity

• Local fiscal capacity matters: Income disparity in maintenance larger when municipal governments or special districts are local sponsors.

(Minimally) Acceptable Quality				
.11	State/County	Municipality	Special District	
1)	(2)	(3)	(4)	
ala ala ala				
34^{***}	0.053	0.113^{***}	0.094^{***}	
(16)	(0.033)	(0.027)	(0.020)	
3 8 ^{***}	0.050^{***}	0.077^{***}	0.042^{***}	
004)	(0.011)	(0.013)	(0.005)	
es	Yes	Yes	Yes	
es	Yes	Yes	Yes	
es	Yes	Yes	Yes	
340	463	731	1,091	
535	0.651	0.434	0.712	

Table 3: Income inequa

Causality:

Quasi-random economic variations (e.g., Trade shock/ Technology shock)

> Housing value & Property tax revenue

Levee maintenance quality

Economic inefficiency

- Levee maintenance: average benefit cost ratio 8.81.
- 36.37% positive NPV levees poorly maintained. ~ \$456 million flood loss.

